Skip to content
Paper

Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint

 
Download PDF  (2.13 MB)
Publication: Cities
Volume: 105
Publication Date: 2020
Summary:

There is growing pressure in cities to unlock the potential of every public infrastructure element as density and demand for urban resources increase. Despite their historical role as providing access to land uses for freight and servicing, alleys have not been studied as a resource in modern freight access planning.

The authors developed a replicable data collection method to build and maintain an alley inventory and operations study focused on commercial vehicles. A Seattle Case study showed that 40% of the urban center city blocks have an alley. 90% of those alleys are wide enough to accommodate only a single lane for commercial vehicles. 437 parking operations were recorded in seven alleys during business hours and found that all alleys were vacant 50% of the time.

This confirms that, in its alleys, Seattle has a valuable resource as both space for freight load/unload; and direct access to parking facilities and business entrances for commercial, private, and emergency response vehicles.

However, alley design features and the prevalence of parking facilities accessed through the alley may restrict the freight load/unload space in the alley. Future efforts should investigate how to better manage these infrastructures.

Recommended Citation:
Machado-León, Girón-Valderrama, G. del C., & Goodchild, A. (2020). Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint. Cities, 105. https://doi.org/10.1016/j.cities.2020.102847 
Technical Report

Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90

 
Download PDF  (1.46 MB)
Publication Date: 2018
Summary:

Unresolved safety issues caused by truck parking shortages in high-demand locations are of keen importance to the State Departments of Transportation (DOTs) participating in the Regional PacTrans Center and to the thousands of trucking companies and drivers using the Interstate 5 (I-5) and Interstate 90 (I-90) corridors. Safety issues include serious and/or fatal crashes that may be related to the lack of safe and secure parking, and illegal/unofficial parking on entrance and exit ramps, shoulders, and freeway lanes that create hazards for motorists during severe weather.

WSDOT completed a statewide truck parking study in December 2016, and the Oregon Department of Transportation (ODOT) published a report on truck parking along the US97 corridor in July 2017. Both states are interested in addressing safety issues inherent in the current lack of truck parking capacity. Researchers at the Supply Chain Transportation and Logistics Center (SCTL) at the University of Washington developed this project’s research goals with WSDOT to support their work.

Goals

The project goals are to:
  • Provide data-based decision support to WSDOT and neighboring states as they develop solutions for the lack of safe truck parking along the I-5 and I-90 corridors.
  • Develop new and valuable insights from truck drivers’ expertise on safety problems resulting from the lack of truck parking capacity on these corridors.
To achieve these goals, the research team first conducted a research scan of existing studies and other online reports that describe the lack of parking in high-demand locations along the I-5 and I-90 corridors in the PacTrans region.

Future Trends 

SCTL identified three trends in the truck parking industry that will affect the truck parking shortage in the future:
  1. The rising cost of land in growing metropolitan areas will continue to intensify this problem. Rapidly increasing land costs create pressure on truck service firms to either create new revenue streams (charging for parking that was formerly included for ‘free’ along with retail fuel sales) or relocate further from metro centers if they cannot compete with higher-value land uses near highway interchanges. Also, manufacturing and wholesale facilities that generate a high number of truck trips will likely continue to maximize building footprints on parcels, reducing available land for on-site truck parking.
  2. Federal regulatory changes are likely to increase long-haul truck parking demand in the next 10 years. In the short term, the electronic logging device (ELD) mandate beginning in 2018 will change driver behavior. Although some long-haul drivers have not strictly followed federal Hours of Service (HOS) regulations in the past, under the new ELD mandate they are more likely to stop and park for required rest periods because it will be more difficult to evade detection. In the next 10 years, additional federal regulations may be enacted and shorten drivers’ HOS again, thereby increasing demand for more rest stops on the Interstate Highway System and other major truck routes.
  3. In the longer term, emerging autonomous and cooperative truck technologies that address driver fatigue are likely to reduce demand for truck stops in rural areas – but not near cities. The truck driver interviews conducted for this project show that drivers stop for business reasons, not just for safety rest periods.

Finally, SCTL conducted 184 interviews of truck drivers over a three-week time period at two high-demand truck stops on the I-5 and I-90 corridors to determine: (a) origin and destination of trips; (b) connection to the Ports of Seattle and Tacoma; (c) drivers’ perceptions of safety issues caused by a lack of truck parking; (d) types of commodities carried; and (e) why drivers parked at these rest stops.

Key Findings 

The SCTL Center’s research provides new data and insights to answer questions under discussion between state, local, and regional transportation agencies and communities in the central Puget Sound region. The research results supported development of the Washington State Freight Mobility Plan. However the project’s findings have not resulted in public funding for additional parking in high-demand locations near I5 and I-90.

One of the most topical questions is whether the state’s economy and/or the Ports of Seattle and Tacoma benefit from the truck trips that require rest stops near the Seattle-Tacoma Bellevue metropolitan area. This question is central to understanding their proportional roles and funding responsibilities to add parking capacity where it is scarce: in the central Puget Sound region.

  • The on-site truck driver survey showed that there is an extremely strong tie between truck parking activity and the state’s economy: 91% percent of trucks parked along I-90 (at TA Seattle East Travel Center in North Bend) and 87% of those parked along I-5 (at the Mustard Seed in Sumner) delivered goods to businesses and other customers within Washington State. The evidence belies the hypothesis that most trucks using parking facilities in Washington are passing through the state and therefore provide no economic value to it.
  • Most drivers using the two truck parking facilities in central Puget Sound were not going to either the Port of Seattle or Port of Tacoma. In fact, 83% of truck drivers parked near I-90 and 78% near I-5 did not go to either of the two container ports. Although port-related traffic uses iv the truck parking facilities, it is not the major cause of increased parking demand at these locations.
  • Why do truck drivers park in these facilities? Surprisingly, more park there – and park longer – for business reasons rather than for safety reasons. The largest group of drivers (34% of those interviewed at TA Seattle East and 36% at Mustard Seed) said their primary reason for the stop was to wait to meet a specific delivery time at their destination or wait to locate another load. When SCTL compared the number of hours parked with the primary reason for parking, it found that delivery operations were the largest driver for longer stays.

The research findings have been used to communicate the importance of providing truck parking in high-demand areas in Washington State, particularly near I-5 south of Seattle and along I-90 near North Bend, to local officials, WSDOT, and other state officials.

By an overwhelming margin, truck drivers who parked along I-5 and I90 near the Seattle-Tacoma-Bellevue metropolitan area delivered goods in Washington State, providing strong evidence that their activities support the state’s economy and residents.

Recommended Citation:
Giron-Valderrama, Gabriela, Barbara Ivanov, and Anne Goodchild. "Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90." (2018).
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Paper

Data Stories from Urban Loading Bays

 
Download PDF  (1.16 MB)
Publication: European Transport Research Review
Volume: 9
Publication Date: 2017
Summary:

Freight vehicle parking facilities at large urban freight traffic generators, such as urban retail malls, are often characterized by a high volume of vehicle arrivals and a poor parking supply infrastructure. Recurrent congestion of freight parking facilities generates environmental (e.g. pollution), economic (e.g. delays in deliveries), and freight and social (e.g. traffic) negative externalities. Solutions aimed at either improving or better managing the existing parking infrastructure rely heavily on data and data-driven models to predict their impact and guide their implementation. In the current work, we provide a quantitative study of the parking supply and freight vehicle drivers’ parking behavior at urban retail malls.

We use as case studies two typical urban retail malls located in Singapore, and collect detailed data on freight vehicles delivering or picking up goods at these malls. Insights from this data collection effort are relayed as data stories. We first describe the parking facility at a mall as a queueing system, where freight vehicles are the agents and their decisions are the parking location choice and the parking duration.

Using the data collected, we analyze (i) the arrival rates of vehicles at the observed malls, (ii) the empirical distribution of parking durations at the loading bays, (iii) the factors that influence the parking duration, (iv) the empirical distribution of waiting times spent by freight vehicle queueing to access the loading bay, and (v) the driver parking location choices and how this choice is influenced by system congestion.

This characterization of freight driver behavior and parking facility system performance enables one to understand current challenges, and begin to explore the feasibility of freight parking and loading bay management solutions.

Authors: Dr. Giacomo Dalla Chiara, Lynette Cheah
Recommended Citation:
Dalla Chiara, G., Cheah, L. Data stories from urban loading bays. Eur. Transp. Res. Rev. 9, 50 (2017). https://doi.org/10.1007/s12544-017-0267-3
Presentation

Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency?

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affects such behavior.

In this study, we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in downtown Seattle. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Giacomo Dalla Chiara, Klaas Fiete Krutein, and Anne Goodchild (2022). Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency? 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Paper

Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle

 
Download PDF  (5.46 MB)
Publication: Transport Policy
Volume: 97
Pages: 26-36
Publication Date: 2020
Summary:

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affect such behavior.

In this study we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in Seattle downtown. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Dalla Chiara, Giacomo, & Goodchild, Anne. (2020) Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transport Policy, 97, 26-36. https://doi.org/10.1016/j.tranpol.2020.06.013
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.