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A B S T R A C T   

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion 
and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop 
more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking 
infrastructure affect such behavior. 

In this study we propose a simple method to quantitively explore the parking cruising behavior of commercial 
vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts 
parking cruising times. 

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and 
picking up parcels in Seattle downtown. We obtain an average estimated parking cruising time of 2.3 min per 
trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased 
as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street 
parking areas were available at trip destinations, whereas it increased as more curb space was allocated to 
bus zone.   

1. Introduction 

Urban curb-space is a scarce resource that must satisfy the concur-
rent needs of an increasing number of users, including passenger, 
commercial, ride-hailing and public transit vehicles. In particular, there 
is an increasing demand for curb-space for commercial vehicles to park, 
load/unload, and deliver goods as more people live in urban areas, order 
more things online, and expect faster deliveries (Crainic et al., 2009). 
The increase in curb-space demand for commercial vehicles has often 
not been met with an increase in curb-space supply. One reason is that 
commercial vehicles are usually seen as a nuisance: they are larger and 
occupy more space, they generate more air and noise pollution than 
cars, and they often adopt parking behaviors that negatively affect other 
curb-space users. Consequently, public intervention has often limited 
freight traffic to certain areas and time windows, while repurposing 
space to activities considered more environmentally friendly, e.g., by 
pedestrianizing urban areas and creating bike lanes, thereby further 
reducing available curb-space (Conway et al., 2017). Consequently, 
commercial vehicle drivers are experiencing greater challenges in 
finding available parking. The cost and externalities of these challenges 
are not yet known. 

1.1. Cruising for parking 

A well-known consequence of lack of available parking is cruising for 
parking. In the absence of available curb-space, passenger vehicle 
drivers circle around their destinations searching for parking. The cost of 
cruising for parking is two-fold. First, the time spent searching for 
parking could be used for other, more useful purposes, and therefore it 
represents a direct cost to cruising drivers and passengers. Second, 
cruising vehicles contribute to traffic, thus increasing congestion and 
pollution and generating negative externalities to other vehicles and city 
dwellers. 

The cruising costs of parking are difficult to measure. By simply 
looking at traffic, it is impossible to distinguish in-transit vehicles from 
cruising vehicles. In the past decades, researchers developed methods to 
study cruising from the perspective of passenger vehicles (we review 
some of these efforts in the next section). These studies shed light on the 
problem of cruising by quantifying its costs and externalities and 
fostered policy efforts in many cities around the world aimed at reducing 
cruising and improving urban traffic. 
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1.2. Commercial vehicles parking 

While cruising studies and parking policies have focused on pas-
senger vehicles, little is known about whether commercial vehicles 
experience a similar phenomenon. 

Although commercial vehicles represent a small share of the urban 
vehicle population, their numbers have been growing in recent years. 
The registration of single-truck units in the U.S. increased on average 2 
percent a year between 1970 and 2017 (Davis and Boundy, 2020) and 
their number is predicted to further increase by 36 percent in urban 
areas in the next 10 years (World Economic Forum, 2020). Moreover, 
commercial vehicles travel longer distances than passenger vehicles. 
Trucks in the U.S. have seen a 3.1 percent annual increase in vehicle 
miles travelled (Davis and Boundy, 2020). As a consequence, their 
contribution to total vehicle miles travelled is significantly growing. 
Although data from urban commercial vehicle travel is limited, they are 
expected to contribute between 20 and 30 percent of total vehicle miles 
travelled in cities (Dablanc, 2007). Commercial vehicles also stop more 
frequently than passenger vehicles. While passenger vehicles tours 
usually encompass few trips related to daily activities such as 
commuting or shopping, commercial tours in urban areas are charac-
terized by a larger number of stops (Khan and Machemehl, 2017). 
Considering also the fact that only a limited amount of curb-space is 
allocated to commercial vehicle loading/unloading, we would also 
expect these vehicles to cruise for parking. 

While the literature on commercial vehicle parking behaviors is 
limited, previous studies have assumed that commercial vehicle drivers 
do not cruise for parking but instead either park in commercial vehicle 
loading zones or park in the travel lane as close as possible to their de-
livery destinations. However, as shown in section 2, these studies have 
had little empirical ground truth, and more research should be spent on 
analyzing the cruising phenomenon from the perspective of commercial 
vehicles. 

1.3. Research objectives 

In this study we proposed a novel, and simple method to explore 
evidence of cruising for parking for commercial vehicle drivers in urban 
areas. We use widely available GPS data from a set of observed trips 
performed by a parcel carrier fleet of vehicles delivering and picking up 
goods in downtown Seattle. The obtained cruising time estimates were 
then analyzed to answer the following research questions:  

1. Is there any empirical evidence of commercial vehicles cruising for 
parking?  

2. How curb-space allocation influences commercial vehicles cruising 
behavior? 

Understanding and quantifying the problem of commercial vehicles 
cruising for parking is a first step toward the design of data-driven 
policies that take into consideration the growing demand for curb- 
space for commercial vehicles, as well as improved models to estimate 
commercial vehicles demand in urban areas. The analysis is not inten-
ded to be a robust and final evaluation of commercial vehicles cruising 
for parking, but to evaluate whether the proposed approach and data 
can be used to identify and quantify this behavior. GPS data can be 
collected for a very large number of vehicles daily, and if the proposed 
method can be used to obtain robust estimates of cruising time, it would 
prove to be a cost-effective approach for developing much needed 
insight into urban commercial vehicle parking behaviors. We test the 
proposed method on a data sample from a commercial carrier and 
explore the effect of curb-space allocation policies on cruising time 
estimates. 

In the next section we review empirical studies of cruising and 
describe our contributions to the literature. Sections 3 gives an overview 
of the methodology, and section 4 describes the data at hand. Results on 

the cruising parking estimation and the regression analysis are reported 
in section 5. We conclude with a discussion on the main findings in 
section 6. 

2. Relevant literature and research contributions 

2.1. Cruising in passenger vehicles 

Despite cruising for parking being one of the most studied topics in 
the parking literature (Inci, 2015), measuring cruising is inherently 
difficult. As Donald Shoup wrote, “cruising is invisible” (Shoup, 2006), 
as cruising vehicles are mixed with other vehicles that are headed 
elsewhere and not searching for parking. 

Most of the empirical studies on cruising have focused on passenger 
vehicles and have attempted to estimate three measures of cruising cost: 
(1) the cruising time/distance, i.e., the additional travel time/distance 
drivers need to find available parking, (2) the share of traffic volume 
that is cruising, and (3) the time cost that an additional parked vehicle 
imposes on other drivers. The first metric provides an estimate of the 
“internal” costs of cruising, whereas the latter two quantify the 
“external” costs, as cruising and parked vehicles affect other road and 
curb users. 

Shoup (2006) reviewed several empirical studies and found cruising 
time estimates of between 3.5 and 13.9 min and shares of traffic cruising 
of between 8 and 74 percent. In Table 1 we extend this review by adding 
recent empirical studies on cruising. 

One common method to estimate cruising time is to survey drivers. 
Van Ommeren et al. (2012) used data from the Dutch National Travel 
Survey and estimated an average cruising time of 36 s. The authors 
explained the remarkably lower estimate by the fact that the drivers 
were sampled across the whole country, not only at busy urban areas, 
and that The Netherlands have an efficient on-street parking pricing 
policy. The authors also found that cruising has a distinctive spatial and 
time component. Lee et al. (2017) performed an intercept survey in a 
busy commercial district in Brisbane (Australia) and estimated average 
cruising times of between 13 and 16 min. They also found that drivers 
that had familiarity with the local traffic and parking conditions spent 
less time cruising. 

Shoup (2006) and Alemi et al. (2018) used field experiments to es-
timate cruising times: researchers measured how long it took drivers to 
find available parking by driving through traffic along pre-determined 
routes. They estimated cruising between half a minute to 3 min. 

Table 1 
Recent empirical studies on cruising for parking.  

Study Metrics of interest Method 

Time/ 
distance 

Traffic 
share 

Cruising 
factors 

Shoup (2006) ✓   Field 
experiments 

Martens et al. (2010) ✓   Simulation 
Van Ommeren et al. 

(2012) 
✓  ✓ Survey 

Millard-Ball et al. 
(2014) 

✓   Simulation 

(Holguín-Veras 
et al., 2016) a 

✓   Survey 

Lee et al. (2017) ✓  ✓ Survey 
Inci et al. (2017) ✓   Traffic 

observations 
Alemi et al. (2018) ✓   Field 

experiments 
Hampshire & Shoup 

(2018)  
✓  Traffic 

observations 
Millard-Ball et al. 

(2019) 
✓   GPS data 

Cao et al. (2019) ✓ ✓  Simulation  

a Commercial vehicle drivers were surveyed. 
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By monitoring traffic and parking events, Hampshire and Shoup 
(2018) found an average of 15 percent of traffic was cruising. Inci et al. 
(2017) also monitored traffic to estimate that a car parked for 1 h 
induced 3.6 other cars to cruise, with an average cruising time of 4.2 
min. 

Cao et al. (2019), Martens et al. (2010), and Millard-Ball et al. (2014) 
estimated cruising time by developing simulation models of cruising, 
partially informed by real data. 

Millard-Ball et al. (2019) developed a novel method to estimate 
cruising distance from GPS data. They considered the last portion of 
recorded trips and computed the difference between the actual distance 
travelled and the respective shortest path distance. The estimates were 
then filtered to identify cruising, e.g., by retaining only trips where the 
driver passed at least twice through any road segment. They obtained a 
mean cruising distance of 32.1 m. 

2.2. Cruising in commercial vehicles 

While the cruising for parking literature focused on passenger ve-
hicles, little is known about commercial vehicles’ cruising behavior. 
Commercial vehicles are different than passenger vehicles: (1) they are 
larger and require wider parking spaces to load/unload; (2) they need to 
park closer to destinations as walking with cargo is more cumbersome; 
(3) for security reasons their drivers prefer to stay close to the vehicle 
and (4) most of their drivers also work on strict time constraints. 
Considering also that less curb-space is allocated to commercial vehicles, 
we would expect longer cruising times than those of passenger vehicles. 

However, many studies modelling commercial vehicles movements 
in urban areas have assumed that drivers do not cruise for parking but 
instead either park in commercial vehicles load zones or in travel lanes 
as close as possible to destination (e.g., Amer and Chow, 2017; Iwan 
et al., 2018). 

Such assumption is often motivated by the fact that carriers are 
known to pay large sums of money for urban parking citations. While 
data from parking citations are often cited as empirical evidence that 
commercial vehicles do not cruise, it is important to note that such data 
have several limitations: (1) citations quantify only how many vehicles 
committed parking violations but do not show how many vehicles 
parked legally; (2) there are different types of citations and not all of 
them are parking in the travel lane. 

Kawamura et al. (2014) and Wenneman et al. (2015) analyzed 
commercial vehicles citations in Chicago and found that only 2 percent 
were for parking in travel lanes, while the majority were for parking 
meter violations or unauthorized curb-side parking. Similarly, Rosen-
field et al. (2016) reported that the most common reasons for parking 
citations in Toronto were time of day, permit, and meter violations. 
Therefore, the majority of infractions seems to be related to unautho-
rized curbside parking, rather than parking in the travel lane (see 
summary in Table 2). 

To overcome the limitations of parking citation data, several studies 
collected field observations, recording all commercial vehicle parking 
events, both authorized and unauthorized, in a given urban area. Jaller 

et al. (2013) surveyed 374 commercial vehicles in New York and found 
that only 25 percent of them were unlawfully parked, and of these, 10 
percent parked in the travel lane. The remaining 85 percent of com-
mercial vehicles parked in authorized load/unload zones. Gir�on-Val-
derrama et al. (2019) collected data in Seattle and observed that 34.6 
percent of commercial vehicles parked in on-street loading/unloading 
zones and only 2 percent parked in the travel lane. These studies show 
that a significant portion of commercial vehicle drivers choose to park in 
authorized zones on the curb, and only a small portion of them choose to 
park in the travel lane. 

In summary, the empirical literature on commercial vehicle parking 
shows that: (1) a significant portion of parking events still take place in 
authorized load/unload zones and (2) the share of unauthorized parking 
that takes place in the travel lane is very small. If most commercial 
vehicles park legally or park in unauthorized spaces at the curbside, this 
means that they compete for curb-space as much as passenger vehicles, 
and therefore it is reasonable to assume some amount of cruising occur. 
As for the case of passenger vehicles, we also expect commercial vehicles 
cruising behavior to vary over time, according to the current state of 
traffic and parking congestion, across space, according to different curb- 
space allocation, and across different vehicles, drivers and type of ac-
tivities the drivers need to perform. 

However, empirical studies on commercial vehicle cruising are 
almost non-existent. In general, cruising is a difficult phenomenon to 
observe, to quantify, and to account for in models and simulations. 
Moreover, there is a lack of data on freight behaviors and commercial 
vehicle movements. Only Holguín-Veras et al. (2016) surveyed com-
mercial vehicle drivers with an online questionnaire to estimate their 
cruising time; they reported cruising time estimates of between 3 and 60 
min per trip (with a mode of 20 min per trip). Unfortunately, only 16 
drivers were surveyed, each reporting only one observation. Most other 
studies have estimated commercial vehicle cruising times by using 
simulation, with little empirical evidence (Figliozzi and Tipagornwong, 
2017; Lopez et al., 2019; Nourinejad et al., 2014). By recording parking 
choices in commercial areas in Singapore, Dalla Chiara and Cheah 
(2017) and Dalla Chiara et al. (2020) observed that commercial vehicles 
drivers waited on average 7.7 min in a queue to access load/unload 
areas; queueing behavior is a phenomenon similar to cruising, with the 
difference that queueing does not involve circling in search for parking 
but only waiting. 

To summarize, while the literature on commercial vehicle cruising 
for parking is almost non-existent, previous parking observations and 
citation data have shown that commercial vehicle drivers do not only 
park in the travel lane but instead exhibit more complex and heteroge-
neous parking behaviors that might involve cruising for parking. In this 
work we introduce a simple method to estimate cruising for commercial 
vehicles using widely available GPS data from a commercial fleet of 
vehicles and analyze the factors affecting cruising for parking in urban 
areas. 

2.3. Research contributions 

The contributions of this paper are methodological, empirical, and 
theoretical. On the methodological side, we developed a novel method 
to estimate cruising times from GPS data. Our method is similar to the 
one developed by Millard-Ball et al. (2019), with the differences that (1) 
it is used to estimate cruising times and not distances, (2) it is applied to 
analyze commercial vehicle cruising behavior and (3) it takes into ac-
count historical traffic conditions. On the empirical side, by applying the 
cruising estimation method to data from a commercial carrier, we pro-
vide the first significant empirical evidence of cruising for commercial 
vehicles. While most of the empirical cruising literature has focused on 
passenger vehicles, only Holguín-Veras et al. (2016) estimated cruising 
times for commercial vehicles. However, such estimates were based on a 
very small sample of 16 surveyed drivers. On the theoretical side, we 
provide the first analysis of the factors that influence cruising for 

Table 2 
Percentage of unauthorized parking events that took place in the travel lane.  

Reference Parked in the 
travel lanea 

Data source City 

Kawamura et al. (2014) 2.8% Parking citation 
data 

Chicago 

Wenneman et al. (2015) 2.4% Parking citation 
data 

Toronto 

Jaller et al. (2013) 2.5% Field 
observations 

New 
York 

Gir�on-Valderrama et al. 
(2019) 

1.3% Field 
observations 

Seattle  

a Percentage over unauthorized commercial vehicles parking events. 
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commercial vehicles, analyzing how parking infrastructure allocation 
and the built environment affect cruising. 

3. Methodology 

In this section we describe the method used to estimate cruising time 
for commercial vehicles. Consider a trip performed by a commercial 
vehicle between two delivery/pickup locations, as depicted in Fig. 1. 
This vehicle departs at time tdeparture, drives toward destination, searches 
for parking, and parks at time tarrival in an available parking lot. We 
define as trip time (T) the time difference T ¼ tarrival � tdeparture. Suppose 
that, in a hypothetical scenario, an identical vehicle departs at tdeparture 

from the same location but, this time, its driver knows in advance where 
the available parking lot is, assuming that there exists a parking lot near 
the desired destination. Therefore, he/she will directly drive towards the 
guaranteed parking lot without spending time cruising, taking the 
fastest route. We define driving time (Td) as the time it takes the second 
vehicle to reach the available parking lot in this scenario with perfect 
parking occupancy information and considering current traffic condi-
tions. Then, the trip time deviation (D) is the difference between the trip 
time and the respective driving time, D ¼ T � Td. 

Suppose we observe real trip times Ti where i is an index for a single 

trip, and for each trip, we estimate its respective bT
d
i , where the “hat” 

indicates that it is an estimate of the unobserved Td
i . Therefore, we 

obtain an estimate of the trip time deviations bDi ¼ Ti � bT
d
i and use such 

trip time deviations as estimates of the time spent cruising for parking. 
A set of real trip times (Td) was obtained from GPS data from com-

mercial vehicles delivering/picking up goods in downtown Seattle. We 

estimated the respective driving times (bT
d
) by querying the Google Maps 

Distance Matrix API, using the same trip origin, destination, departure 
time, day of the week, and month as those of the respective observed trip 
time. We assumed that the times obtained via the API were good esti-
mates of the unobserved driving times, as the API takes into account 
historical traffic conditions, given the input parameters of the query. 
Finally, we obtained the trip time deviations by subtracting the two 
obtained values for each observed trip and analyzed their empirical 
distribution. Finally, using regression analysis, we observed how trip 
time deviations were affected by parking infrastructure at the respective 
trip destinations, including curb-space allocation, off-street parking, and 
private loading bays. 

4. Data description 

4.1. Context 

The data used in the current study were collected in downtown 
Seattle, the largest and densest city in Washington state, U.S. Around 85 
km (52 miles) of curb space in the downtown are allocated to vehicle 
parking, of which 11 percent are commercial vehicle load zones 
(CVLZs), which are designated by a sign and yellow paint markings (City 
of Seattle Department of Transportation, 2019b). To access CVLZs, 
commercial carriers have to purchase a permit, which costs US$250, 
lasts for a year, and grants access for a maximum of 30 min per 

loading/unloading event (City of Seattle Department of Transportation, 
2019a). Alternatively, commercial vehicles can also use paid parking 
areas (to which around 60 percent of curb-space is allocated), provided 
that they pay for parking using parking permit machines or parking 
mobile apps. 

We were fortunate to collaborate in this study with a parcel delivery 
company, which provided GPS data from a sample of truck delivery 
routes. The carrier reported that, because of (1) a lack of available 
CVLZs, (2) the fact that several CVLZs are often too short to fit com-
mercial vehicles, and (3) their busy delivery schedule, drivers often have 
to search for alternative parking locations, including unauthorized 
parking. They reported the following preferred parking criteria: (1) the 
parking space should be large enough to allow loading/unloading; (2) 
drivers do not need to back the vehicle to exit the space; (3) parking is 
close enough to the delivery destination(s); and (4) the chosen parking 
locations do not generate conflicts with other vehicles or unsafe 
situations. 

In the next sections we describe three main types of data sources:  

� trip data;  
� estimated driving time data;  
� parking infrastructure data. 

4.2. Trip data 

The data consisted of truck trips performed by drivers for a parcel 
delivery carrier in downtown Seattle. A truck trip was defined as an 
uninterrupted movement (i.e., without any intermediate stops) of a 
commercial vehicle between two delivery/pick-up locations. For each 
trip, the trip departure and arrival timestamps were recorded, from 
which trip times were obtained. Moreover, trip departure and arrival 
GPS coordinates are also obtained. These coordinates reflect the loca-
tions where the vehicles parked, and not the locations of the carrier’s 
customers, which were not reported. 

A total of 2894 trips were obtained, performed by 11 drivers over 28 
weekdays (Monday to Friday), between October and November 2018. 
Trips were organized in truck tours, that is, a consecutive sequence of 
trips performed by the same driver in a given day, starting and ending at 
the depot. In the observed data, each driver performed one tour per day. 
On average, around 30 trips were performed per tour. 

From the initial data set, we excluded around 14 percent of the trips, 
including trips to and from the depot, trips with very short trip times 
(below 20 s), and trips whose destinations were outside downtown 
Seattle. The remaining number of trips was 2477. 

Table 3 reports the main summary statistics of the variables used in 
the study. The mean trip time was 8.2 min. Most of the trips departed 
between 8:00 a.m. and 6:00 p.m. While we did not have the actual trip 
distances, the mean shortest trip distance (assuming the fastest route) 
was 0.7 km (0.4 mile). 

4.3. Driving times estimation 

In the current study, we used the Google Maps Distance Matrix API 
(Google Maps Platform, 2019) to estimate, for each recorded trip time, 
the associated driving time. Google Maps has proved to be a reliable 
source of driving time estimates in several previous studies (Gruber and 
Narayanan, 2019; Rothfeld et al., 2019; Wang and Xu, 2011). 

The API provides the same functionality as the Google Maps user 
interface, returning driving time for a given trip origin, destination, 
departure time, day of the week, and travel mode, with the only dif-
ference that the API allows multiple simultaneous queries to be pro-
cessed automatically. 

The available travel modes are driving, walking, bicycling, and 
transit. When using the driving mode, the API estimates driving time by 
using two sources of data: historical road traffic data and current traffic 
information. If the trip departure time/day is near the time/day of the 

Fig. 1. Decomposition of the trip time (T) into driving time (Td) and trip time 
deviation (D). 
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query, then current traffic information is predominantly used in the 
estimation. This means that exceptional traffic conditions due to un-
foreseen events that occurred at the time of the request, such as road 
accidents, are included in the estimate. Otherwise, if the trip departure 
time/day is different from the time/day of the request (which was our 
case), historical traffic data are used in the estimation. While traffic 
conditions are included in the driving time estimation, parking 
congestion, and therefore any additional time/distance travelled to 
search for available parking, are not included in the estimate. 

Additionally, a “traffic model” parameter—with alternatives being 
“best guess,” “optimistic,” and “pessimistic”—is used to obtain driving 
time estimates that assume, respectively, average, lighter than average, 
or heavier than average traffic conditions, based on historical averages. 
This parameter controls the effect of congestion on the resulting driving 
time estimates. See the Google developers’ guide (Google Maps Plat-
form, 2019) for more information. We mostly used a “best guess” traffic 
model in our analyses. 

For each recorded trip time, we obtained its respective driving time 
estimate by querying the API using the same trip origin, destination, 
departure time, day of week, and month. We highlight that such driving 
time is an estimate obtained from historical data, as the API was queried 
after the data was recorded, and not simultaneously to the trips 
performed. 

4.4. Parking infrastructure and occupancy data 

For each trip destination, we obtained several variables describing 
the parking infrastructure available in its surroundings. To compute 
these variables, we made use of several Geographic Information System 
(GIS) data layers describing the parking infrastructure of downtown 
Seattle (City of Seattle Department of Transportation, 2019c). For each 
trip destination we computed the total length in meters of curb allocated 
to different types of parking that were contained within a buffer 
centered at the trip destination with a radius of 100 m (328 ft), which 

corresponded approximately to the average length of a block face. Fig. 2 
shows an example of a trip destination, the respective buffer, and the 
curb-space allocation GIS layer. The curb-space allocations measured 
were as follows:  

� commercial vehicle loading zone (CVLZ);  
� paid parking;  
� bus zone;  
� no parking zone. 

In the observed buffers, on average 6 percent of curb-space was 
allocated to CVLZs, 7 percent to bus zones, 31 percent to paid parking, 
54 percent to no parking, and the remaining to other uses. We also 
recorded the number of off-street parking areas and private loading/ 
unloading bays located within the buffers. 

In addition to parking infrastructure, cruising for parking depends on 
the parking occupancy observed upon arrival. As the exact occupancy 
cannot be known, we computed two proxy variables. The first was the 
paid parking occupancy observed at each trip end time and within the 
buffers obtained from parking meters data (City of Seattle Department of 
Transportation, 2018). On average, 31 vehicles paid for parking at 
arrival near a trip destination. The second proxy variable used was the 
total volume (measured in cubic meters) of buildings located within 
each buffer centered at a trip destination. We expected both variables to 
be positively correlated with parking demand and therefore occupancy. 

Finally, for each trip we also recorded the number of bus stops and 
the total number of bus routes within the buffers. 

5. Results 

5.1. Empirical distributions of trip time deviations 

Trip time deviations were estimated by subtracting from the 
observed trip times the respective driving times estimated by the Google 
Maps’ API. We obtained 2477 trip time deviations. 

Fig. 3-a shows their empirical distribution. We observe a right- 
skewed distribution with a peak around 0 min, indicating that driving 
times often corresponded to their respective trip times. Approximately 
16 percent of trips were characterized by negative deviations, showing 
that the observed commercial vehicles were not necessarily slower than 
an average vehicle driving in downtown, and sometimes were even 
faster. However, the right-skew (84 percent were characterized by 
positive deviations) shows the presence of a positive trip time deviation. 

Fig. 3-b shows the cumulative empirical distributions of the de-
viations obtained by using the “best guess,” “pessimistic,” and “opti-
mistic” travel models. The curves of the respective cumulative 
distributions differed only for the negative values of the distribution but 
almost coincided for positive values. This shows that our conclusions 
were robust, even if we assumed that the observed commercial vehicles 
were generally on the slower end of the driving time distribution. 

The mean deviation was 5.8 min, the median was 2.3 min, and the 
first and third quartiles were respectively 0.5 min and 8.4 min. 

5.2. Geographical distribution of trip deviations 

Fig. 4 shows the geographical distribution of the trip time deviations. 
We first clustered trips by their destination locations using a hierarchical 
clustering algorithm, such that the Euclidean distance between any two 
trip destinations belonging to the same cluster was not larger than 100 
m. A total of 25 clusters were identified. Then, the mean cluster de-
viations were computed and color-coded on a map of downtown Seattle. 
Note an increase in mean cluster deviations going from 1st Avenue 
(southwest) to 4th Avenue (northeast). 1st and 2nd avenues are char-
acterized by the presence of significant off-street parking locations, and 
3rd and 4th avenues are characterized by the presence of a bike lane and 
busy transit stations. These geographical patterns in trip time deviations 

Table 3 
Sample description.  

Variable Stat. Value Variable Stat. Value 

Trip Variables 
Trip time (minutes) Min. 0.02 Driving time 

(minutes)a 
Min. 0.02 

Mean 8.21 Mean 2.59 
Max. 65.45 Max. 24.60 

Num. trips per tour Min. 12.0 Trip distance 
(meters)a 

Min. 11.0 
Mean 30.54 Mean 688.80 
Max. 52.0 Max. 8406.0 

Share of trips by 
departure time 
(hour) 

8–10 15% Share of trips by 
day of week 

Mon 20.5% 
10–12 20% Tue 20.3% 
12–14 21% Wed 21.4% 
14–16 22% Thu 17.1% 
16–18 20% Fri 20.7% 
18–20 2%  

Parking infrastructure and occupancy variables 
Commercial vehicle 

load zone (meters) 
Min. 0.0 Bus zone 

(meters) 
Min. 0.0 

Mean 43.05 Mean 62.79 
Max. 181.36 Max. 405.38 

No parking (meters) Min. 168.2 Paid parking 
(meters) 

Min. 0.0 
Mean 454.2 Mean 253.2 
Max. 1385.3 Max. 463.3 

Num. off-street 
parking areas 

Min. 0.0 Num. of private 
loading bays 

Min. 0.0 
Mean 1.71 Mean 2.25 
Max. 7.0 Max. 9.0 

Mean paid parking 
occupancy 
(vehicles) 

Min. 0.0 Num. bus routes Min. 0.0 
Mean 39.36 Mean 15.89 
Max. 155.70 Max. 162.00 

Tot. buildings volume 
(m3) 

Min. 0.0  
Mean 9 �

104 

Max. 2 �
103  

a Estimated from Google Maps’ distance matrix API. 
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Fig. 2. A trip destination location (black dot), its respective buffer (blue area), and the curb-space parking allocation. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. (a) Empirical distribution of trip time deviations estimated by using the best guess traffic model; (b) cumulative distributions of the deviations from the 
pessimistic, optimistic, and best guess traffic models. 
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at trip destinations might indicate that parking as well as public transit 
infrastructure influence trip time deviations. 

5.3. Factors affecting trip deviations 

To analyze the determinants of trip time deviations, we used 
regression analysis. The logarithm of the observed trip time was 
regressed over the logarithm of the estimated driving time and other 
variables. When controlling for driving time, the coefficient estimates of 
the other regressors could be interpreted as the changes in observed trip 
times caused by one-unit changes in the respective regressors, holding 
driving time fixed. Therefore, because trip time deviations were defined 
as the difference between trip times and the respective driving times, a 
variable’s negative coefficient estimate reflected its potential ability to 
reduce trip time deviations. 

We estimated three regression models. We first estimated an ordi-
nary least squares (OLS) model (model I in Table 4). However, the OLS 
model did not account for possible dependencies between trips whose 
destinations were geographically close, which might cause unbiasedness 
of the coefficients (Bates et al., 2015). To capture this location effect, a 
mixed-effect random intercept model was used, in which observations 
with the same location cluster ID shared the same random effect (model 
II in Table 4). Moreover, because each driver performed multiple trips, 

we tested whether an additional random effect controlling for driver IDs 
would improve the model fit. The third model was a mixed-effect model 
with crossed random effects accounting for variations caused by location 
cluster ID and driver ID (model III in Table 4). 

Using the sample data of 2477 observed trips, the regression co-
efficients of models I through III were estimated. For models II and III we 
estimated the coefficients by Restricted Maximum Likelihood (REML) 
using the Lme4 package (Bates et al., 2015) coded in R language (R Core 
Team, 2017). 

Table 4 reports the regression estimation results (regressor co-
efficients are numbered 1 to 14). 

As expected, driving time (regressor 2) significantly and positively 
affected trip time in all three models. 

Regressors 3 to 6 described the curbside allocation near a trip 
destination. When multiplied by 100, the coefficient estimates could be 
interpreted as the percentage change in trip time caused by adding one 
parking lot of a given type near a trip destination, with driving time 
fixed. The signs of the estimated coefficients were consistent across all 
three models: an increase in curb space allocated to CVLZs, paid parking, 
or no parking zones decreased trip times, whereas an increase in bus 
zone space increased trip time, controlling for driving time. Regressors 3 
and 4 were relatively significant in all three models, although their 
significance decreased when random effects for driver ID and location 

Fig. 4. Geographical distribution of trip time deviations. Each point is the center of a geographical cluster of trip destinations; the colors represent the mean cluster 
trip time deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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cluster ID were added. The largest decrease was obtained when a CVLZ 
was added: adding one CVLZ reduced trip time by 1.3–6.5 percent, with 
driving time fixed. Interestingly, regressor 5 was insignificant in model I 
and II but became significant in model III. The changes in statistical 
significance when controlling for driver ID showed that different drivers 
might have different parking behaviors when choosing where to park 
the vehicle, with some of the effect of these variables being captured by 
the driver random effect. 

While an increase in the number of private loading/unloading bays 
(regressor 7) did not influence trip times, an increase in number of off- 
street parking areas (regressor 8) decreased the deviations. Adding one 
off-street parking area decreased trip times between 3.9 and 5.5 percent, 
controlling for driving time. This reflects that parcel delivery drivers 
often prefer easily accessible on-street or off-street parking areas, but not 
private loading/unloading bays, which are often located in alleys. 

Regressors 9 (number of bus routes) and 10 (parking occupancy) 
showed little statistical significance in models II and III. Interestingly, an 
increase in building volume (regressor 11) decreased trip time de-
viations. This could be related to the availability of better parking 
infrastructure near larger buildings. 

The negative coefficient of number of stops per tour (regressor 12) 
showed that performing more stops along a tour reduced trip time de-
viations: a driver might perform more parking stops on a tour where less 
parking congestion was present, and less cruising was experienced. 

We also controlled for time of the day and day of the week, but no 
estimated coefficients are shown for these variables as the associated 
regression coefficients are not statistically significant. 

The mixed-effect models showed a better model goodness-of-fit. 
Moreover, the driver random effect explained more variability than 
the location random effect, reflecting that drivers differ in their parking 
and cruising behaviors. 

6. Discussion and conclusions 

Most of the scientific literature has studied the phenomenon of 
cruising for parking from the perspective of passenger vehicles, while 
urban logistics studies have often either ignored the presence of cruising 
or assumed that drivers park in the travel lane as close as possible to 
their destination without spending time searching for parking. 

Reviewing empirical studies on commercial vehicle parking, we found 
that the share of vehicles parking in the travel lane is small (2–3 
percent); instead, commercial vehicle drivers prefer to pull over and 
park on the curb-side (either in commercial vehicle load zones or spaces 
reserved for other vehicles). This involves some form of parking search, 
and therefore cruising. However, only one paper has estimated com-
mercial vehicle cruising time; Holguín-Veras et al. (2016) interviewed 
16 drivers and reported average cruising times per trip of between 3 and 
60 min. As evidenced by the limited sample size, this approach is time 
consuming and therefore unlikely to produce robust results. 

This paper fills in that gap, by testing an approach using existing data 
to analyze the phenomenon of cruising for parking from the perspective 
of commercial vehicle drivers performing deliveries and pick-ups in 
urban areas. We developed a novel method to empirically estimate 
cruising times for commercial vehicles by using GPS data that is robust 
enough for analysis of the impact of transport infrastructure on cruising 
times. For a set of trip times obtained from GPS tracking of parcel de-
livery vehicles operating in downtown Seattle, we subtracted the 
respective estimates of driving time, i.e., the time it would take the 
vehicle to directly drive to a given destination without searching for 
parking, to obtain what we defined as trip time deviations, which we ul-
timately consider as a good estimator of cruising time. 

We then analyzed the distribution of such deviations. Fig. 5 sum-
marizes the main empirical findings. The empirical distribution of the 
estimated cruising times was centered at zero minutes and was right- 
skewed, with 85 percent of the observed trips having a positive devia-
tion. The median deviation per trip was 2.3 min. Considering that the 
observed parcel delivery vehicles performed on average 30 trips per 
tour, the total trip time deviation experienced by a single driver in a day 
was 1 h and 10 min. Moreover, given that the average trip time was 8.21 
min, trip time deviation accounted for 28 percent of total trip time. We 
draw two conclusions: (1) first, that the Google Maps Distance Matrix 
API is a reliable source of driving time estimates also for commercial 
vehicles, correctly predicting many of the observed trip times as the 
mode of the distribution is around zero; (2) the right-skewed shape of 
the empirical distribution of trip time deviations might indicates the 
presence of a positive cruising time. 

Trip time deviations also showed a characteristic geographical 
pattern, given the sample GPS data obtained from Seattle. We observed 

Table 4 
Regression estimation results.  

Variable Models 

(I) Ordinary least squares (II) Location random effects (III) Loc. & driver random effects 

Estimate S.E. Estimate S.E. Estimate S.E. 

1) Intercept 2.275 (***) 0.342 2.089 (***) 0.376 1.691 (***) 0.383 
2) Driving time (log) 0.225 (***) 0.020 0.236 (***) 0.020 0.232 (***) 0.020 
3) CVLZ � 0.065 (***) 0.005 � 0.046 (***) 0.010 � 0.013 (�) 0.009 
4) Bus zone 0.031 (***) 0.004 0.014 (**) 0.006 0.008 (�) 0.005 
5) Paid parking � 0.002 0.004 � 0.006 0.004 � 0.012 (***) 0.003 
6) No parking � 0.001 0.001 � 0.001 0.002 � 0.6 � 10� 4 0.001 
7) N. loading bays � 0.033 (**) 0.012 0.018 0.022 0.003 0.017 
8) N. off-street parking � 0.055 (***) 0.018 � 0.046 (*) 0.026 � 0.039 (*) 0.022 
9) Num. bus routes � 0.005 (***) 0.001 � 0.0003 0.001 � 0.0005 0.001 
10) Paid parking occ. 0.003 (**) 0.001 0.001 0.001 0.0003 0.001 
11) Building volume � 0.3 � 10� 6 (***) 0.8 � 10� 7 � 0.2 � 10� 6 (**) 0.1 � 10� 6 � 0.1 � 10� 6 0.1 � 10� 6 

12) Num. stops per tour � 0.011 (***) 0.003 � 0.009 (**) 0.003 � 0.004 0.005 
13) Departure time ✓ ✓ ✓ 
14) Day of week ✓ ✓ ✓ 
Random effects 
σloc  / 0.492 0.235 
σdriver  / / 0.423 
Summary Statistics 
Sample size 2477 2477 2477 
Log Likelihood � 3671.33 � 3555.4 � 3494.3 
AIC 7400.65 7170.9 7050.7 
BIC 7569.28 7345.3 7230.9 

Note: � p-value<0.15; * p-value<0.1; ** p-value<0.05; *** p-value<0.01. 
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larger cruising time estimates in areas where larger portion of curb- 
space is allocated to bus zones, while shorter cruising times seems to 
be associated to areas where more curb-space is allocated to on-street 
parking and where more off-street parking areas are available. 

Fitting a mixed effect regression model, some determinants of trip 
time deviations were identified. We found that the deviations were 
affected by the parking infrastructure available at a trip destination. 
Deviation decreased as more curbside was allocated to commercial ve-
hicles and paid parking and as more off-street parking areas were 
available at a destination, whereas it increased as more curb space was 
allocated to a bus zone. The largest decrease was obtained when a 
Commercial Vehicle Loading Zone (CVLZ) – an on-street parking lot 
reserved for a single commercial vehicle loading/unloading - was added 
in the vicinity of a trip destination: adding one CVLZ reduced cruising 
time by 1.3–6.5 percent. The fact that the trip time deviations are sta-
tistically correlated to parking infrastructure allocated at trip destina-
tion reinforce the motivation of this study that such deviations are a 
good estimates of cruising times, as the cruising for parking phenome-
non is associated with the lack of parking infrastructure. 

Differently from most of other studies on cruising for parking, the 
current study proposed a novel method to estimate cruising time by 
using readily available and “big” data obtained from GPS vehicle 
tracking. The development of such a method is paramount to enabling 
the extension of cruising analysis to commercial vehicles, as traditional 
methods such as driver intercept surveys and traffic observations would 
result in too little data collected since commercial vehicles are only a 
small share of total traffic in urban areas. Moreover, as more carriers 
track their fleets using GPS, more data are available for future studies on 
commercial vehicle cruising, potentially comparing different types of 
commercial vehicles and their respective cruising behaviors. While it is 
clear this approach can be refined and improved, we have demonstrated 
that this approach demonstrates merit and should be pursued as a way to 
learn about cruising for parking, and prioritize curbside allocation 
improvements. 

We acknowledge that cruising for parking is only part of the story. As 
discussed in Millard-Ball et al. (2019), cruising is a “self-regulating” 
phenomenon. In other words, we rarely observe large cruising times 

among passenger vehicles because when drivers perceive parking as 
scarce, they are more willing to walk longer distances, change travel 
mode, or even forgo travel. Similarly, commercial vehicles have 
“mechanisms” in place that help self-regulate cruising for parking. As 
mentioned earlier, one is parking in the travel lane, thereby avoiding the 
need to search for parking. Another, less explored mechanism is limiting 
the number of stops in a tour; for example, a commercial vehicle driver 
might choose to serve multiple delivery destinations from the same 
parking location, thereby avoiding the need to re-park the vehicle and 
eventually search for parking. The cost of that strategy is longer walking 
distances and parking dwell times, which in turn increases parking 
congestion. To have a complete view of commercial vehicles parking 
behaviors, all three behaviors must be considered: illegal parking 
behavior, cruising behavior, and willingness to walk. In this paper, we 
shed light on what is probably the least studied freight behavior: 
cruising behavior. 

6.1. Policy implications 

What then can be done to reduce commercial vehicles cruising for 
parking? One policy discussed above is allocating more curb-space to 
commercial vehicle load zones (CVLZs). Many urban areas not only 
often lack of enough CVLZs, but also those available often do not suit the 
needs of larger trucks: they are too small, and they require unsafe ma-
neuvers to access them (Alho & de Abreu e Silva, 2014). Using sample 
data from a parcel delivery company, in the current study we found that 
by adding one CVLZ, cruising time would be reduced by up to 6.5 
percent. While these results are specific to the times and places of data 
collection, further studies could quantify cruising times to determine 
how much curb-space should be allocated, and where, much the same 
way annual parking studies are currently used to allocate and price 
private vehicle parking (for instance the City of Seattle Department of 
Transportation, 2020, has a performance-based approach to parking 
pricing). 

Pricing is a well-established mechanism for managing parking de-
mand for personal vehicles (Ottosson et al. 2013; Shoup, 2006), and it is 
therefore often considered, though not widely accepted or implemented, 

Fig. 5. Summary of empirical findings obtained from the sample data analyzed.  
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as a strategy for managing commercial vehicle parking (Institute of 
Transportation Engineers, 2018). Currently, commercial freight carriers 
either do not pay for using CVLZs or pay for a permit: a one-time fee 
which grants them access to all CVLZs for a given time. For instance, in 
Seattle a permit costs US$ 250 for the right to use the city’s CVLZs for a 
year (City of Seattle Department of Transportation, 2019a). However, 
the question of whether pricing would reduce commercial vehicles’ 
cruising is not an obvious one. For passenger vehicles, higher prices 
reduce parking demand by having some drivers park in sub-urban areas, 
in off-street parking garages, changing mode of transport or even 
forgoing the trip. Lower demand guarantees that some curb-space will 
always be open, and fewer drivers will have to search for parking. 
However, commercial vehicle drivers are often not the ones deciding 
their trip destination. Instead, they respond to demand for freight de-
liveries and pick-ups of urban businesses and households (Holguín-Veras 
et al., 2015). Therefore, even by pricing CVLZs, it is not clear whether, or 
to what extent that might change parking demand and therefore 
significantly affect cruising. CVLZs pricing may reduce parking dwell 
times and increase parking turnover, but no evidence can confirm this 
hypothesis at this time. 

Providing real-time parking occupancy information to drivers, 
although not an easy to achieve, could potentially reduce cruising, 
especially if integrated with carrier routing systems. In an ongoing study 
the authors are testing the first parking information systems for com-
mercial vehicles in Seattle (Pacific Northwest National Laboratory, 
2019) to gather evidence of this effect. 

Another approach to reducing parking cruising for commercial ve-
hicles is to change modes of moving freight in urban areas, such as using 
cargo cycles or delivering by foot, which would eliminate the need to use 
curb-space, and therefore cruising. 

It is the hope of the authors that this work will pave the way for 
further studies into commercial vehicle cruising for parking and for 
further research into policies to address the pressing issue of lack of 
available curb-space for commercial vehicles in urban areas to reduce 
commercial vehicles’ cruising, driver walking, and illegal parking. 
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