9th International Urban Freight Conference Long Beach, May 2022

Can real-time curb availability information improve urban delivery efficiency?

Giacomo Dalla Chiara Klaas Fiete Krutein Anne Goodchild

- Delivery challenges in urban areas
- Intelligent parking systems
- OpenPark: a real-time curb availability information system
- Experimental design & data collection
- Results

Delivering in urban areas is increasingly challenging

Freight parking supply

Cruising for parking

Parking demand \rightarrow parking supply = cruising for parking

Cost of cruising for parking

- Internal cost: 30 seconds to 15.4 minutes of mean cruising time
- External cost: 7-74% share of traffic is cruising, 1h parked \rightarrow 3.6 cars to cruise

Do commercial vehicles cruise for parking?

YES! Using GPS data from two different carriers we estimated that a parcel delivery driver spends on average 50 minutes a day cruising for parking

Intelligent parking systems

Intelligent parking systems use real-time curb availability information to improve drivers' parking experience and reduce parking externalities

Can parking availability information reduce delivery vehicles cruising for parking and improve delivery efficiency?

OpenPark

- Belltown neighbourhood, Seattle
- Vendor: Fybr
- 273 magnetic field sensors
- CVLZs + PLZs

Gateway

9

Open park

Real time & predicted parking occupancy of CVLZs and PLZs

Evaluation

 \rightarrow Randomized experiment (treatment=app, control=no app.)

Experimental design

- Hired 11 delivery drivers
- Each driver performed 3 different manifests (3 routes), each containing 15 delivery addresses
- Each driver performed at least 1 manifest using OpenPark for real-time curb availability information, and 1 without

Drivers	Manifests								Total		
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	no.
											routes
D1	No app	No app							Арр		3
D2		App	Арр	No app							3
D3			App		No app	No app					3
D4	App					App	No app				3
DS		No app		No app				App			3
D6				No app	App		No app				3
D7						App	No app	App			3
D8			No app		App				No app		3
D9	No app			App			App				3
D10				App				No app		No app	3
D11							Арр	No app		App	3
Total	3	3	3	5	3	3	5	4	2	2	33
no.											
routes											

No app = route was performed without access to OpenPark app App = route was performed with access to OpenPark app

Data collection

Observers rode along with drivers and collected GPS data

Performance metrics

- Cruising for parking time
- Cruising for parking distance
- Route time
- Route distance

Performed

- 33 routes
- 495 deliveries
- 177 trips

Results

- Estimated four mixed-effect random intercept regression models
- Each model contained a binary variable 1_[App] which takes value 1 whenever OpenPark was used
- The estimated coefficients for $1_{[App]}$ quantify the impact of using OpenPark on the performance metrics

Conclusion

Thank you!

Giacomo Dalla Chiara (giacomod@uw.edu)

Can parking availability information reduce delivery vehicles cruising for parking and improve delivery efficiency?

How much of a driver's time is spent parking?

G. Dalla Chiara et al. (2021) Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making, TRR

18

Commercial vehicle parking behaviors

19

Trip deviation = Real trip time - Estimated travel time

G. Dalla Chiara & A. Goodchild (2020) Do commercial vehicles cruise for parking?

Unauthorized parking

City	Data	Parked in the travel lane*	Reference		
Chicago	Citations	2.8%	Kawamura et al. (2014)		
Toronto	Citations	2.4%	Wenneman (2015)		
New York	Field observations	2.5%	Jaller et al. (2013)		
Seattle	Field observations	2.0%	Girón-Valderrama et al. (2019)		

* % of unauthorised parking

Hypotheses

Performance metrics:

- Cruising for parking time
- Stops per route
- Deliveries per stop
- Dwell time
- Delivery to parking distance

Roadmap

Re-routing

24

References

- G. Dalla Chiara et al. (2021) Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making, Transportation Research Record, <u>https://doi.org/10.1177/03611981211003575</u>
- J. Holguin-Veras et al. (2015) NCFRP 33 Improving Freight System Performance in Metropolitan Areas: A Planning Guide, <u>https://coe-sufs.org/wordpress/ncfrp33/</u>
- G. Dalla Chiara & A. Goodchild (2020) *Do commercial vehicles cruise for parking?*, Transport policy, https://doi.org/10.1016/j.tranpol.2020.06.013
- G. Dalla Chiara, A. Alho, C. Cheng, M. Ben-Akiva, L. Cheah (2020) Exploring Benefits of Cargo-Cycles versus Trucks for Urban Parcel Delivery under Different Demand Scenarios, Transportation Research Records, 2674(5):553-562. Doi: <u>10.1177/0361198120917162</u>
- Urban Freight Lab (2020), Cargo E-Bike Delivery Pilot Test in Seattle
 <u>https://depts.washington.edu/sctlctr/research/publications/cargo-e-bike-delivery-pilot-test-seattle</u>

