Skip to content
Report

Curbing Conflicts: Curb Allocation Change Project Report

 
Download PDF  (4.05 MB)
Publication Date: 2019
Summary:

Like many congested cities, Seattle is grappling with how best to manage the increasing use of ride-hailing services by Transportation Network Companies (TNCs) like Uber and Lyft. According to a 2018 Seattle Times analysis, TNC ridership in the Seattle region has grown to more than five times the level it was in the beginning of 2015, providing, on average, more than 91,000 rides a day in 2018. And the newspaper reports Uber and Lyft trips are heavily concentrated in the city’s densest neighborhoods, where nearly 40,000 rides a day start in ZIP codes covering downtown, Belltown, Capitol Hill and South Lake Union.

This University of Washington (UW) study focuses on a strategy to manage TNC driver stops when picking up and dropping off passengers to improve traffic flow in the South Lake Union (SLU) area. SLU is the site of the main campus for Amazon, the online retail company. The site is known to generate a large number of TNC trips, and Amazon reports high rates of ride-hailing use for employee commutes. This study also found that vehicle picking-up/dropping-off passengers make up a significant share of total vehicle activity in SLU. The center city neighborhood is characterized by multiple construction sites, slow speed limits (25 mph), and heavy vehicle and pedestrian traffic.

Broad concerns about congestion, safety, and effective curb use led to this study, conducted by researchers at the UW’s Urban Freight Lab and Sustainable Transportation Lab. Amazon specifically was concerned about scarcity of curb space where TNC drivers could legally and readily stop to pick up and drop off passengers. Without dedicated load/unload curb space, TNC vehicles stop and wait at paid parking spots, other unauthorized curb spots, or in the travel lane itself, potentially blocking or slowing traffic. To try to mitigate the impacts of passenger pick-up/drop-off activity on traffic, the city proposed a strategy of increasing passenger loading zone (PLZ) spaces while Uber and Lyft implemented a geofence, which directs their drivers and passengers to designated pick-up and drop-off locations on a block. (Normally, drivers pick up or drop off passengers at any address a rider requests via the ride-hailing app.)

By providing ample designated pick-up and drop-off spots along the curb, the thinking goes, TNC drivers would reduce the frequency with which they stop in the travel lane to pick up or drop off passengers and the time they stay stopped there. By these measures, this study’s findings show the approach was successful. But it is important to note that the strategy is not a silver bullet for solving traffic congestion—nor is it designed as such. It is also important to note that any initiative to manage use of curbs and roads (by TNCs or others) is part of a city’s broader transportation policy framework and goals.

For this study, researchers analyzed an array of data on street and curb activity along three block-faces on Boren Ave N in December 2018 and January 2019. At a minimum, data were collected during the morning and afternoon peak travel times (with some collected 24 hours a day). The research team collected data using video and sensor technology as well as in-person observation. Researchers also surveyed TNC passengers for demographic, trip-related and satisfaction data. The five Amazon buildings in the area studied house roughly 8,650 employees. Researchers collected data in three stages. Phase 1, the study baseline, was before PLZs were added and geofencing started. Phase 2 was after the new PLZs were added, expanding total PLZ curb length from 20 feet (easily filled by one to two vehicles) to 274 feet. Phase 3 was after geofencing was added to the expanded PLZs. The added PLZ spaces were open to any passenger vehicle—not just TNC vehicles—weekdays from 7am to 10am and 2pm to 7pm. (Permitted food trucks were authorized from 10am to 2pm.)

Note that while other cities can learn from this analysis, the findings apply to streets with comparable traffic speed, mix of roadway users, and street design.

The study’s main findings include:

  • A significant percentage of vehicles performing a pick-up/drop-off stop in the travel lane. Those in-lane stops appear connected to the lack of available designated curb space: Adding PLZs and geofencing increased driver compliance in stopping at the curb versus stopping in the travel lane to load and unload passengers. But it was not lack of curb space alone that influenced driver activity: Between 7 percent and 10 percent of drivers still stopped in the travel lane even when PLZs were empty. After adding PLZs and geofencing, in-lane stops fell from 20 percent to 14 percent for pick-ups and from 16 percent to 15 percent for drop-offs.
  • Adding PLZs and geofencing reduced the average amount of time drivers stopped to load and unload passengers. For example, 90 percent of drop-offs took less than 1 minute 12 seconds, 42 seconds faster than the average with the added PLZs alone.
  • While curb occupancy increased after adding PLZs and geofencing, occupancy results show the current allocation of PLZ spaces is more than what is needed to meet observed demand: Average PLZ occupancy remained under 20 percent after PLZ expansion, even during peak commute hours.
  • Vehicles picking-up/dropping-off passengers account for a significant share of total traffic volume in the study area: during peak hours the observed average percentage of vehicles performing a pick-up/drop-off with respect to the total traffic volume was 29 percent (in Phase 1), 32 percent (in Phase 2) and 39 percent (in Phase 3).
  • High volumes of pedestrians (400-500 per hour on average) cross the street at points where there was no crosswalk. Passengers picked-up/dropped-off constituted a fraction (five to seven percent) of those pedestrians, but high rates of passengers (30 to 40 percent) cross the street at non-crosswalk locations.
  • Adding PLZs and geofencing did not have a significant impact on traffic safety. Researchers found no significant change in the number of observed conflicts from baseline to the addition of PLZs and geofencing. Conflicts are situations where a vehicle, bike, or pedestrian is interrupted, forced to alter their path, or engaged in a near-miss situation. Conflicts include vehicles passing in the oncoming traffic lane. • Adding PLZs and geofencing also did not produce a significant impact on roadway travel speed.
  • Of the 116 TNC passengers surveyed in the study area:
    • Roughly 40 percent to 50 percent said their trip was work related. More than half said they used ride-hailing service at least once a week and 70 percent or more used TNC alone (versus in combination with other transportation options) to get from their origin to their destination.
    • Most responded positively to the added PLZs and geofence: 79 percent rated their pick-up satisfactory and 100 percent rated their drop-off satisfactory as compared to 72 percent and 89 percent in the baseline.
    • Nearly half said they would have taken transit and one-third would have walked if ride-hailing was not available.
    • 40 percent requested a shared TNC vehicle in Phase 1 and 47 percent in Phase 3.

The study suggests that while vehicles picking-up/dropping-off passengers account for a significant share of traffic volume in SLU, they are not the primary cause of congestion. Myriad factors impact neighborhood congestion, including high vehicle volume overall and bottlenecks moving out of the neighborhood onto regional arterials. As researchers observed in the afternoon peak, these bottlenecks cause spillbacks onto local streets. Amazon garages exit vehicles onto streets that then feed into these clogged arterials.

Regarding traffic safety in SLU, this study was not designed to assess whether TNC driver behavior on average is safer or less safe than that of other vehicles. It is important to understand the safety and speed findings in the context of the SLU traffic environment. Drivers tend to drive at relatively slow speeds, navigating around high pedestrian and jaywalking volumes, and seem relatively comfortable stopping in the middle of the street for short periods of time. Due to the nature of area traffic, this seems to have relatively little impact on other drivers. Drivers appear to anticipate both this behavior and the high volumes of vehicles moving onto/off the curb and into/out of driveways and alleys.

Whether the strategy this study analyzed is recommended depends on a city’s transportation goals and approach. The researchers found the increased PLZ allocation and geofencing strategy worked in that it improved driver compliance, reduced dwell times, and boosted TNC user satisfaction. However, this may encourage commuters to use TNC. The passenger survey clearly shows that TNC service is attracting passengers who would have otherwise walked or used transit. While in the short term the increased PLZs and geofencing had a positive effect on traffic, if this induces TNC demand, there could be larger, more negative long-term consequences. If the end goal is to reduce traffic congestion, measures to reduce—rather than encourage—TNC and passenger car use as the predominant mode of commuting will yield the most substantial benefits.


In the news:

Geekwire: As Uber and Lyft pick-ups and drop-offs clog traffic, new study calls load zones a move in right direction

The Seattle Times: Seattle Uber and Lyft drivers often stop in the street to pick up or drop off riders. Here’s a way to reduce that.

Recommended Citation:
Goodchild, Anne. Giacomo dalla Chiara. Jose Luis Machado. Andisheh Ranjbari. (2019) Curb Allocation Change Project.

Managing Increasing Demand for Curb Space in the City of the Future

This research aims to develop innovative methods for managing curb lane function and curb access. The rapid rise of autonomous vehicles (AV), on-demand transportation, and e-commerce goods deliveries, as well as increased cycling rates and transit use, is increasing demand for curb space resulting in competition between modes, failed goods deliveries, roadway and curbside congestion, and illegal parking.

The research findings will improve mobility by increasing the understanding of existing curb usage and provide new solutions to city officials, planners, and engineers responsible for managing this scarce resource in the future.

The research team will work closely with several cities in the PacTrans region to ensure the study’s relevance to their needs, and that the results will be broadly applicable for other cities.

This research will allow for the development of innovative curb space designs and ensure that our urban street system may operate more efficiently, safely, and reliably for both goods and people.

Paper

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

 
Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019
Summary:

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143. https://doi.org/10.2495/TDI-V3-N2-132-143
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Special Issue

The Curb Lane

Publication: Transportation Research Part A: Policy and Practice
Publication Date: 2021
Summary:

Efforts to regulate the curb also suffer from a lack of publicly accessible data on both the demand and supply of curb space. Cities often do not have the technical expertise to develop a curb data collection and data-sharing strategy. In addition, the private individuals and companies that generate most of the curb-use data often withhold them from public use to protect proprietary information and personal user data.

However, new uses of data sources, such as the Global Positioning System (GPS) and cellular networks, as well as the implementation of wide networks of IoT devices, are enabling the “digitization” of the curb, allowing cities to gain a better understanding of curb use as well as ways to change their approach toward curb space management.

In a way, the revolution in curb space management has already started. Many cities are re-inventing their role from passively regulating on-street parking to dynamically allocating and managing the curb, both physically and digitally, to serve many different users. Geofencing and time-dependent allocation of curb space facilitate efficient passenger pickup and drop off. Parking information systems and pay-for-parking apps enable dynamic parking allocation and pricing. We believe this is the right time for scientific research to “catch up” with current changes and to develop new analytical tools for curb space management. Such efforts are the focus of this special issue on curb lane analysis and policy.

Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraDr. Andisheh Ranjbari, Susan Shaheen (University of California, Berkeley), Donald Shoup (UCLA)
Recommended Citation:
Special Issue: The Curb Lane. Transportation Research Part A: Policy and Practice | ScienceDirect.com by Elsevier.
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Paper

Providing Curb Availability Information to Delivery Drivers Reduces Cruising for Parking

 
Download PDF  (2.03 MB)
Publication: Scientific Reports
Volume: (2022) 12:19355
Publication Date: 2022
Summary:

Delivery vehicle drivers are experiencing increasing challenges in finding available curb space to park in urban areas, which increases instances of cruising for parking and parking in unauthorized spaces. Policies traditionally used to reduce cruising for parking for passenger vehicles, such as parking fees and congestion pricing, are not effective at changing delivery drivers’ travel and parking behaviors.

Intelligent parking systems that use real-time curb availability information to better route and park vehicles can reduce cruising for parking, but they have never been tested for delivery vehicle drivers.

This study tested whether providing real-time curb availability information to delivery drivers reduces the travel time and distance spent cruising for parking. A curb parking information system deployed in a study area in Seattle, Wash., displayed real-time curb availabilities on a mobile app called OpenPark. A controlled experiment assigned drivers’ deliveries in the study area with and without access to OpenPark.

The data collected showed that when curb availability information was provided to drivers, their cruising for parking time significantly decreased by 27.9 percent, and their cruising distance decreased by 12.4 percent. These results demonstrate the potential for implementing intelligent parking systems to improve the efficiency of urban logistics systems.

Recommended Citation:
Dalla Chiara, G., Krutein, K.F., Ranjbari, A. et al. Providing curb availability information to delivery drivers reduces cruising for parking. Sci Rep 12, 19355 (2022). https://doi.org/10.1038/s41598-022-23987-z
Article

Giving Curb Visibility to Delivery Drivers

 
Download PDF  (2.14 MB)
Publication: American Planning Association | 2022 State of Transportation Planning
Pages: 134-143
Publication Date: 2022
Summary:
At the time we are writing this article, hundreds of thousands of delivery vehicles are getting ready to hit the road and travel across U.S. cities to meet the highest peak of demand for ecommerce deliveries during Thanksgiving, Black Friday, and the Christmas holiday season. This mammoth fleet will not only add vehicle miles traveled through urban centers but also increase parking congestion, battling with other vehicles for available curb space.
While the integration of road traffic data with modern navigation systems has seen huge developments in the past decade, drastically changing the way we, and delivery vehicles, navigate through cities, not as much can be said when it comes to parking. The task of finding and securing parking is still left to drivers, and largely unsupported by real-time information or app-based solutions.
Delivery vehicle drivers are affected by curb parking congestion even more than any other driver because delivery drivers have to re-park their vehicles not once or twice, but 10, 20, or even more times during a delivery route.
Our work, discussed in this article, focuses on improving delivery drivers’ lives when it comes to finding available curb space, improving the delivery system, and reducing some of the externalities generated in the process. We first describe what types of parking behaviors delivery drivers adopt when facing a lack of available curb parking, then we will quantify the cost of lack of available parking, estimating how much time delivery drivers spend circling the block and searching for parking. We then discuss how we can improve on that by creating the first curb availability information system – OpenPark.

 

Recommended Citation:
Dalla Chiara, Giacomo and Anne Goodchild. Giving Curb Visibility to Delivery Drivers. Intersections + Identities: State of Transportation Planning 2022, 134-143.
Paper

Modeling the Competing Demands of Carriers, Building Managers, and Urban Planners to Identify Balanced Solutions for Allocating Building and Parking Resources

 
Download PDF  (5.20 MB)
Publication: Transportation Research Interdisciplinary Perspectives
Volume: 15
Publication Date: 2022
Summary:

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between supply and demand, preventing the current resources from meeting the future needs of urban freight activities.

This study aimed to discover the future delivery rates that would overflow the current delivery systems and find the optimal number of resources. To achieve this objective, we introduced a multi-objective, simulation-based optimization model to define the complex freight delivery cost relationships among delivery workers, building managers, and city planners, based on the real-world observations of the final 50 feet of urban freight activities at an office building in downtown Seattle, Washington, U.S.A.

Our discrete-event simulation model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and parking resources. The optimal numbers of resources that would minimize the costs for all three parties were then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary algorithm based on decomposition (MOEA/D).

Our study sheds new light on a data-driven approach for determining the best combination of resources that would help the three entities work as a team to better prepare for the future demand for urban goods deliveries.

Authors: Haena KimDr. Anne Goodchild, Linda Boyle
Recommended Citation:
Kim, H., Goodchild, A., & Boyle, L. N. (2022). Modeling The Competing Demands Of Carriers, Building Managers, And Urban Planners To Identify Balanced Solutions For Allocating Building And Parking Resources. In Transportation Research Interdisciplinary Perspectives (Vol. 15, p. 100656). Elsevier BV. https://doi.org/10.1016/j.trip.2022.100656