Skip to content
Paper

Factors Impacting Bicyclist Lateral Position and Velocity in Proximity to Commercial Vehicle Loading Zones: Application of a Bicycling Simulator

 
Download PDF  (7.70 MB)
Publication: Accident Analysis & Prevention
Volume: 125
Pages: 29-39
Publication Date: 2019
Summary:

There is little research on the behavioral interaction between bicycle lanes and commercial vehicle loading zones (CVLZ) in the United States. These interactions are important to understand, to preempt increasing conflicts between truckers and bicyclists. In this study, a bicycling simulator experiment examined bicycle and truck interactions. The experiment was successfully completed by 48 participants. The bicycling simulator collected data regarding a participant’s velocity and lateral position. Three independent variables reflecting common engineering approaches were included in this experiment: pavement marking (L1: white lane markings with no supplemental pavement color, termed white lane markings, L2: white lane markings with solid green pavement applied on the conflict area, termed solid green, and L3: white lane markings with dashed green pavement applied on the conflict area, termed dashed green), signage (L1: No sign and L2: a truck warning sign), and truck maneuver (L1: no truck in CVLZ, L2: truck parked in CVLZ, and L3: truck pulling out of CVLZ).

The results showed that truck presence does have an effect on bicyclist’s performance, and this effect varies based on the engineering and design treatments employed. Of the three independent variables, truck maneuvering had the greatest impact by decreasing mean bicyclist velocity and increasing mean lateral position. It was also observed that when a truck was present in a CVLZ, bicyclists had a lower velocity and lower divergence from right-edge of bike lane on solid green pavement, and a higher divergence from the right-edge of bike lane was observed when a warning sign was present.

Authors: Manali ShethDr. Anne GoodchildDr. Ed McCormack, Masoud Ghodrat Abadia, David S. Hurwitz
Recommended Citation:
Abadi, Masoud Ghodrat, David S. Hurwitz, Manali Sheth, Edward McCormack, and Anne Goodchild. (2019) Factors Impacting Bicyclist Lateral Position and Velocity in Proximity to Commercial Vehicle Loading Zones: Application of a Bicycling Simulator. Accident Analysis and Prevention, 125, 29–39. https://doi.org/10.1016/j.aap.2019.01.024 
Paper

Guide for Conducting Benefit-Cost Analyses of Multimodal, Multijurisdictional Freight Corridor Investments

Publication: NCFRP Research Report
Volume: Project NCFRP-46
Publication Date: 2017
Summary:

This report provides a guidebook for conducting benefit-cost analyses of proposed infrastructure investments on multimodal, multi-jurisdictional freight corridors for public and private decision-makers and other stakeholders at local, state, regional, and national levels to arrive at more informed investment decisions.

The guidebook is a resource and a reference for multimodal freight investment benefit-cost analysis, data sources, procedures, and tools for projects of different geographic scales.

To help practitioners get started, the guidebook is presented in a “how to” format relying on discrete steps that are accompanied with realistic and recent examples, a fully worked out case study, checklists of dos and don’ts, and supporting worksheets.

View TRB Webinar: Benefit Cost Methodologies for Evaluating Multimodal Freight Corridor Investments

Authors: Dr. Anne Goodchild, Sharada Vadali, C. James Kruse, Kenneth Kuhn
Recommended Citation:
Vadali, Sharada, C. James Kruse, Kenneth Kuhn, and Anne Goodchild. Guide for Conducting Benefit-Cost Analyses of Multimodal, Multijurisdictional Freight Corridor Investments. No. Project NCFRP-46. 2017.
Paper

Sustainable Urban Goods Movement: Emerging Research Agendas

Publication: Journal of Urbanism
Volume: 8(20)
Pages: 115-132
Publication Date: 2014
Summary:

While recent urban planning efforts have focused on smart growth development and management of growth into developed areas, the research community has not examined the impacts of these development patterns on urban goods movement. Successful implementation of growth strategies has multiple environmental and social benefits, but it also raises the demand for intraurban goods movement, potentially increasing conflicts between modes of travel and worsening air quality. Because urban goods movement is critical for economic vitality, and as policies are developed to manage urban goods movement, understanding the relationship between smart growth and goods movement is necessary. This paper reviews the academic literature and summarizes the results of guided interviews to identify the existing gaps in the state of knowledge and suggest important future research topics. Little research exists that directly examines the relationship between smart growth and goods movement; therefore, smart growth is dissected into sub-areas that relate to goods movement, and these areas are individually examined. These five key sub-areas are 1) access, parking, and loading zones; 2) road channelization, bicycle, and pedestrian facilities; 3) land use; 4) logistics; and 5) network system management. The existing state of knowledge is discussed in each of these areas and identify specific areas of concern determined from guided interviews. With these inputs, important areas of future research are identified.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Erica Wygonik, Alon Bassok, Daniel Carlson
Recommended Citation:
Wygonik, Erica, Alon Bassok, Anne V. Goodchild, Edward McCormack and Daniel Fred Carlson. “Sustainable Urban Goods Movement: Emerging Research Agendas.” (2012).
Paper

Evaluation of Emissions Reduction in Urban Pickup Systems Heterogeneous Fleet Case Study

 
Download PDF  (0.31 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2224
Pages: 8-16
Publication Date: 2011
Summary:

A case study of the University of Washington Mailing Services, which operates a heterogeneous fleet of vehicles, provides insight into the impact of operational changes on cost, service quality, and emissions. An emissions minimization problem was formulated and solutions were identified with a creation and local search algorithm based on the I1 and 2-opts heuristics.

The algorithm could be used to find many solutions that could improve existing routing on both cost and emissions metrics, reduce emissions by an average of almost 6%, and reduce costs by an average of 9%. More significant cost and emissions savings could be found with service quality reductions. For example, reducing delivery frequency to once a day could lead to emissions and cost savings of close to 35% and 3%, respectively.

Rules of thumb for vehicle assignment within heterogeneous fleets were explored to gain an understanding of simple implementations, such as assigning cleaner vehicles to routes with more customers and longer travel distances.

This case study identified significant emissions reductions that could be obtained with minimal effects on cost and service and that offered new, practical applications that could be used by fleet managers interested in reducing their carbon footprint.

Authors: Dr. Anne Goodchild, Kelly Pitera, Felipe Sandoval
Recommended Citation:
Pitera, Kelly, Felipe Sandoval, and Anne Goodchild. "Evaluation of Emissions Reduction in Urban Pickup Systems: Heterogeneous Fleet Case Study." Transportation Research Record 2224, no. 1 (2011): 8-16. 
Paper

Estimating Intermodal Transfer Barriers to Light Rail using Smartcard Data in Seattle, WA

 
Download PDF  (2.90 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2022
Summary:

Transit transfers are a necessary inconvenience to riders. They support strong hierarchical networks by connecting various local, regional, and express lines through a variety of modes. This is true in Seattle, where many lines were redrawn to feed into the Link Light Rail network. Previous transfer studies, using surveys, found that perceived safety, distance, and personal health were significant predictors of transfers. This study aims to use smartcard data and generalized linear modeling to estimate which elements of transfers are commonly overcome—and which are not—among riders boarding the Link Light Rail in Seattle and its suburbs. The aims of this research are twofold: (1) critical analysis of attributes of transfer barriers so that the future station area could serve improved riders’ accessibility; (2) equity of transfer barriers among the users by analyzing the user breakdown of the origin lines and the destination. We use Seattle’s One Regional Card for All smartcard data among the Link Light Rail riders in the Seattle metropolitan area in 2019, and applied a negative binomial generalized linear model. The model suggests that walking distance and walking grade have significant effects on transfers. For the users’ equity analysis, the disabled population tends to transfer less, while the low-income and youth riders populations tend to transfer more often. Future research could incorporate a more mixed-methods approach to confirm some of these findings or include station amenities, such as live schedule updates for common transfer lines.

Authors: Dr. Ed McCormack, James Eager (University of Washington Department of Urban Design and Planning), Chang-Hee Christine Bae (University of Washington Department of Urban Design and Planning)
Recommended Citation:
Eager, J., Bae, C.-H. C., & McCormack, E. D. (2022). Estimating Intermodal Transfer Barriers to Light Rail using Smartcard Data in Seattle, WA. Transportation Research Record. https://doi.org/10.1177/03611981221119190.
Paper

Modeling the Competing Demands of Carriers, Building Managers, and Urban Planners to Identify Balanced Solutions for Allocating Building and Parking Resources

 
Download PDF  (5.20 MB)
Publication: Transportation Research Interdisciplinary Perspectives
Volume: 15
Publication Date: 2022
Summary:

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between supply and demand, preventing the current resources from meeting the future needs of urban freight activities.

This study aimed to discover the future delivery rates that would overflow the current delivery systems and find the optimal number of resources. To achieve this objective, we introduced a multi-objective, simulation-based optimization model to define the complex freight delivery cost relationships among delivery workers, building managers, and city planners, based on the real-world observations of the final 50 feet of urban freight activities at an office building in downtown Seattle, Washington, U.S.A.

Our discrete-event simulation model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and parking resources. The optimal numbers of resources that would minimize the costs for all three parties were then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary algorithm based on decomposition (MOEA/D).

Our study sheds new light on a data-driven approach for determining the best combination of resources that would help the three entities work as a team to better prepare for the future demand for urban goods deliveries.

Authors: Haena KimDr. Anne Goodchild, Linda Boyle
Recommended Citation:
Kim, H., Goodchild, A., & Boyle, L. N. (2022). Modeling The Competing Demands Of Carriers, Building Managers, And Urban Planners To Identify Balanced Solutions For Allocating Building And Parking Resources. In Transportation Research Interdisciplinary Perspectives (Vol. 15, p. 100656). Elsevier BV. https://doi.org/10.1016/j.trip.2022.100656
Paper

Challenges in Credibly Estimating the Travel Demand Effects of Mobility Services

 
Download PDF  (3.21 MB)
Publication: Transport Policy
Volume: 103
Pages: 224-235
Publication Date: 2021
Summary:

Mobility services including carsharing and transportation network company (TNC) services have been growing rapidly in North America and around the world. Measuring the effects of these services on traveler behavior is challenging because the results of any such analysis are sensitive to how (1) outcomes are measured and (2) counterfactuals are constructed. The lack of good control groups or randomization of assignment leaves lingering uncertainty over the contributions of selection bias and treatment effects to reported differences in travel behavior between users and non-users of these services. This paper reports on two approaches for measuring the effects of mobility service adoption on travel rate and car ownership. We first tried a pretest-posttest randomized encouragement experiment to deal with the shortcomings of poor control groups. Then, we turned to the approach of self-reported effects based on hypothetical controls to investigate whether variations in survey question presentation could influence respondents’ answers and thus lead to changes in estimated effects. The data to conduct this study came from two sources: a panel survey administered by the authors at the University of Washington (UW), and a survey by Populus Technologies, Inc. (Populus). Various statistical tests were applied to analyze the data, and the results highlight the pivotal role that the research design plays in influencing the outcomes, and manifest the fundamental challenge of establishing credible estimates of the causal effects of adopting mobility services on travel behaviors.

Authors: Dr. Andisheh Ranjbari, Xiao Wen, Fan Qi, Regina R. Clewlow, Don MacKenzie
Recommended Citation:
Xiao Wen, Andisheh Ranjbari, Fan Qi, Regina R. Clewlow, Don MacKenzie. Challenges in credibly estimating the travel demand effects of mobility services. Transport Policy, (103:224-235) 2021. https://doi.org/10.1016/j.tranpol.2021.02.001.
Paper

Evaluating the Use of Electronic Door Seals (E-Seals) on Shipping Containers

 
Download PDF  (0.67 MB)
Publication: International Journal of Applied Logistics
Volume: 1(4)
Pages: 13-20
Publication Date: 2010
Summary:

Electronic door seals (E-seals) were tested on shipping containers that traveled through ports, over borders, and on roadways. The findings showed that using these RFID devices could increase supply chain efficiency and improve the security of containerized cargo movements, particularly when E-seals replace common mechanical seals. Before the benefits of E-seals can be realized, several barriers must be addressed. A major problem has been a lack of frequency standards for E-seals, hindering their acceptability for global trade.  Routine use of E-seals would also require new processes that might slow their acceptance by the shipping industry. Disposable E-seals, which decrease industry concerns about costs and enforcement agency concerns about security by eliminating the need to recycle E-seals, are not common because they need to be manufactured in large quantities to be cost effective. Compatibility with existing highway systems could also promote E-seal acceptance, as containers could be tracked on roadways.

Authors: Dr. Ed McCormack, Mark Jensen, Al Hovde
Recommended Citation:
McCormack, E., Jensen, M., & Hovde, A. (2010). Evaluating the Use of Electronic Door Seals (E-Seals) on Shipping Containers. International Journal of Applied Logistics (IJAL), 1(4), 13-29.
Paper

Rails-Next-to-Trails: A Methodology for Selecting Appropriate Safety Treatments at Complex Multimodal Intersections

 
Download PDF  (2.47 MB)
 
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2672 (10)
Pages: 27-Dec
Publication Date: 2018
Summary:

There are more than 212,000 at-grade railroad crossings in the United States. Several feature paths running adjacent to the railroad tracks, and crossing a highway; they serve urban areas, recreational activities, light rail station access, and a variety of other purposes. Some of these crossings see a disproportionate number of violations and conflicts between rail, vehicles, and pedestrians and bikes. This research focuses on developing a methodology for appropriately addressing the question of treatments in these complex, multimodal intersections. The methodology is designed to be able to balance a predetermined, prescriptive approach with the professional judgment of the agency carrying out the investigation. Using knowledge and data from the literature, field studies, and video observations, a framework for selecting treatments based on primary issues at a given location is developed. Using such a framework allows the agency to streamline their crossing improvement efforts; to easily communicate and inform the public of the decisions made and their reasons for doing so; to secure stakeholder buy-in prior to starting a project or investigation; to make sure that approach and selected treatments are more standardized; and to ensure transparency in the organization to make at-grade crossings safer for pedestrians and bicyclists, without negatively impacting trains or vehicles.

Recommended Citation:
Alligood, Anna & Sheth, Manali & Goodchild, Anne & McCormack, Edward & Butrina, Polina. (2018). Rails-Next-to-Trails: A Methodology for Selecting Appropriate Safety Treatments at Complex Multimodal Intersections. Transportation Research Record: Journal of the Transportation Research Board, 2672(10), 12–27. https://doi.org/10.1177/0361198118792763
Paper

Evaluating Global Positioning System (GPS) Data Usability for Freight Performance Measures

Publication: Transportation Research Board 96th Annual Meeting - Transportation Research Board
Volume: 17-04053
Publication Date: 2017
Summary:

Freight Performance Measures (FPM) are of interest to transportation planning agencies. One of the key tools that aids in the study of freight system activity is the data from Global Positioning System (GPS) devices located in trucks and cars. While commercially available GPS data has a common basic output format, the level of aggregation of the raw data, impacts the data’s ultimate usability and applications. This paper categorizes the different level of GPS data – from raw to highly aggregate and highlights the different strength, weakness, and applications of the data. Based on the insights learned from previous studies related to GPS data types, the authors make recommendations for how to match the GPS data to different analytical needs.

Recommended Citation:
Sankarakumaraswamy, Saravanya. Edward McCormack, Anne Goodchild, and Mark Hallenbeck. Evaluating Global Positioning System (GPS) Data Usability for Freight Performance Measures. No. 17-04053. 2017.