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Using Truck Probe GPS Data to Identify and
Rank Roadway Bottlenecks

Wenjuan Zhao'; Edward McCormack?; Daniel J. Dailey®; and Eric Scharnhorst*

Abstract: This paper describes the development of a systematic methodology for identifying and ranking bottlenecks using probe data
collected by commercial global positioning system fleet management devices mounted on trucks. These data are processed in a geographic
information system and assigned to a roadway network to provide performance measures for individual segments. The authors hypothesized
that truck speed distributions on these segments can be represented by either a unimodal or bimodal probability density function and proposed
a new reliability measure for evaluating roadway performance. Travel performance was classified into three categories: unreliable, reliably
fast, and reliably slow. A mixture of two Gaussian distributions was identified as the best fit for the overall distribution of truck speed data.
Roadway bottlenecks were ranked on the basis of both the reliability and congestion measurements. The method was used to evaluate the
performance of Washington state roadway segments, and proved efficient at identifying and ranking truck bottlenecks. DOI: 10.1061/
(ASCE)TE.1943-5436.0000444. © 2013 American Society of Civil Engineers.
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Introduction

This research was undertaken to develop a process by which the
Washington State Department of Transportation (WSDOT) could
use global positioning system (GPS) probe data from trucks to
locate and quantify roadway bottlenecks. Once bottlenecks are
located, WSDOT can use this information to more effectively guide
and prioritize infrastructure investment.

Roadway bottlenecks have been defined in different ways in
various studies. Daganzo (1997) suggested that an active bottle-
neck is a restriction that separates upstream queued traffic and
free-flowing downstream traffic. Bertini and Myton (2005) simi-
larly defined a bottleneck as a point upstream of which there is a
queue and downstream of which there is freely flowing traffic.
They considered a bottleneck to be active when it meets these con-
ditions and to be inactive when there is a decrease in demand or a
spillover from a downstream bottleneck. Ban et al. (2007) defined
bottlenecks as sections of the roadway that have either capacities
less than or demand greater than other sections. Chen et al. (2004)
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described freeway bottlenecks as certain freeway locations that
experience congestion at nearly the same time almost every day.

For this research, the authors defined a bottleneck as a poorly
performing roadway segment on the basis of speed measurements
and statistical predictability derived from truck GPS data. The
development of predictability was based on the hypothesis that
speed, estimated from GPS receiver data, can be statistically
represented by either a unimodal or bimodal probability density
function, estimated for different time periods during the day.
The authors used a set of ensembles for each period of the day
across one year to represent traffic performance for a particular
time period. Furthermore, the authors hypothesized that the ob-
served distributions can be approximated by a mixture of two
Gaussian distributions, and a Gaussian mixture model can be fit
to the speed data to estimate parameters that can used to classify
the performance into the following three categories: (1) unimodal
and reliably slow, (2) unimodal and reliably fast, and (3) bimodal
and unreliable. The authors tested these hypotheses in this
research.

The authors selected reliability as the bottleneck indicator be-
cause it is critical in judging the performance of the transportation
system. In the field of engineering, reliability is defined as “the
probability that an entity will perform its intended function satis-
factorily or without failure for a specified length of time under
the stated operating conditions at a given level of confidence”
(Kececioglu 1991). The concept of reliability has been extended
to transportation primarily for measuring the (un)certainty of travel
time. Researchers have used different definitions of travel time reli-
ability. For example, Emam and Al-Deek (2006) described it as the
probability that a trip between a given origin-destination pair can be
made successfully within a specified time interval. Shaw (2002)
defined it as the variability between the expected and actual travel
time. Lyman and Bertini (2008) considered it to be the consistency
or dependability in travel times, as measured from day to day and/
or across different times of the day. This research hypothesized
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that roadway reliability can be evaluated by using truck speed
distribution and classified the reliability performance of segments
into three categories, as described previously.

The bottleneck identification and ranking process presented
in this research used GPS data obtained from commercial fleet
management devices in trucks. As these GPS devices become
more prevalent in vehicles, GPS data are becoming an increasingly
common and valuable source of roadway data. Processing the raw
GPS data to identify bottlenecks for this effort involved the follow-
ing procedures:

1. Geocode and process the GPS data. Utilizing geographical
information system (GIS) techniques, the state’s roadway
network was partitioned into individual segments, and then
the truck GPS data were filtered and assigned to those seg-
ments for further analysis.

2. Evaluate freeway performance. Statistical methods, in addition
to some other metrics, were applied to evaluate the travel re-
liability and overall performance of each roadway segment and
identify the truck bottleneck locations.

3. Rank the bottlenecks. Truck bottlenecks were ranked on the
basis of a range of measures, including travel reliability, con-
gestion measures, and the importance of the segments to
freight mobility.

Each procedure is subsequently explained, and the bottleneck
ranking results are described in detail. This process provides an
efficient tool for transportation professionals to use in identifying
and locating truck bottlenecks. Such information will help guide
investments designed to relieve existing bottlenecks and improve
the overall performance of the freight network.

Literature Review

Several studies have been devoted to identifying roadway bottle-
necks. The following is a brief review of those bottleneck identi-
fication techniques.

Cambridge Systematics (2005) made an initial effort to identify
and quantify highway truck bottlenecks on a national basis. They
located bottlenecks by identifying highway sections that were
highly congested, as indicated by a high volume of traffic in pro-
portion to the roadway capacity (the volume-to-capacity ratio), and
then estimated the truck hours of delay at the bottlenecks by using a
queuing-based model. Finally, they classified the bottlenecks into
different groups by constraint type and ranked them by hours of
delay. The limitations of this approach were related to the quality
of the input data, because most data were derived and did not
directly account for real-world truck behavior.

The American Transportation Research Institute (ATRI) as-
sessed and ranked U.S. freight bottlenecks by using truck GPS data
(ATRI 2011). ATRI used truck GPS data to calculate the average
miles per hour below free-flow speed on the segment of interest.
This number was multiplied on an hourly basis by the number
of trucks on that section of roadway to produce an hourly freight
congestion value. The sum of 24 hourly freight congestion values
was then calculated to produce the total freight congestion value,
which was used to rank the severity of the bottlenecks. Limitations
of this approach were that it was valid only for the bottlenecks
pre-selected for the list, and some bottlenecks may not have been
identified.

Chen et al. (2004) developed an algorithm for locating active
freeway bottlenecks and estimating their delay impact on the basis
of loop detector data. The algorithm used the presence of a sus-
tained speed differential between a pair of upstream-downstream
detectors to identify bottlenecks and could automatically calculate

bottlenecks’ spatial extent and time duration. However, the
algorithm was limited by data availability, in particular by the de-
tector location and spacing. If the detectors were widely spaced, it
was difficult to detect the speed change and determine whether the
bottleneck was active. In addition, this method was based on single-
day data and could be affected by incidents and day-to-day traffic
variations.

Ban et al. (2007) proposed a percentile-speed-based approach
by using loop detector data from multiple days to identify and cal-
ibrate freeway bottlenecks. Bottleneck identification occurred on a
speed contour map (SCM) automatically. This method converted
the speeds on the SCM into either O or 1, depending on whether
the speed was higher than a congestion threshold, and identified the
areas marked by 1s to obtain the queue length and time duration of
the bottleneck. A drawback of the method was that it was based on
the assumptions of continuous freeway detection and low day-to-
day traffic variation.

Standard travel time reliability measures used by FHWA in-
clude the 90th or 95th percentile travel time and the buffer index,
which is the extra time needed to allow the traveler to arrive on
time (FHWA 2011). This index is computed as the difference
between the 95th percentile travel time and the mean travel time,
divided by mean travel time. Emam and Al-Deek (2006) used
dual-loop detector data to develop a new methodology for esti-
mating travel time reliability. Four statistical distributions were
tested for travel time data: Weibull, exponential, lognormal,
and normal. On the basis of the developed best-fit distribution
(lognormal), they computed the travel time reliability as the prob-
ability that a trip between a given origin-destination pair could be
made within a specified time interval. In comparison to existing
reliability measures, the new method showed higher sensitivity to
geographical locations and a potential for estimating travel time
reliability as a function of departure time.

The research presented in this paper differs from previous ap-
proaches in that it is based on GPS measurements obtained from
individual probe vehicles, rather than on general measures of traffic
performance. Therefore, the performance of the trucks did not need
to be inferred from roadway performance measures but rather was
measured directly. On the basis of the statistical distribution of
truck spot speeds measured by GPS units, the authors developed
a methodology for evaluating the travel reliability of roadway
segments, and utilized this new reliability measure to assess and
prioritize roadway bottlenecks.

GPS Data Processing

The GPS data utilized in this study were collected for nine months
from approximately 6,000 trucks per day traveling on roads
throughout Washington State. The commercial in-vehicle GPS de-
vices report, through cellular technology, both at preset intervals
(every 10-15 min) and when the trucks stop. The resulting GPS
data set included measurements of an individual truck’s longitude
and latitude, the truck’s ID (scrambled for privacy), instantaneous
(spot) speeds estimated by the GPS receiver, and a date and time
stamp. Other variables in the data set included GPS signal strength,
travel heading, and the truck’s status if stopped, e.g., parked with
engine on or off. More details about the data collection effort and
the GPS-based performance measures program can be found in
McCormack et al. (2010) and Ma et al. (2011).

The GPS data processing included the following three steps:
(1) segment the road network, (2) add attribute information to
the segments, and (3) geocode and match the GPS data with road
segments.
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Segmenting the Road Network

The authors obtained WSDOT’s entire road network, with the
associated roadway attributes, as a digital network in ArcGIS-
compatible format. ArcGIS was used to divide this network into
the segments on which analysis was performed. The segmenting
was based on ramps, signalized intersections, and any location
where the speed limit changed. The authors further divided any
segment longer than 3 mi into shorter segments. Because most
roadways involve two-way travel, the increasing and decreasing
milepost attributes from the WSDOT linear referencing model were
used to determine the travel direction of each roadway segment. In
essence, except for a few one-way roads, each roadway segment
was processed as two segments, one for each travel direction. This
segmentation process resulted in approximately 22,000 statewide
analysis segments.

Adding Attribute Information to the Segments

Within the GIS, a 50-ft buffer was added around the analysis
segments. The resulting polygon or area was given identifying
attributes from different state roadway network GIS layers. Some
of these attributes already existed in the state highway GIS files,
e.g., state route ID and posted speed limit. The authors added other
attributes to the segments, including the Washington State Freight
and Goods Transportation System (FGTS) freight tonnage classi-
fication, the compass heading (0-360) of the roadway, lowest and
highest milepost measures of a segment, and the segment length.
These attributes were used to identify the characteristics of each
segment and geocode the truck GPS data in the next step.

Geocoding and Matching the GPS Data with Road
Segments

The authors compared the location and heading of the GPS points

throughout all of Washington State (approximately 250,000 GPS

location records per day) to the segmented linework and filtered
out any GPS measurements taken from trucks that were not trav-
eling along a WSDOT route.

The GPS points were filtered in the following two-step process:

* Step 1: The location of each point was compared with the state
route segments created. Points that fell outside of a zone or
buffer created around each segment (roughly 50 ft from the
roadway’s center) were eliminated.

* Step 2: The heading of each point was compared with the closest
heading of a short section of the analysis segment. Points with a
difference in heading of greater than 15 degrees were elimi-
nated. Points with a difference in heading of 15 degrees or less
were retained and tagged with a value indicating whether travel
was in an increasing or decreasing direction. This process fil-
tered out trucks traveling along intersecting or non-state route
roadways, and it also identified which direction (such as north-
or southbound) on a roadway segment a truck was traveling.
Finally, each truck’s GPS records were assigned to the segment.

Roadway Performance Evaluation

In this research, the authors used several measures, based on the
processed truck GPS data, to evaluate the performance of roadway
segments. The authors considered both congestion and reliability
measures. Travel reliability reflects the level of consistency in
transportation service for a mode, trip, route, or corridor for a time
period. Unreliable travel conditions over a roadway section indicate

that the travel time on the section is unpredictable; such a section
may indicate a bottleneck and be a concern to truckers.

Congestion Measures

The authors used the following two congestion measures in
this research to evaluate roadway performance: average speed,
and the frequency with which congestion exceeded a certain
threshold.

Average speed was used to indicate the general travel condition
of trucks over the freeway segments. Zhao et al. (2011) found that
aggregated GPS speed estimates match loop detector speeds and
capture travel conditions over time and space.

The magnitude of congestion was also estimated from the fre-
quency of truck speeds falling below a threshold speed. WSDOT
uses a threshold of less than 60% of posted speed to indicate
congestion (WSDOT 2010). The authors used this metric as one
of the congestion measures in this paper because it could reflect
the severity of truck congestion on the freeway segment.

Travel Reliability Measures

Travel reliability was estimated for different time periods (AM,
midday, PM, and night) on the basis of truck speed distribution.
Reliability was classified into the following three categories: reli-
ably slow, reliably fast, and unreliable. The authors hypothesized
that roadway performance predictability and reliability could be
statistically measured. This measurement was based on speed, as
estimated with spot speed data from GPS receivers. The speed data
could be statistically represented by either a unimodal or bimodal
probability density function estimated for a certain time period.
Additionally, the authors hypothesized that the data for represent-
ing roadway performance over a certain period could be con-
structed from ensembles collected across one year.

The authors proposed using this performance reliability measure
to capture the roadway behavior of interest to truck operators. For
example, truck operators want to be able to predict roadway delay
and variations to help them make business and operational deci-
sions about contracting, timing, and routing. The authors evaluated
the travel speed for each segment and were able to model reliable
(or consistent) trucks performance on a roadway segment as a
unimodal distribution of truck speeds. The authors were able to
represent unreliable travel performance (variable speeds) as a
bimodal distribution of truck travel speeds. The ability of WSDOT
to identify unreliable segments will help it directly respond to mea-
sures of interest to trucking operators.

The ability to represent GPS data statistics with a bimodal dis-
tribution was tested by fitting the truck speed data to a mixture of
two Gaussian distributions and evaluating the goodness of the fit.
The probability density function of a mixture of two Gaussian
distributions is

fx) =a-n(x,p,00) + (1 —a) - n(x, py, 07) (1)

=]

n(x. i) = — @

exp {_

=19

2o

where for i = 1, 2 and with 0 < « < 1, the function f(x) has the

following five parameters:

* « is the mixing proportion of the first normal distribution,

e 4, and o are the mean and standard deviation of the first normal
distribution, and

* 1, and o, are the mean and standard deviation of the second
normal distribution.
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A maximum likelihood method was used to fit the statistical
distributions to the speed data. Truck speed data sets, collected
from 10 high-volume roadway segments on Interstate 5 (I-5)
though downtown Seattle, were used to test the goodness-of-fit
in urban areas. The speed data were first classified into the follow-
ing four time periods: AM peak (6 a.m. to 9 a.m.), midday (9 a.m.
to 3 p.m.), PM peak (3 p.m. to 7 p.m.), and night (7 p.m. to 6 a.m.).
The time periods were consistent with the analysis periods defined
by WSDOT, and many other transportation agencies, for highway
performance measure and congestion evaluation. Each time peri-
od’s data were fit to the mixture of two Gaussian distributions,
and the Kolmogorov-Smirnov test was applied to evaluate the fit-
ness of distribution. The test results indicated that 36 out of 40 data
sets passed the Kolmogorov-Smirnov test. The average test statistic
is 0.04, with 56% of the K-S test statistic below 0.04, and only 5%
of the test statistic above 0.06.

To evaluate the applicability of the mixture of two Gaussian dis-
tributions to rural highways, the authors used truck speed data sets
collected from 10 segments on U.S. 395 in rural Stevens County in
eastern Washington State for goodness-of-fit tests. The authors fit
24 hours of truck speed data to the statistical distribution without
differentiating time periods. The test results indicated that 8 out of
10 data sets passed the Kolmogorov-Smirnov test. The average test
statistic was 0.06. Therefore, the hypothesis that truck speed dis-
tributions could be statistically represented by a bimodal probabil-
ity density function was accepted as true.

A mixture of two Gaussian distributions was used in this re-
search to fit the truck speed data during different time periods.
On the basis of the estimated parameters, the authors proposed
the following set of rules to evaluate whether travel conditions
on the freeway segment are defined as unreliable, reliably slow,
or reliably fast:

e The travel condition is defined as unreliable if and only if
I — po| 2 oy + 0], @202, and piy; £0.75 -V, (V, is the
posted speed); otherwise, it is defined as reliable, and

» If the travel condition is defined as reliable, the second step is to
evaluate whether it is reliably slow or reliably fast on the basis of
the average speed. It is defined as reliably slow if v <0.75 - V.
Otherwise, it is defined as reliably fast. v is the average speed
computed as one of the congestion measures.

The first rule incorporates both statistics and engineering
judgment. The first condition, |, — p,| > |0y + 05|, is the statis-
tical rule for evaluating whether a mixture of two normal distribu-
tions is bimodal (Schilling et al. 2002).

The second condition, o > 0.2, is included to complement the
first condition because, from an engineering point of view, the
travel condition would still be considered reliable if o value were
very small. This would indicate that the probability of truck speeds
falling within the low-speed regime was very small. The threshold
value for «v is 0.2 because a clustering analysis of I-5 corridor data
found 0.2 to be a conservative estimate of the break point between
different speed clusters (Fig. 1).

K-means clustering is employed to identify the break point
between different speed clusters. This method partitions the points
in a data matrix into a specified number of clusters to minimize
the within-cluster sums of point-to-cluster-centroid distances.
Truck speed data collected on the I-5 segments were selected as
the sample for estimating the threshold value for «, and vector
[lpr — mal/ |1 + o2, al, computed from the statistical fitting result
for each segment, was used as the input data for the clustering. This
method was applied by randomly choosing starting data points as
the cluster centers to partition the input data into two clusters. Fig. 1
shows the clustering results and that 0.3 was the critical value
for «, partitioning the data points into two clusters. The condition

Estimated parameter clustering using K-means algorithm
14 T T T

X Centroids
Cluster 1
12k x  Cluster 2 H

10 b .

(mu2 - mu1)/(sigma2 + sigmal)

0.4 0.6 0.8 1
Mixing proportion

Fig. 1. Two-cluster analysis results using the K-means clustering
method for I-5 freeway segments

|ty — pp| = |0y + 0| is plotted against the mixing proportion be-
cause the equation indicates whether the mixture of two Gaussian
distributions is statistically bimodal or not. Each point on the plot in
Fig. 1 refers to one road segment during one time period.

The third condition, p; <0.75 -V, is included because, from
an engineering point of view, the travel condition can still be
considered reliable and free of congestion if x; is higher than
the congestion threshold, 75% of posted speed. This indicates that
even the mean speed of the low-speed regime is above the conges-
tion threshold, and the freeway segment is free of congestion. The
authors chose 75% of posted speed because it is between 70 and
85% of posted speed, and WSDOT and other transportation agen-
cies have adopted it as the speed threshold by which to evaluate the
duration of congested periods.

The second rule is also an engineering judgment, with 75% of
posted speed used as the threshold of reliability. If the average
speed of the freeway segment is above 75% of posted speed,
the segment is considered free of congestion and the travel condi-
tion is evaluated to be reliably fast. Otherwise, the roadway seg-
ment is experiencing traffic congestion, and the travel condition
is defined as reliably slow.

Roadway Performance Evaluation Results

The performance of each analysis segment was evaluated by using
the processed GPS data. A minimum of 200 data points per seg-
ment were required for analysis. A 0.4-mi segment on northbound
I-5 north of the city of Everett was used to illustrate the bottleneck
evaluation process. The average daily truck volume on this urban
roadway segment is approximately 12,000. The speed distribution
fitting results and travel reliability evaluation are shown in Table 1.
A graphical illustration of the speed fitting results is shown in
Fig. 2.

Taking the AM and PM periods as examples, the speed fitting
results can be interpreted as follows.

During the AM peak period there are two speed operating
regimes for trucks. The probability of truck travel speeds falling
within the low-speed regime is 8.1%, with a mean speed of
40.5 mi/h (65.2 km/h). The probability of truck travel speeds fall-
ing within the high-speed regime is 91.9%, with a mean speed of
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Table 1. Estimated Parameters for Speed Distribution Fitting during Different Time Periods

Time period Mixing proportion («) (%) Mean 1 (u) Mean 2 (u,) SD 1 (oy) SD 2 (o,) Mean Reliability
Morning (6 to 9 a.m.) 8.1 40.5 59.5 6.7 3.6 57.9 Reliably fast
Midday (9 a.m. to 3 p.m.) 22.3 36.3 59.3 15 4.3 54.2 Unreliable
Afternoon peak (3 to 7 p.m.) 79.0 274 59.7 8.6 4.8 342 Unreliable
Night (7 p.m. to 6 a.m.) 7.7 19.4 58.3 12.2 4.6 55.3 Reliably fast

Distribution fitting for truck speed data during AM peak hour

0.12 T T T T
[Ispeed histogram
—a mixture of two normals
0.1} [ .
> 0.08f b
®
C
[0
[a]
£ 0.06f E
=
@
Q
o
& o004} 1
0.02f E
0 . .
0 10 20 30 40 50 60 70 80
(@ Travel speed (mile per hour)

Probability Density

(b)

Distribution fitting for truck speed data during PM peak hour
0.045 T T T T

[Ispeed histogram
—a mixture of two normals

0.041

0.035} /

0.03} / | 1
0.025} 1
0.02f —7_ | 1
0.015} / |

0.01 E

-

0.005 b

0 10 20 30 40 50 60 70 80
Travel speed (mile per hour)

Fig. 2. Distribution fitting: (a) northbound I-5 segment during the AM; (b) northbound I-5 segment during the PM

59.5 mi/h (95.8 km/h). Because the mixing proportion value of
the first normal distribution is lower than 0.2 and the average speed
is higher than 75% of the posted speed limit, the segment is defined
as reliably fast for the AM peak period. As seen in Fig. 2(a), the
speed histogram presents a unimodal feature, and the truck travel
speeds peak around 60 mi/h (97 km/h).

Table 2. Top 20 Worst-Performing Segments on T-1 Category Corridors

During the PM peak period, the probability of truck travel
speeds falling within the low-speed regime is 79%, with a
mean speed of 27.4 mi/h (44.1 km/h). The probability of truck
travel speeds falling within the high-speed regime is 21%, with
a mean speed of 59.7 mi/h (96.1 km/h). Because the estimated
parameters meet the conditions |u) — | 2 |0y + 03], a>0.2,

Frequency of speed below Mean speed Speed limit Length
Rank Route name Starting milepost Ending milepost 60% of posted speed (%) [mi/h (km/h)] [mi/h (km/h)] [(mi) (km)]
1 15 1.3 0.4 100.0 24.3 (39.1) 60 (96.6) 1 (1.6)
2 SR 501 0.2 0.1 100.0 20.2 (32.5) 60 (96.6) 0.2 (0.3)
3 SR 167 6.5 6.7 85.7 20.3 (32.7) 35 (56.3) 0.1 (0.2)
4 199 20.7 21.0 80.4 22.4 (36) 60 (96.6) 0.3 (0.5)
5 SR 410 2.5 4.5 79.7 25.9 (41.7) 55 (88.5) 2 (3.2)
6 SR 99 21.8 22.0 78.2 21.8 (35.1) 60 (96.6) 0.2 (0.3)
7 15 127.5 125.9 76.1 31 (49.9) 60 (96.6) 1.6 (2.6)
8 SR 512 0.0 0.2 72.7 26.5 (42.6) 60 (96.6) 0.2 (0.3)
9 118 0.2 0.4 68.2 22.7 (36.5) 35 (56.3) 0.2 (0.3)
10 SR 167 6.2 6.1 67.2 16.3 (26.2) 35 (56.3) 0.1 (0.2)
11 SR 181 5.9 6.0 66.3 25.4 (40.9) 50 (80.5) 0.1 (0.2)
12 SR 7 52.3 52.5 65.9 17.6 (28.3) 35 (56.3) 0.2 (0.3)
13 SR 18 0.2 0.0 65.8 19.6 (31.5) 35 (56.3) 0.2 (0.3)
14 SR 181 6.0 5.9 65.8 19.6 (31.5) 40 (64.4) 0.1 (0.2)
15 SR 99 21.5 21.7 65.6 28.6 (46) 60 (96.6) 0.1 (0.2)
16 SR 432 6.7 6.4 63.6 18.7 (30.1) 35 (56.3) 0.2 (0.3)
17 SR 16 0.3 0.0 62.9 27.9 (44.9) 55 (88.5) 0.4 (0.6)
18 190 49.8 47.8 61.1 37.4 (60.2) 65 (104.6) 2 (3.2)
19 SR 181 34 32 60.6 25.4 (40.9) 50 (80.5) 0.2 (0.3)
20 190 50.5 49.8 58.3 35.9 (57.8) 35 (56.3) 0.6 (1)
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Example of a Truck Bottleneck on a
Congested Urban State Highway

» Location: SR-167 southbound, east of
SR-161, Puyallup, WA

Length: 0.24 mile

Daily truck volume: 2,400

Truck percentage of total traffic: 6.3%
Average truck travel speed: 33 mph
Posted Speed: 60 mph

Percentage of travel speed below 60% of
posted speed limit: 48%

» The SR 167 extension project will relieve
this truck bottleneck and improve access
to the Port of Tacoma and industrial
lands.

v v.v v v v

Time Period Reliability

| AM Unreliable

Bottlenecks 2011-10-03 I s Midday Unreliable
PM Unreliable

e p
Fig. 3. Example of the bottleneck information as used by
WSDOT (with permission from the Washington State Department of
Transportation)

and p; <0.75 - V,, the segment is defined as unreliable for the PM
peak period. The speed histogram in Fig. 2(b) demonstrates this
evaluation, showing the bimodal feature.

In summary, the evaluation showed that during the midday
and PM periods, travel conditions on the northbound I-5 segment

are unreliable. During the AM and night periods, travel conditions
are reliable. The average truck travel speed on this segment
is 50 mi/h (80.5 km/h), and the frequency of truck speed falling
below 35 mi/h (56.3 km/h) is 21%.

Truck Bottleneck Ranking

A process was developed for ranking the truck segments on the
basis of their level of (un)reliability and congestion severity.
The Department of Transportation can use this process to prioritize
investments in infrastructure improvements. Both the congestion
and reliability measures discussed previously were included in this
process.

The rules for the ranking process are as follows:

First identify all the roadway segments within at least one time
period that are unreliable or reliably slow. Then rank these seg-
ments by the frequency that congestion exceeds a certain threshold.
Higher priority is given to the segments with a higher frequency of
congested travel.

These rules consider travel reliability to be the most important
factor for ranking roadway segments because the trucking industry
is more concerned with travel reliability than with mean travel
speed. Roadway segments that are determined to be reliably fast
during all time periods are excluded from the ranking list because
those segments do not have a congestion problem, and their travel
condition is predictable. In addition, because the importance of
various truck bottlenecks could change in light of different freight

Truck Bottlenecks in Washington State

2
\ c /\)
; (

D,

e Tryck Bottlenecks i§! _

Fig. 4. Bottlenecks identified in Washington State
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mobility factors, bottlenecks are only compared within the same
freight roadway (freight and goods transportation system, FGTS)
classification, and a separate ranking list is developed for each
category.

As an example, the 20 worst-performing segments for the high-
est level FGTS categories within the central Puget Sound area were
identified, as shown in Table 2.

Table 2 shows the ranking results of the top 20 worst-performing
segments on T-1 category corridors (T-1 corridors are roadways
carrying more than 10 million annual gross truck tonnage). By
combing the adjacent segments on the same freeway, the authors
identified the following major truck bottlenecks:

e I-5 mile point (MP) 0.4-1.3,

e State route (SR) 18 MP 0-0.4,
e [-90 MP 47.8-50.5,

* SR 99 MP 20.7-22,

e SR 167 MP 6.0-6.7,

* SR 181 MP 5.9-6.0, and

* SR 410 MP 2.5-4.5.

Most of these bottlenecks were located within the central Puget
Sound area, indicating that the most severely congested spots were
concentrated there. However, the authors’ evaluation results did not
explain what caused these bottlenecks.

These results demonstrated that the proposed ranking rules are
useful for ranking roadway segments and identifying the locations
of the worst bottlenecks. WSDOT has taken this information and
developed a one-page handout designed to support its infrastructure
planning and capital development programs (Fig. 3).

Fig. 4 shows the locations of the worst 80 truck bottlenecks
identified by this ranking process. WSDOT is currently evaluating
bottleneck locations that fall within or adjacent to proposed
WSDOT projects to determine whether any solutions could be in-
corporated into the scoped of work being developed. WSDOT is
also considering incorporating the remainder of the 80 locations
into future corridor studies.

Conclusions

On the basis of fleet management GPS probe data from trucks, this
research developed both congestion and reliability measures for
evaluating the performance of roadway segments and further iden-
tifying and ranking truck bottlenecks. This paper classified the
travel reliability of roadway segments into the following three cat-
egories: unreliable, reliably slow, and reliably fast. This system was
based on the hypothesis that roadway reliability is statistically pre-
dictable and truck speed distribution can be represented by either a
unimodal or bimodal probability density function over a certain
time period. The Kolmogorov-Smirnov test was used to test
the distribution’s goodness-of-fit for the mixture of two Gaussian
distributions.

This reliability measure was used to evaluate the performance of
a truck transportation network by fitting the collected truck speed
data with a mixture of two Gaussian distributions, and then using a
set of rules, based on the estimated distribution parameters, to de-
termine whether the travel condition was (1) unreliable, (2) reliably
slow, or (3) reliably fast. The poorly performing segments were
identified and ranked on the basis of both reliability and congestion
measurements.

The new methodology proved efficient in identifying the worst
truck bottlenecks within WSDOT’s roadway network. This research
provides an effective tool for decision makers to use in systemati-
cally locating the worst bottlenecks and pinpointing the locations
where bottleneck alleviation may provide the greatest benefit.

Notation

The following symbols are used in this paper:
F(x) = empirical cumulative distribution function (CDF);
f(x) = probability density function of a mixture of two Gaussian
distributions;
G(x) = standard CDF;
« = mixing proportion of the first normal distribution;
11, o; = mean and standard deviation of the first normal
distribution; and
I, 05 = mean and standard deviation of the second normal
distribution.
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