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Abstract—Predicting the stay time of private cars has various
applications in location-based services and traffic management.
Due to the associated randomness and uncertainty, achieving the
promising performance of stay time prediction is a challenge.
We propose an RNN-based encoder model to solve this problem,
which consists of three components, i.e., an encoder module, an
exception module, and an MLP dropout. First, we encode the stay
behaviour into hidden vectors at a specific time to avoid the effect
of time sparsity. The encoder module utilizes a multilayer percep-
tron (MLP) to learn spatiotemporal features from the historical
trajectory data, such as the inherent relationship between the stop
points and corresponding stay time. We proved a linear relationship
problem that cannot be ignored in the stay time prediction problem.
In particular, we have added basic arithmetic logic units to the
network framework to find linear relationships. By reconstructing
the basic arithmetic and logical relations of the network, we have
improved the ability of the neural network to handle linear relations
and the extrapolation ability of the neural network. Our method
can remember the number patterns seen in the training set very
well and infer this representation reasonably. Moreover, we utilize
the dropout technique to prevent the prediction model from over-
fitting. We perform extensive experiments based on a large-scale
real-world private car trajectory dataset. The experimental results
demonstrate that our method achieves an RMSE of 0.1429 and a
MAPE of 55.8533%. Furthermore, the results verify the effective-
ness and advantages of the proposed model when compared with
the benchmarks.

Index Terms—Stay event, private car, neural network, human
mobility.
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I. INTRODUCTION

THE STAY time, as the term itself implies, indicates the
length of time that people spend when they arrive and stay

at a determined destination [1]. Predicting the length of stay time
can effectively improve the quality of various location-based
services [2]. For example, stay time plays an important role in
recommending online points of interest (PoIs) since it directly
affects sales [3]. Service providers can improve the accuracy
of their marketing policies through better understanding the
stay time of drivers. As part of an intelligent transportation
system (ITS), stay time provides valuable information for traffic
condition prediction. By predicting when vehicles in a stay state
will start, the transportation agency can estimate road congestion
in advance.

In this paper, we strive to predict stay time with special con-
sideration of private car users. One observation that motivates
our work is that people driving private cars to fulfill their travel
needs has become a major daily activity, especially against the
background of the continuous development of modern industri-
alization and urbanization [4], [5]. Additionally, we purposely
use private car trajectory data [6], [7], since we can extract stay
events [2] and stay times from this dataset, while other trajectory
datasets, such as those of taxis and check-ins, do not contain any
information on stay events and stay time [8].

Recently, concerns on the human mobility of private car users
have emerged [2], [4], [9]. In particular, the recent development
of neural networks provides optional solutions for predicting
stay time due to their powerful modeling and training ability. For
instance, J. Manweiler et al. used a machine learning algorithm
to predict stay time at WiFi hotspots [1]. They used sensors (such
as accelerometers and compasses) to estimate how long people
stay in WiFi hotspots, without considering the spatiotemporal
representation. J. Chen et al. integrated a decision tree with
a recurrent neural network (RNN) to predict the stay time of
vehicles via extracting spatiotemporal features [10]. However,
it is not an easy task to achieve promising performance in
predicting stay time [11]. This view is mainly derived from the
fact that stay time usually involves randomness and uncertainty
since many uncontrollable factors, such as subjective reasons
(i.e., the user’s mood) and objective reasons (i.e., the weather),
have explicit impacts on stay time.

Staying behavior is sparse, and the travel is divided into two
parts: driving and staying, which cause the time sparseness of
the staying behavior. A private car user generally stays only

0018-9545 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 31,2022 at 22:05:24 UTC from IEEE Xplore.  Restrictions apply. 



6008 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 6, JUNE 2022

TABLE I
PCC WITH DIFFERENT CHARACTERISTIC

several hundred times per year, which is very sparse relative
to the entire spatiotemporal domain. First, relative to the entire
two-dimensional plane (latitude and longitude), the stay location
is sparse. Second, relative to the entire time domain, hundreds
of personal stay behavior data points are sparse every year [10].

In addition to the uncertainty of stay time, the following
challenges impact the prediction of stay time. i) In addition to the
spatial connection between stay events [2], in the time domain,
the arrival time of stay events and different time intervals of
adjacent stay events are highly related to the variance in stay
time. This leads to the effect of time sparsity, which brings
about challenges for achieving efficient spatiotemporal feature
representation. ii) Although stay time has obvious randomness,
it shows some degree of a linear relationship. According to
people’s needs, various stay behaviors have different stay times.
The stay time can be divided into two parts. One part is the time
spent according to the purpose of stay, and the other part is the
time spent from the place of stay to the final place.

In Table I, ‘Stop Lon’ represents longitude of stop point, ‘Stop
Lat’ is the latitude of stop point, ‘Start hour’ represents the hour
and hour when the stay event starts, ‘Start minute’ represents
the minute and hour when the stay event starts, ‘Start time’
resents the sum of the hour and minute when the stay event
starts. Table I shows PCCs in three regions. We found that PCCs
in different regions have different characteristics. For example,
the PCC of Start time in Area.1 is 0.780, which has a strong
linear relationship, but the PCC in Area.2 is only 0.074, and
the linear relationship is almost non-existent. According to the
characteristics of the linear relationship reflected in different
regions, we can think that linear relationships exist on the issue
of stay time prediction, and the research and discussion of linear
relationships are significant.

When a user arrives at a place, the time spent each time for a
certain purpose is similar. On the one hand, we look at the linear
relationship from the temporal aspect, and different arrival times
will linearly affect the stay time. For example, a user usually
arrives home from work at 7 o’clock. If he/she arrives home
at 9 o’clock for certain things, then his/her staying time may
be reduced by two hours. On the other hand, we consider the
linear relationship from the spatial aspect. The additional time
consumed by different parking areas will change, including the
linear relationship. The staying location being far away from
the final destination will increase the stay time. Deep neural
networks bring about powerful nonlinear fitting capabilities.
However, nonlinear activation functions, which act as the basic
structure in deep neural networks, make the network insensitive
to these linear changes.

To address the abovementioned challenges, we design an
RNN-based encoder model to resolve the problem of predicting
stay time. Our proposed model consists of three components,
i.e., an encoder module, an exception module and an MLP
dropout. Specifically, we only encode one stay event into hidden
vectors at a time, which avoids the effect of time sparsity. The
encoder module utilizes a multilayer perceptron (MLP) to learn
spatiotemporal features from the historical trajectory data, such
as the inherent relationship between the stay points and the
corresponding stay time [12]. The output of the MLP will be
combined to generate the final spatiotemporal features by gated
recurrent (GRU) cells. To prevent the model from overfitting,
we utilize the dropout technique of the original MLP. Moreover,
we build an exception module with neural arithmetic logic units
(NALUs) [13] in the prediction model. The NALU layer en-
hances the neural network’s ability to handle linear relationships
by reconstructing the basic arithmetic logic relationship, which
enables the proposed prediction model to have better predictive
power. Finally, we integrate the output of the exception module
to predict the stay time by MLP dropout.

The main contributions of this paper are summarized as
follows.
� In order to predict the stay time, we built an encoder model

based on RNN to capture the relationship between the stay
point of a private car and its stay time. By doing so, we
reduce the impact of sparsity and randomness of staying
events. In addition, we use dropout techniques to reduce
the overfitting of the prediction model.

� We proved a linear relationship problem that cannot be
ignored in the stay time prediction problem. Since the
existing conventional neural networks cannot cope with
the prosperous linear relationship, we have improved the
neural network’s ability to handle linear relationships by re-
constructing the basic arithmetic and logical relationships
of the network and enhancing the extrapolation ability of
the neural network.

� We conducted extensive experiments using a real-world
private car trajectory data set. Experimental results show
that, compared with advanced prediction network bench-
mark tests, our prediction model has good prediction ca-
pabilities and strong learning capabilities.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the related work. Then, we present our dataset,
the stay event detection and the spatiotemporal data analysis of
private car users in Section III. In Section IV, we introduce our
prediction model. In Section V, we present the results of our
experiments and evaluations. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

In this paper, we investigate how to predict the stay time of
private car users. This is closely related to human mobility and
stay time. In this section, we review the research status of both
topics.

Due to the needs of urban planning, social management,
traffic forecasting and other applications, human mobility has
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been extensively studied [14] [15]. With the development of
communication technology, it is becoming increasingly more
common to use human resources and intelligent terminals to
study human mobility models.

Researchers have begun to use big data to predict traffic
flow [16]. Spatiotemporal analysis methods have been proposed
for mobile phone activity data and for studying the relationship
between network traffic and traffic flow [17], [18]. S. Jiang et
al. [19] proposed three types of methods for extracting informa-
tion from triangular mobile phone signals, describing different
applications in spatiotemporal analysis and city modeling, and
inferring the purpose of travel by using the geographic semantics
of the travel destination. Some researchers [20] [21] have estab-
lished mobility models to characterize the spatiotemporal pattern
of human mobility, hoping to reproduce some characteristics of
human movement. C. Song et al. [22] used personal trajectories
recorded by mobile phones to discover some characteristics
of human travel and conducted a quantitative analysis of the
statistical characteristics of each human trajectory. M. C. Gon-
zalez et al. [23] proposed that human travel behavior has a highly
temporal and spatial pattern and that human travel behavior has
certain similarities. Some researchers have divided the com-
munication network into different areas, used the data in the
communication network to model the urban traffic distribution,
and finally estimated traffic flow in the area [24], [25]. Other
researchers have collected a large amount of mobile terminal
and GPS data to infer people’s points of interest and travel
purpose [26], [27]. Soares [28] used a smartphone to detect the
real-time travel mode of the intelligent transportation system.

Detecting traffic patterns is a common way to learn about the
stay event. Haosheng Huang et al. [29] reviewed the research
content of using mobile phone network data to detect traffic
modes and got the conclusion that traffic mode is the key to
travel behaviour research. The smartphone is a low-cost and
high-efficiency device in the intelligent transportation system.
In order to detect the movement and static state of vehicles,
H.R.Eftekhari and M.Ghatee [30] has developed a new inference
engine based on inertial measurement units to detect motorized
mode. Further, to monitor and evaluate driving behaviour, a
new system based on the inertial unit of the smartphone was
developed, which uses the latitude and longitude data of the
acceleration sensor to identify the driver’s behaviour [31]. D.
T et al. [32] provide a methodological framework for the com-
parative evaluation of driving safety efficiency based on Data
Envelopment Analysis, they combined smartphone data with
vehicle data to study vehicle driver efficiency. The vast majority
of network traffic in the world comes from smartphones. Stratis
Kanarachos et al. [33] has verified the role of smartphones as
an integrated platform to monitor driver behaviour. Yu Cui et
al. [34] uses smartphone GPS data to develop a comprehensive
daily activity location scheduling model to capture known and
unknown activities and build traffic simulators by modelling
activities of different levels. O.Burkhard et al. [35] combines
passive tracking of telephone providers and historical location
data to develop a method of classification of transportation mode.

Understanding the time of the transportation system helps
people choose the right road and reduces transportation costs
and traffic uncertainty, and thus, time in intelligent transportation

systems has been widely studied. Some scholars have focused
on vehicle travel time. W.-H et al. [36] proposed a travel time
prediction model, which predicted the high-speed travel time of
each vehicle when the vehicles on the highway interfered with
each other.

Researchers have become concerned with stay time. Some
researchers have explored the effects of spatial differences and
temporal changes on temporal patterns by using mobile phone
data [37], [38]. J. Manweiler et al. [1] and S. Liu et al. [39]
studied the stay time of mobile users. R. Low et al. [40] studied
the parking activities of heavy trucks and used a generative ad-
versarial network to predict the parking duration of commercial
vehicles [41] K. S. Kung et al. [42] find that the maximum
length of stay of city residents when commuting is related to
some important daily human activities. Although the stay time is
random and uncertain, in 2010, researchers published a study on
the predictability of human movement in science. By measuring
the entropy of the trajectory of anonymous users, it was found
that users have 93% potential predictive power [43]. Y. Li [11]
studied the predictability of the stay time of vehicles in different
areas. Compared with human travel modes, modes of trans-
portation have completely different characteristics. J. Chen et
al. [10] used clustering and kernel density estimation to extract
the spatiotemporal characteristics of stay events. Based on a
deep neural network, a stay time predictor (STP) model was
constructed to predict the stay time of stay events.

Our work validates the new idea of linear relationships in deep
learning related to recent innovations in deep learning architec-
tures. Many popular neural network architectures [44] [45] also
advocate using linear links to reduce exploding/vanishing gra-
dients or check the relationship between nodes. In connection,
the linear relationship thinking in our article is also in line with a
broader topic in machine learning, which attempts to identify the
system’s underlying structure in the form of behavioural control
equations, which can reasonably infer the invisible part of the
space. This is also a strong trend in recurrent networks, allowing
the network to infer longer sequences than in training.Recent
work [46], [47] attempts to use sorting to enhance LSTM,
and they focus on using external memory modules to improve
generalization capabilities to find sequences outside of system
training.

In conclusion, most existing studies have qualitatively an-
alyzed the influence of spatiotemporal factors on the spatial
patterns of human mobility prediction. In this study, we focus
on the temporal patterns within human mobility patterns. Via
leveraging deep learning techniques, we aim to model the stay
time pattern and combine historical spatiotemporal data to quan-
titatively predict the stay time using private car trajectory data.

III. PRELIMINARY

In order to conveniently describe the concepts of stay event
detection and prediction, this paper defines some critical defini-
tions.:

Definition 1: stay event: a stay event refers to a
situation where the vehicle stays somewhere temporarily, does
not continue to move forward, and is in a stopped state.
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TABLE II
TRAJECTORY TRIPS IN THE DATASET

Algorithm 1: Stay Event Detection from Trajectory Trips.
Input: STI retrieved from the private car trajectory
dataset

Output: The record of the stay statue
function STAY EVENT DETECTION

Extract STI from the dataset by User ID
Sort STI by Record ID
while dist(Si

TI , S
i−1
TI ) � 300m do

while The duration � 120 s do
Record Si

TI in stay statue of the User ID
end while

end while
end function

Definition 2: stay time: the vehicle changes from a moving
state to a stationary state and then from a stationary state to a
moving state. The duration of the static state is the stay time.

A. Trajectory Data and Stay Event Detection

Through our previous works [48], [49], we have obtained
the trajectory dataset of large-scale real-world private cars from
urban scenarios [4], [6]. When installing GPS/OBD devices in
private cars, the collection of private car trajectory data was
explained to the volunteers, and their consent was obtained. At
the same time, when uploading data, the owner’s real vehicle ID
is anonymous, and the International Mobile Equipment Identity
(IMEI) number is assigned to the GPS/OBD device as the unique
ID of each vehicle for the purpose of privacy protection. In this
dataset, the collected trajectory information is expressed in the
form of a single trip. Each trip contains the record ID of the trip,
vehicle ID, start and end times, start and end positions, mileage,
etc. In addition, the driving status of each trip is recorded (such as
speed, steering and current alarm information). For instance, the
travel information (TI) contained in trajectory trips is presented
in Table II.

Based on the trajectory dataset, we propose an algorithm to
detect stay events from TI in the trajectory trips. As shown
in Algorithm 1, the algorithm consists of the following steps.
First, we extract the travel information of the same User ID in
the dataset as STI = (Record ID, User ID, Start Time, Stop
Time, Start Lon., Start Lat., Stop Lon., Stop Lat.) and sort them
according to the Record ID. There are two reasons why the data
are abnormal. The first reason is that the stay time being below a
certain standard may be a special situation, such as flameout due
to abnormal conditions. The second reason is the error of GPS.
Our purpose of setting two values is to clean up any abnormal
data in the dataset. Second, when we obtain trip information, we

calculate the starting point of the current trip and the stopping
distance of the previous trip. If the distance between the two
trips does not exceed 300 m, then it is judged that the position
information is not missing. Finally, we calculate the stop time of
this trip and the start time of the next trip. If the stay time exceeds
120 s, then it is judged that the stay event of this trip is effective,
and the current stay time is recorded. Earth’s surface distance
can be calculate by the Haversine formula as follows [50]:

dist(A,B) = 2 × r × arcsin
√
a (1)

duration = ti − tj (2)

where

a = sin2 b+ cos(lati) ∗ cos(lonj) ∗ sin2(c)

b =
lati − latj

2

c =
loni − lonj

2

where r is the radius of the earth, dist(A,B) is the distance
between two STI :A(Loni, Lati, ti), B (Lonj , Latj , and tj).

B. Spatiotemporal Analysis of Stay Time

After retrieving the stay events, we conduct a spatiotemporal
analysis of stay time to study the connection between stay time,
arrival time and stop points.

Usually, private cars have thousands of stay event records and
thereby generate many stop points in their trajectories within a
long period of time such as one year. Inspired from the findings
in [4], we observe that most of the stop points are concentrated
in several fixed areas.

Overall, the Fig. 1 shows that most stop points occur within
a specific range of arrival times. Each private car owner’s travel
mode has its characteristics. This uniqueness is reflected in two
aspects. The first is the uniqueness of parking time. As shown
in Fig. 1, some users have a multimodal distribution in parking
time, and some have a unimodal distribution. The second is the
uniqueness of the number of stay events. The four users in our
sample recorded the most parking times in three years, which
were 7,066, 5,264, 4,013 and 3,969. Most users record less than
a thousand times. To show the uniqueness, we selected the four
users with the most records. Fig. 1(a) shows that the stay events
usually occurs between 5 to 9 o’clock and 12 to 15 o’clock. In
the stay event from 5 to 9 o’clock, the stay time tends to be
concentrated in 10 minutes to 20 minutes. In the period from 12
to 15 o’clock, the stay time is more evenly distributed. Fig. 1(b)
shows that the stay events usually occurs between 10 and 15
o’clock, and the stay time is mainly concentrated between 10
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Fig. 1. Temporal distribution of stay events.

and 30 minutes. Fig. 1(c) shows that the stay events are evenly
distributed in the period from 7 to 18:00, and the stay time is
evenly distributed in each period. Fig. 1(d) shows that the stay
event occurred during the period from 12 to 18 o’clock. Between
12 and 18 o’clock, the stay time is mostly between 5 minutes
and 20 minutes. It is worth noting that a lot of stay time also
occurred at 7 o’clock, and the stay time at this time was evenly
distributed between 5 minutes and 60 minutes. The above four
users fully demonstrate the uniqueness of the stay event.

Fig. 2(a) illustrates the spatiotemporal distribution of stay
time, in which the x-axis and y-axis represent the coordinates
of stop points, and the z-axis provides the stay time of the
private car user. The numbers in Fig. 2 represent the arrival time
corresponding to the stay events. Figure 2 a shows two clusters
with details in this small area. The stay time corresponding to
the arrival time from 12 o’clock to 14 o’clock is the red part, and
the stay time corresponding to the arrival time from 5 o’clock to
6 o’clock is shown in another colour. This shows that when the
spatial characteristics are similar, the influence of the temporal
characteristics on the stay time cannot be ignored. Furthermore,
Fig. 2(a) shows the characteristics of the stay time corresponding
to different arrival times in the same small area. In the same small
area, when the arrival time is 4 o’clock, the stay time is within
10 to 20 minutes. After reaching 5 o’clock in time, the range of
stay time begins to increase upwards and downwards. Until the
arrival time is from 12:00 to 14:00, the range of stay time reaches
the maximum. It is worth noting that when the arrival time is 11
o’clock, the increasing trend of the stay time range is interrupted,
and the stay time is rapidly reduced. When the arrival time is
18:00, the stay time is shortened and concentrated. In summary,
we found that only focusing on the spatial features in Fig. 2
and the staying time of users in an area is sparse and random.
However, by combining the temporal and spatial characteristics,
we found that the stay behaviour has an apparent clustering
trend. The stay time pattern can also be reflected according to
the arrival time. The above introduction fully illustrates that the
temporal and spatial characteristics of the user’s vehicle provide

Fig. 2. Example of stay time distribution. Numbers in different colors repre-
sent different arrival times. In the same stop points, stay time changes according
to arrival time.

the possibility of predicting the stay time. In summary, we found
that only focusing on the spatial features in Fig. 2 and the staying
time of users in an area is sparse and random. However, by
combining the temporal and spatial characteristics, we found that
the stay behaviour has an apparent clustering trend. The stay time
pattern can also be reflected according to the arrival time. The
above introduction fully illustrates that the temporal and spatial
characteristics of the user’s vehicle provide the possibility of
predicting the stay time.

The above information is indirectly included in the travel data.
Our goal is to predict the stay time yi by making use of the travel
information Si

TI of private cars. In the next section, we propose
capturing the spatiotemporal features according to the changes
in the arrival times and stop points of stay via constructing an
RNN-based stay time prediction model.

IV. METHODOLOGY

M. C [23] proposed that human travel behavior has a highly
temporal and spatial pattern and that human travel behavior has
certain similarities. J. M [1] used a machine learning algorithm
to predict stay time at WiFi hotspots. Rely on the powerful
representation ability of neural networks for spatiotemporal
features, J. Chen [10] integrated a decision tree with a recurrent
neural network (RNN) to predict the stay time of vehicles via
extracting spatiotemporal features. To obtain the spatiotemporal
representation of stay events, we use a multilayer perceptron
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(MLP) and gated recurrent units (GRUs) in the model to map the
original data to the hidden feature space. After encoding through
MLP and GRU, we obtain the spatiotemporal representation of
the hidden layer space, and then, we use the fully connected layer
to map the distributed feature representation into the sample
space of hidden vectors. Our work validates the new idea of
linear relationships in deep learning related to recent innovations
in deep learning architectures. Many popular neural network
architectures [44] [45] also advocate using linear links to reduce
exploding/vanishing gradients or check the relationship between
nodes. In connection, the linear relationship thinking in our
article is also in line with a broader topic in machine learning,
which attempts to identify the system’s underlying structure in
the form of behavioural control equations, which can reasonably
infer the invisible part of the space. This is also a strong trend in
recurrent networks. We use the NALU layer to reconstruct the
basic arithmetic logic of the hidden vectors in the sample space
to enhance the processing ability of the linear relationship of
the model. Neural networks began to pay attention to the linear
relationship between input data. Through the calculation of the
linear relationship, the long-term stay event is connected with
other stay events. At this time, the long stay incident was also
affected. It is considered a meaningful event and will not become
an abnormal situation ignored by the neural network.

Finally, to prevent overfitting, we use an MLP with a dropout
function to decode the hidden vector into the final prediction
value of the stay time.

A. Gated Recurrent Unit

A gated recurrent unit (GRU) is a variant of a recurrent
neural network (RNN). The unit introduces a gating mechanism
to avoid the vanishing gradient. It is simpler than other RNN
variants (such as LSTM). The output of the hidden layer ht of
the GRU is calculated as the following function:

rt = σ(Wirxt + bir +Whrh(t−1) + bhr) (3)

it = σ(Wiixt + bii +Whih(t−1) + bhi) (4)

nt = tanh(Winxt + bin + rt(Whnh(t−1) + bhn)) (5)

ht = (1 − it)nt + it ∗ ht−1 (6)

whereσ is a Sigmoid function, and rt, it andnt are the reset gate,
update gate and cell state, respectively. The role of reset gate rt
is to determine how much of the information in the previous cell
hidden state nt needs to be forgotten. The role of update gate it
is to determine how much information from the previous hidden
layer state is passed to the current hidden state ht. These gates
control the learning process of the neural unit and are formed
from a large amount of training data. However, the stay data
of private cars are obviously sparse, which makes it difficult to
learn a gate with good function. The adjacent stay behaviors will
affect one another. To avoid this influence, we randomly input
the spatiotemporal features into the model. We believe that the
temporal influence should be explicitly entered into the learning
of the gate mechanism, so we use the arrival time as one of the
inputs, as previously described.

B. Neural Arithmetic Logic Units

The generalization of neural networks has been the focus of
many researchers. In short, neural networks are more similar to
memories than to learning. The reason [13] why the network’s
behavior does not generally appear as systematic may be the
large number of nonlinear activation functions used in neural
networks. Inspired by the idea of enhancing the linear relation-
ship in neural networks, A. Trask et al. [13] proposed the neural
arithmetic logic unit (NALU), as shown in the Fig. 4.

A neural arithmetic logic unit uses two neural accumulator
units (purple circles) with bound weights to support basic arith-
metic functions, controlled by a gate (orange circles) as follows:

W = tanh(Ŵ)� σ(M̂) a = Wx (7)

m = expW(log(| x | +ε)) g = σ(Gx) (8)

y = g � a+ (1 − g)�m (9)

where W is guaranteed to be in the range [-1:1] and biased to
be close to -1, 0, and 1. m saves the results of running in log
space. g is a learned Sigmoidal gate to control basic arithmetic
function types. As mentioned earlier, there are a large number of
linear relationships between stay events. In the face of new small
changes, neural networks need to respond sensitively. NALUs
greatly improve the learning ability of the linear relationship
between the neural network and the extrapolation ability of the
prediction model.

C. Stay Time Prediction Model

As discussed in Section III, the travel information of private
cars is sparse, and stay time is unstable. An MLP and RNNs
can be used with travel information to capture spatiotemporal
characteristics. We leverage this insight in designing the en-
coder, which addresses the problem of spatiotemporal sparsity,
to extract spatiotemporal features. Our prediction model consists
of three key components—an encoder module, an exception
module, and MLP dropout—as shown in Fig. 3. The exception
module is based on the NALU layer, where we reconstruct the
basic arithmetic logic relationship of hidden state. MLP dropout
takes a hidden vector and outputs predicted stay time ŷi. This
module reduces the possibility of model overfitting by dropout.

1) Encoder: We already know that spatiotemporal informa-
tion is related to the stay time. To extract spatiotemporal features
from travel information, we first embed Si

TI using an MLP to
obtain a fixed-length hidden vector hi. Si

TI contains the user’s
arrival time (ti) and arrival location (loni, lati). As mentioned
earlier, we believe that the arrival time of the stay event and
different time intervals of adjacent stay events are highly related
to the change in stay time. We mitigate a certain time sparsity
effect by using a single input. The hidden vector hi contains
complete spatiotemporal information for trips. Recurrent neural
networks are often used in encoders and encode the input feature
into a fixed-length hidden vector, which contains most of the in-
formation in the feature. Recurrent neural networks can generate
similar probability distributions. The stay time is a space- and
time-varying process. We use some GRUs to capture spatiotem-
poral changes in hidden space, which can effectively accumulate
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Fig. 3. The architecture of the stay time prediction model. MLP: Multilayer perceptron, ELU: Exponential linear unit, GRU: Gated recurrent unit, FC: Fully
connected, and “

⊙
” denotes the elementwise product.

Fig. 4. An overview of neural arithmetic logic units. “
⊙

” denotes the

elementwise product of tanh(Ŵ) and σ(M̂). The NALU uses two neural
accumulators (NACs, two purple cells) with tied weights to enable arithmetic
functions, controlled by a gate (one orange cell).

spatiotemporal feature information. The hidden vectors are used
as input for the encoder module as follows:

hi = φ(loni, lati, ti :Wee) (10)

hnei = GRU(hn−1
ei , hi :WEncoder) (11)

where φ(·) is an embedding function with ELU nonlinearity,
Wee is the embedding weight, and WEncoder is the GRU cell
weight.

2) Exception Module: Private car trips have some similarities
in space and time. To handle the linear relationship between simi-
lar trips, we need to share information for all trips in the predicted
model. However, deep learning models face some difficulties in
dealing with linear relationships and are not very sensitive to
noise. Therefore, to reason on all trips, we design an exception
module. We pass the hidden vectorhnfi through a fully connected
layer for feature extraction. The NALU layer reconstructs the
hidden vector hnfi. As one of the basic structures of the exception
module, the NALU layer can handle linear relationships between
features, such as addition and multiplication, by reconstructing
basic arithmetic relationships.

The current approaches to modeling numeracy in neural
networks fall short because numerical representations fail to

generalize outside of the range observed during training. The
NALU structure can be applied to rectify these shortcomings
across a wide variety of domains, facilitating both numerical
representations and functions on numerical representations that
generalize outside of the range observed during training [13]. It
is noteworthy that the NALU layer is a separate unit. Without
changing the original model structure, the NALU layer is capable
of achieving good performance in regard to the sparseness
and instability of travel information and can effectively handle
exception events:

hnfi = ω(hnei) (12)

m = expW(log(| hnfi | +ε)) (13)

g = σ(Ghnfi) (14)

hdi = g � a+ (1 − g)�m (15)

where ε prevents log0. w is one of -1, 0, 1, and g is a learned
Sigmoidal gate. The NALU cell learns arithmetic functions
consisting of multiplication, addition, subtraction, division, and
power functions, which extrapolate to numbers outside of the
range observed during training.

3) MLP dropout: This part consists of an MLP dropout. We
decode the hidden state hdi by the MLP dropout. The predicted
value of the final output stay time ŷi is as follows:

ŷi = ψ(hdi :WMLP−dropout) (16)

where ψ(·) is an MLP with ELU nonlinearity, and
WMLP−dropout is the MLP dropout weight. The data imbalance
is obvious in this research. The main problem of data imbalance
is that the model will focus on the main situation, leading to
serious overfitting. We have adopted two methods in our model
to prevent overfitting. On the one hand, we set the weight
decay in the hyperparameters to adjust for the influence of
model complexity on the loss function. On the other hand, we
setup a dropout layer to abandon some of the parameters in the
model so that the model is not prone to overfitting. To solve
the overfitting problem, we use dropout in the final MLP. We
randomly delete a part of the neurons with a certain probability
during training. With each training, different networks produce
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Fig. 5. During the training process, the loss value changes with the number
of iterations.

different overfits. Some of the inverse fits cancel each other out
and reduce overfitting as a whole.

D. Implementation Details

We implement our prediction model with Pytorch. The MLP
of the encoder module is implemented by three fully connected
layers with 64, 256 and 512 neurons, respectively. The input
dim and output dim of the NALU is set to 512. The dropout
value of the MLP dropout is set to 0.2. For the whole model, the
parameters are initialized by default setting. The size of a mini-
batch is set to 64. The learning rate is set to 10−8. We optimize
our model in an end-to-end manner via Adam optimization [51]
by minimizing the MSE loss between the ground truth and the
predicted stay time.

V. EXPERIMENTS

Our previous works [6], [48], [52] have obtained a large
trajectory dataset of private cars. The data set we use contains the
trajectory information of more than 4000 users. However, in the
experimental part, we only used the data of one user for training
and testing. Most users’ stay events are about a thousand times.
In order to thoroughly study various features of stay events, we
selected users with more stay events to conduct research and
analysis. In this section, we use the trajectory data from January
2016 to August 2018. During this time, users had 5,141 effective
stay events. We randomly use 80% of effective stay events as
a training set and 20% of effective stay events as a test set. To
reduce the impact of data imbalance, we resample the training
dataset. The final training dataset contains 5,517 stay events, and
the test dataset contains 1,000 stay events.

Algorithm 2 presents the process of the prediction model
based on an RNN. First, we process the STI data from the
private car trajectory dataset, extract the effective stay events,
divide them into training data and test data, and then use the
RNN-based prediction model to predict stay time. The Fig. 5

Algorithm 2: Stay Time Prediction Model.
Input: STI retrieved from the private car trajectory
dataset

Output: The predicted value ŷi of the stay time
function Clean the dataset

Extract STI from the dataset
stay event detection
Separate data by User ID
Normalize the data of each user

end function
function Neural Networks based on an RNN

Split Data into Training Data and Test Data, and
change the shape of datasets

Resample Training Data
Initialize the prediction model
for i = 1 to EPOCHdo
hi =MLP (loni, lati, ti)
for n = 1 to Ndo
hnei = GRUcell(hn−1

ei , hi)
end for
hdi = ExceptionModule(hnei)
ŷi =MLPdropout(hdi)

end for
end function

shows that as the number of iterations increases, the Loss value
can always converge to close to zero.

A. Alternative Techniques

Linear regression (LR) is a statistical analysis method that
uses regression analysis in mathematical statistics to deter-
mine the quantitative relationships between two or more
variables.

Multilayer perceptron (MLP) is a feedforward artificial neural
network model that maps multiple datasets of an input to a single
output.

Support vector regression (SVR) [53] is a supervised learning
technique, maintaining all the main features that characterize
the algorithm. SVR perform well in time series and nonlinear
prediction.

Decision tree (DT) [10] is a predictive model that represents
a mapping relationship between object attributes and object
values.

Long short-term memory (LSTM) [54] is a type of recurrent
neural network. This network is generally used to predict time
series. To make a fair comparison with our proposed method,
we use a gridsearch method to find the best parameters of the
benchmark model. The maximum depth is set to 19, and the
minimum sample leaf is set to 3 in the DT. The C is set to 1, and
the gamma is set to 100 in SVR.

Graph Convolution Networks (GCN) [55] is a neural network
that operates on graph data and is currently one of the most
popular predictive models.

Hierarchical GCN (HGCN) [56]is a new type of graph neural
network used for prediction. It uses a micro-layer to capture
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the relationship between nodes and a macro-layer to capture the
relationship between regions.

B. Analysis of Results

To evaluate the performance of our predictive models, we
conduct quantitative studies based on four metrics: root mean
square error (RMSE), mean absolute error (MAE), symmetric
mean absolute percentage error (SMAPE) and mean absolute
percentage error (MAPE). The RMSE is used to measure the
deviation between the observed value and true value. The MAE
can better reflect the actual situation of the predicted value error.
The closer the RMSE and MSE are to 0, the closer the predicted
value is to the true value. Let yi and ŷi denote the ground truth
and prediction, respectively. The RMSE and MAE are calculated
as follows:

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)2 (17)

MAE =
1
n

n∑
i=1

|ŷi − yi| (18)

For the MAPE and SMAPE, to evaluate the relative error of the
predicted value ŷi and the ground truth value yi, the calculations
are shown below:

MAPE =
100%
n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (19)

SMAPE =
100%
n

n∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(20)

In addition, to measure the distribution difference between
the predicted value and the true value, we select the KL diver-
gence, which reflects the degree of difference between the two
probability distributions, for comparison. The KL divergence
represents the information loss caused by fitting the theoretical
distribution to the true distribution, which is given as follows:

DKL(p‖q) =
N∑
i=1

p(xi) log
p(xi)

q(xi)
(21)

where p(xi) is the ground truth distribution, and q(xi) is the
predicted distribution to match. If the two distributions exactly
match, then DKL(p‖q) is close to 0.

Table III presents the results in terms of the RMSE, MAE,
MAPE and SMAPE. It is obvious that the proposed method has
better performance than the comparison method. For example,
by using the proposed method, the percentage improvement
of the RMSE, MAE, MAPE and SMAPE are 0.1429, 0.1103,
55.8533%, and 47.3190%, respectively.

To verify the divergence between the predicted stay time
distribution and the true stay time distribution, we calculated the
KL divergence for different time periods. Our proposed model
performs better than other methods in terms of KL divergence,
except for the LR and LSTM methods in Table V. This shows
that the divergence between the predicted stay time of our
proposed method and the real stay time is smaller than that of
most comparison methods in probability distributions. Recurrent

TABLE III
PREDICTION MODEL PERFORMANCE

neural networks are often used in encoder modules. Recurrent
neural networks encode the input feature into a fixed-length
hidden vector, which contains most of the information of the
feature. By decoding this hidden vector, we can predict stay
time. A recurrent neural network is part of our model, as it can
show good results for KL divergence when it makes predictions
alone. This shows that recurrent neural networks can generate
similar probability distributions. We have also seen that the
linear regression model also performs well on KL divergence.
This verifies that the previously mentioned stay event contains
some linear relationships.

The results in Table IV and Table VI show that the proposed
method is better than other methods in predicting different
stay times. We observed that the LSTM model, LR model and
SVR model performed close to our method with stay time of
15-30 minutes. The reason is that the extrapolation ability of
these methods is worse than that of our model, resulting in the
predicted data being concentrated in a small range. We apply
the NALU layer in the proposed method, which effectively
addresses some abnormal stay situations. For example, when
a commonly used stay place is unavailable, the user may change
the stay time due to a nearby stay point.

In the short-term stay time prediction, The comparison
method is close to the effect of our model, but our model is still
better than theirs. Firstly, short-term stay events are the most fre-
quent. In the comparison methods, such as comparison method,
some long stay times are rare abnormalities and are not sensitive
to these abnormal samples, accordingly, these methods ignore
the long stay time and focus on the short stay time. Comparison
methods tend to get a locally optimal prediction value, on this
basis, to meet the pre-set prediction performance requirements.
Under normal circumstances, this locally optimal prediction
value will fall within the short stay time with the enormous
sample data volume, so in the case of short dwell time prediction,
our method is not much different from the comparison method.
Secondly, the Spatio-temporal features mentioned in the article
cannot fully represent the stay time in a shorter stay time. Many
other factors also affect the stay time, so the ability to extrapolate
only using temporal and spatial features is limited. On the other
hand, for long-term stay time prediction, multi-layer perceptron
in the decoder structure encodes the input features. At this time,
the encoded feature space forms a hyperplane between different
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TABLE IV
PERFORMANCE COMPARISON IN DIFFERENT SCENARIOS

TABLE V
KL DIVERGENCE

TABLE VI
SMPAE

classes. Since we reconstructed the basic arithmetic and logical
relationship in the abnormal module, the neural network began
to pay attention to the linear relationship between the input data.
Through the calculation of the linear relationship, the long-term
stay event was connected with other stay events. At this time,
the long-term stay event was also affected. It is considered a
meaningful event and will not become an abnormal situation
ignored by the neural network.

In the case of more than 30 min, our method is significantly
better than the comparison method. Because of the sparseness
of the stay behavior, there are some differences between the stay
behavior in the test dataset and that in the training dataset. The
NALU structure greatly improves the extrapolation ability of
our model, so our model has better predictive ability for staying
behavior that has not appeared in the training dataset.

VI. CONCLUSION

In this paper, we introduce an interesting task to explore
human travel behavior, which aims at predicting the stay time
of private cars. We propose a prediction model for short-term
private car stay time based on an RNN and use a large-scale

real-world private car trajectory dataset for verification. As
described in Section III, we believe that behaviors such as private
car stay have strong randomness and sparseness. Therefore, we
introduce an exception module to deal with such problems and
comprehensively consider all the travel information of users. The
experimental results show that our prediction model achieves an
RMSE of 0.1429, an MAE of 0.1103, an SMAPE of 47.3190%
and an MAPE of 55.8533%. Moreover, it is superior to other
methods in four different stay time prediction tasks. In addition,
we explore the utility of the predicted values. The KL divergence
is the closest to the true values. We proved a linear relationship
problem that cannot be ignored in the stay time prediction
problem. Although the basic network structure provides a solid
nonlinear fitting ability, it is challenging to learn the linear
relationship in the stay time feature. In particular, we have added
basic arithmetic logic units to the network framework to find
linear relationships. By reconstructing the basic arithmetic and
logical relations of the network, we have improved the ability of
the neural network to handle linear relations and the extrapola-
tion ability of the neural network. Our method can remember the
number patterns seen in the training set very well and infer this
representation reasonably. Our neural network can also respond
quickly to tilting the numerical representation beyond the range
of numbers seen in the training data.

How private car stay events reflect human mobility remains
an open question. The behavioral characteristics of hundreds of
millions of vehicles in the world can provide a new perspective
for social networks. In future work, we will devote our efforts
to exploring the relationship between private car stay events and
contextual information and further studying the impact of private
car stay events on the transportation network. Additionally, we
will collect easy-to-obtain external information (such as that
on weather and regional traffic flow) and add to our prediction
model to further enhance the prediction accuracy of private car
stay time. It is expected that such predictive models will promote
the development of intelligent transportation systems.
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