Skip to content
Paper

Modeling the Competing Demands of Carriers, Building Managers, and Urban Planners to Identify Balanced Solutions for Allocating Building and Parking Resources

 
Download PDF  (5.20 MB)
Publication: Transportation Research Interdisciplinary Perspectives
Volume: 15
Publication Date: 2022
Summary:

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between supply and demand, preventing the current resources from meeting the future needs of urban freight activities.

This study aimed to discover the future delivery rates that would overflow the current delivery systems and find the optimal number of resources. To achieve this objective, we introduced a multi-objective, simulation-based optimization model to define the complex freight delivery cost relationships among delivery workers, building managers, and city planners, based on the real-world observations of the final 50 feet of urban freight activities at an office building in downtown Seattle, Washington, U.S.A.

Our discrete-event simulation model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and parking resources. The optimal numbers of resources that would minimize the costs for all three parties were then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary algorithm based on decomposition (MOEA/D).

Our study sheds new light on a data-driven approach for determining the best combination of resources that would help the three entities work as a team to better prepare for the future demand for urban goods deliveries.

Authors: Haena KimDr. Anne Goodchild, Linda Boyle
Recommended Citation:
Kim, H., Goodchild, A., & Boyle, L. N. (2022). Modeling The Competing Demands Of Carriers, Building Managers, And Urban Planners To Identify Balanced Solutions For Allocating Building And Parking Resources. In Transportation Research Interdisciplinary Perspectives (Vol. 15, p. 100656). Elsevier BV. https://doi.org/10.1016/j.trip.2022.100656
Technical Report

Urban Goods Delivery Toolkit

Publication Date: 2020
Summary:

This Toolkit is designed to help transportation professionals and researchers gather key data needed to make the Final 50 Feet segment function as efficiently as possible, reducing both the time trucks park in load/unload spaces and the number of failed first delivery attempts.

In addition, the toolkit can help transportation planners, traffic engineers, freight system managers, parking and operations strategists, and researchers build a fundamental knowledge base for planning; managing parking operations; managing emergency management and response; updating traffic, land use and building codes; and modeling future scenarios and needs.

In short, the toolkit can be used to help cities meet the ever-increasing demand for trucks and other load/unload activities.

Recommended Citation:
Urban Freight Lab. (2020) Urban Goods Delivery Toolkit. https://depts.washington.edu/toolkit
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.
Technical Report

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

 
Download PDF  (3.07 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Publication Date: 2019
Summary:

This report presents a pilot test of a common carrier smart locker system — a promising strategy to reduce truck trip and failed first delivery attempts in urban buildings. The Urban Freight Lab tested this system in the 62-story Seattle Municipal Tower skyscraper in downtown Seattle.

The Urban Freight Lab identified two promising strategies for the pilot test: (1) Locker system: smaller- to medium-sized deliveries can be placed into a locker that was temporarily installed during the pilot test; and (2) Grouped-tenant-floor-drop-off-points for medium-sized items if the locker was too small or full (4-6 floor groups set up by Seattle Department of Transportation and Seattle City Light).

Users picked up their goods at the designated drop-off points. Flyers with information on drop-off-points were given to the carriers. UFL researchers evaluated the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by (1) Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and (2) Comparing them to the pilot test goals.

Recommended Citation:
Goodchild, A., Kim, H., & Ivanov, B. Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy. (2019)
Paper

A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes

 
Download PDF  (5.65 MB)
Publication: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume: 62
Pages: 1808-1812
Publication Date: 2018
Summary:

Delivery options have become very diverse with online shoppers demanding faster delivery options (e.g, 2-day delivery, same day delivery options) and more personalized services. For this reason, transportation planners, retailers, and delivery companies are seeking ways to better understand how best to deliver goods and services in urban areas while minimizing disruption to traffic, parking, and building operations. This includes understanding vertical and horizontal goods movements within urban areas.

The goal of this project is to capture the delivery processes within urban buildings in order to minimize these disruptions. This is achieved using a systems approach to understanding the flow of activities and workers as they deliver goods within urban buildings. A mobile application was designed to collect the start and stop times for each task within the delivery process for 31 carriers as they deliver goods within a 62-story office building.

The process flow map helped identify bottlenecks and areas for improvements in the final segment of the delivery operations: the final 50 feet. It also highlighted consistent tasks conducted by all carriers as well as differences with given carrier type. This information is useful to help decision-makers plan appropriately for the design of future cities that encompass a variety of delivery processes.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. (2018) "A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes." In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 1808–1812. https://doi.org/10.1177/1541931218621410
Report

The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower

 
Download PDF  (1.59 MB)
Publication Date: 2018
Summary:

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: Common Carrier Locker Systems that create parcel delivery density and provide secure delivery locations in public spaces.

Common carrier locker systems are an innovative strategy because they may be used by any retailer, carrier, and goods purchaser, and placed on public property.  This contrasts with branded lockers such as those operated by Amazon, UPS, and FedEx that are limited to one retailer’s or one carrier’s use. Common carrier lockers use existing smart locker technology to provide security and convenience to users.

The Common Carrier Locker System Pilot Test in the Seattle Municipal Tower was uniquely designed for multiple retailers’ and delivery firms’ use in a public space. In spring 2018, a common carrier locker system was placed in the 62-floor Seattle Municipal Tower for ten days as part of a joint research project of the Urban Freight Lab (UFL) at the University of Washington’s Supply Chain Transportation & Logistics Center and the Seattle Department of Transportation (SDOT), with additional funding from the Pacific Northwest Transportation Consortium (PacTrans).

This report demonstrates common carrier lockers’ potential to reach both public and private goals by reducing dwell time (the time a truck is parked in a load/unload space in the city) and the number of failed first delivery attempts to dense urban areas. This research provides evidence that delivering multiple packages to a single location such as a locker, rather than delivering packages one-by-one to individual tenants in an urban tower increases the productivity of public and private truck load/unload spaces.

The concept for this empirical pilot test draws on prior UFL-conducted research on the Final 50 Feet of the urban goods delivery system. The Final 50 Feet is the term for the last segment of the supply chain. It begins when a truck parks in a load/unload space, continues as drivers maneuver goods along sidewalks and into urban towers to make the final delivery, and ends where the customer takes receipt of the goods.

The UFL’s 2017 research documented that of the 20 total minutes delivery drivers spent on average in the Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors.  The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which translates into a substantial reduction in truck dwell time.

Recommended Citation:
Urban Freight Lab (2018). The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower.
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

Background

We are living at the convergence of the rise of e-commerce and fast growing cities. Surging growth in U.S. online sales has averaged more than 15% year-over-year since 2010. Total e-commerce sales for 2016 were estimated at $394.9 billion, an increase of 15.1 percent from 2015. This is a huge gain when compared to total retail sales in 2016, which only increased 2.9 percent from 2015. E-commerce sales in 2016 accounted for 8.1 percent of total sales, while accounting for 7.3 percent of total sales in 2015.

This is causing tremendous pressure on local governments to rethink the way they manage street curb parking and alley operations for trucks and other delivery vehicles, and on building operators to plan for the influx of online goods. City managers and policy makers are grappling with high demand for scarce road, curb and sidewalk space, and multiple competing uses. But rapidly growing cities lack data-based evidence for the strategies they are considering to support e-commerce and business vitality, while managing limited parking in street space that is also needed for transit, pedestrians, cars, bikes and trucks.

The Final 50 Feet is the project’s shorthand designation for the last leg of the delivery process, which:

  • Begins when a truck stops at a city-owned Commercial Vehicle Load Zone or alley, or in a privately-owned freight bay or loading dock in a building;
  • May extend along sidewalks or through traffic lanes; and
  • Ends where the end customer takes receipt of delivery.

Research Project

The purpose of the research project is to pilot test a promising strategy to reduce the number of failed first delivery attempts in urban buildings. The test will take place in the Seattle Municipal Tower. It will serve as a case study for transportation and urban planning professionals seeking to reduce truck trips to urban buildings. Urban Freight Lab identified two promising strategies for the pilot test:

  • Locker system: smaller to medium sized deliveries can be placed into a locker which will be temporarily installed during our pilot test
  • Grouped-tenant-floor-drop-off-points for medium sized items if locker is too small or full (4-6 floor groups to be set up by SDOT and Seattle City Light)
  • People will come and pick up the goods at the designated drop off points
  • Flyers with information of drop-off-points will be given to the carriers

UFL will evaluate the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by:

  • Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and
  • Comparing them to the pilot test goals.
Report

The Final 50 Feet of the Urban Goods Delivery System (Executive Summary)

 
Download PDF  (1.91 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Two key goals have been identified early for the Final 50 Feet program:

  • Reducing truck time in a load/unload space in the city (“dwell time”)
  • Minimizing failed first package deliveries. About 8-10% of first delivery attempts in urban areas are unsuccessful, creating more return trips
Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System: Executive Summary.

The Final 50 Feet: Common Carrier Locker Pilot Test at Seattle Municipal Tower (Part of Task Order 2)

As part of the Final 50 Feet Research Program, the Urban Freight Lab engaged multiple partners and funding sources to successfully pilot test a common carrier locker system (open to all retail and multiple delivery firms) that created delivery density in the Seattle Municipal Tower.

The pilot tested the ability of new mini-distribution centers such as smart lockers to create delivery density and reduce the time delivery people have to spend in urban towers to complete the work. The Lab collected “before” and “after” data to evaluate the pilot’s premise: that when delivery trucks can pull into a load/unload space that’s close to a mini-distribution node with delivery density (lots of deliveries in one place), everyone benefits. Lab members UPS and the U.S. Postal Service participated in this pilot, so any package they delivered to the building went into the locker system. The pilot was open to the first 100 Municipal Tower tenants who signed up to use the lockers from March to April 2018.

This pilot reduced the average amount of time parcel delivery personnel spent doing their work in the 62-floor office tower by 78%, when compared with going floor-to-floor, door-to-door in the tower. It demonstrates the UFL’s unique capability to develop cross-functional business and city working partnerships, gain senior executives’ participation in research, and effectively manage innovative and complex projects that have a high level of uncertainty. This pilot provides evidence that the common carrier locker system strategy can achieve a significant reduction in delivery time.