Skip to content
Report

The Final 50 Feet of the Urban Goods Delivery System (Executive Summary)

 
Download PDF  (1.91 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Two key goals have been identified early for the Final 50 Feet program:

  • Reducing truck time in a load/unload space in the city (“dwell time”)
  • Minimizing failed first package deliveries. About 8-10% of first delivery attempts in urban areas are unsuccessful, creating more return trips
Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System: Executive Summary.

The Final 50 Feet: Common Carrier Locker Pilot Test at Seattle Municipal Tower (Part of Task Order 2)

As part of the Final 50 Feet Research Program, the Urban Freight Lab engaged multiple partners and funding sources to successfully pilot test a common carrier locker system (open to all retail and multiple delivery firms) that created delivery density in the Seattle Municipal Tower.

The pilot tested the ability of new mini-distribution centers such as smart lockers to create delivery density and reduce the time delivery people have to spend in urban towers to complete the work. The Lab collected “before” and “after” data to evaluate the pilot’s premise: that when delivery trucks can pull into a load/unload space that’s close to a mini-distribution node with delivery density (lots of deliveries in one place), everyone benefits. Lab members UPS and the U.S. Postal Service participated in this pilot, so any package they delivered to the building went into the locker system. The pilot was open to the first 100 Municipal Tower tenants who signed up to use the lockers from March to April 2018.

This pilot reduced the average amount of time parcel delivery personnel spent doing their work in the 62-floor office tower by 78%, when compared with going floor-to-floor, door-to-door in the tower. It demonstrates the UFL’s unique capability to develop cross-functional business and city working partnerships, gain senior executives’ participation in research, and effectively manage innovative and complex projects that have a high level of uncertainty. This pilot provides evidence that the common carrier locker system strategy can achieve a significant reduction in delivery time.

The Final 50 Feet of the Urban Goods Delivery System: Documenting Loading Bays, Demonstrating Parcel Lockers’ Proof of Concept & Tracking Curb Use in Seattle’s Interconnected Load/Unload Network (Task Order 2)

Part of the Final 50 Feet Research Program, this project contains: a curb occupancy study, a survey of First and Capitol Hill Loading Bays, a pilot test at Seattle Municipal Tower, and the development of a toolkit.

Private Loading Bays and Docks Inventory Study

Taken together with the Urban Freight Lab’s earlier private infrastructure inventory (Seattle Center City Alley Infrastructure Inventory and Occupancy Study 2018) in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Center City inventory of private loading/unloading infrastructure.

To the research team’s knowledge, Seattle is the first city to maintain a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way). This matters because these facilities are privately owned and managed, cities lack information about them—information critical to urban planning. The private infrastructure has been a missing piece of the urban freight management puzzle. The work in this report helps complete that puzzle and advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, such as Seattle.

Key Findings from Private Loading Bays and Docks Inventory

Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5.  The earlier inventory in Downtown Seattle, Uptown, and South Lake Union had proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill documented in this report. This finding is unsurprising. While all the inventoried neighborhoods are in the broad Center City area, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.

Researchers found that a trust relationship with the private sector is essential to reduce uncertainty in this type of work. UPS’ collaboration helped reduce uncertainty in the total inventory from 33% to less than 1%.

Curb Occupancy Study

This study gives the city on-the-ground data on the current use and operational capacity of the curb for commercial vehicles, documenting vehicle parking behavior in a three-by-three city block grid around each of five prototype Center City buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were intentionally chosen to deepen the city’s understanding of the Center City; they were part of UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the Final 50 Feet of the goods delivery system.

Significantly, this study captured the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs.) The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces. (Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.)

Key Findings from Curb Occupancy Study

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs and passenger vehicles are parking in CVLZs.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominantly office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

Seattle Municipal Tower Common Carrier Locker Pilot

The UFL’s 2017 research (The Final 50 Feet Urban Goods Delivery System Research Scan and Data Collection Project) documented that of the 20 total minutes delivery drivers spent on average in the 62-story Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors. The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which would translate into a substantial reduction in truck dwell time.

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: common carrier lockers that create parcel delivery density and provide secure delivery locations in public spaces. Parcel lockers are widely available secure, automated, self-service storage systems that are typically owned by a single retailer or delivery firm and placed inside private property. In contrast, common carrier lockers are open to multiple retailers and delivery carriers. This pilot, which placed a common carrier locker system in the 62-floor Seattle Municipal Tower for ten days in spring 2018, was intentionally carried out in a public space.

Key Findings from Seattle Municipal Tower Common Carrier Locker Pilot

The common carrier locker both reduced total delivery time by 78% when compared to traditional floor-to-floor, door-to-door delivery method and cut the number of failed first parcel deliveries to zero.

Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Presentation

Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation

 
Download PDF  (0.09 MB)
Publication: U.S. House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials
Volume: 5-Dec-19
Publication Date: 2019
Summary:

Written Testimony of
Anne Goodchild
Professor in Civil and Environmental Engineering
Director of the Supply Chain Transportation and Logistics Center
University of Washington

Joint Hearing on:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation”
before the United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials.

December 5, 2019

Good morning, Chairs Norton and Lipinski and Ranking Members Davis and Crawford as well as distinguished Members of the Committee. Thank you for the opportunity to speak to you about this important topic. My name is Anne Goodchild and I am a professor and the Director of the Supply Chain Transportation and Logistics Center at the University of Washington. I am an urban freight expert.  The freight system, ultimately, allows for economic specialization; it supports city living, provides markets to producers, and strengthens competition.  On its own, the transportation and logistics sector represents approximately 10% of the US gross domestic product – a larger sector than either retail, or financial services.  The freight system is more than interstates, ports, pipelines and rail facilities.  The freight system is city streets, local highways, sidewalks, bike lanes, and front steps – the last mile of where these supply chains is carried out. It is the delivery man walking to your door or mailbox.  When we talk about freight infrastructure investment and building a better freight system, we must remember to include the last mile and particularly the Final Fifty Feet to the final delivery destination.  Without completing this final step, supply chains fail to deliver the economic and social benefits they promise.

Last mile costs businesses a disproportionate amount of time and money

The last mile is essential, and expensive; the most difficult and costly mile of all.  While estimates vary, the cost of the last mile has been estimated at between 25% and 50% of total supply chain transportation costs.

The last mile is costly because:

  1. It relies more on human labor than the other segments of supply chain transportation with drivers going door-to-door to drop off packages.  In cities, drivers can spend 80 or 90% of their time outside the vehicle
  2. Goods are more fragmented the farther you travel down the supply chain.  Upstream, goods are moved in large, consolidated shipments such as single commodities but the closer goods get to the consumer the more they are broken down into shipments for individual customers
  3. 80% of Americans live in congested regions  where travel speeds are slower and less reliable.  This increases the number of vehicles and drivers required to do the same work
  4. There can be high rates of failed deliveries requiring repeated delivery attempts and resulting in ballooning costs. Failed delivery attempts can mean that two or three additional trips are require to accomplish the same task.

While the high cost of the last mile is in part due to the distributed nature of deliveries, the cost is inflated by congestion, a lack of reasonable parking options, and other constraints put on commercial vehicle operations such as specific street or time of day bans.

Online shopping growing and speeding

Online shopping rates are growing and this is increasing demand for last mile delivery.  UPS, the world’s largest package delivery company, experienced 23% revenue growth from 2014 to 2018 (5.5% annually ).  With one-click shopping and free home delivery it is now often cheaper and easier to order something online than it is to go to the store.  Retail e-commerce sales as a percent of total retail sales in United States rose to 9% in 2017 and this figure is expected to reach 12.4% in 2020.  With store-based shopping, most Americans use their personal vehicles for shopping trips; driving to the store alone, purchasing a few items, and returning home in their car.  With an online purchase, the trip – now a delivery – is made with a commercial vehicle, extending the supply chain from the store or warehouse and bringing increasing numbers of commercial vehicles into towns and neighborhoods.  The volume of daily deliveries to homes has soared – from fewer than 360,000 a day in New York City in 2009 to more than 1.5 million today .  Households now receive more deliveries than businesses; and this, with online retail representing only 10% of all retail.  Imagine how many more trips there will be when online retail hits 20% or 50%.

In addition to growth in the number of deliveries, the pace of delivery of speeding.  Amazon, which currently holds about a 50% share of the online market in the US has, in the last 3 years, halved their average click-to-door speed from about 6 days to about 3 days .  Other retailers are attempting to keep pace.  Just this week I received an email from Amazon notifying me that Amazon Fresh would now deliver at “ultrafast speeds” in my area: “You can schedule same-day deliveries from 6:00am – 10:00pm and get FREE 2-hour scheduled delivery windows on orders over $35”.  Free two-hour delivery.  This was not in response to a request, rather this is being rolled out to all Prime members.  Depending on your location, you can also get 1-hour delivery for a small additional fee.  This is also available in DC and Northern VA.  There has also been a proliferation of on-demand delivery services, particularly in the food delivery sector, where online platforms now serve close to 30% of the market.

The US leads the world in online shopping activity and speed of delivery .  Supply chains have spent decades investing in technology and building the information systems required to deliver on home delivery and service promises.  More recently, venture capital has also invested in transportation and logistics, with PitchBook reporting $14.4 billion invested globally in privately owned freight, logistics, shipping, trucking, transportation management system (TMS), and supply chain tracking startups since 2013 . Not only do these changes affect transportation and logistics companies, but these changes affect peripheral sectors as companies reorganize their operations to service these new demands.

As customers are offered, and accept, shorter and shorter click-to-delivery times, delivery companies have less opportunity to make consolidated, efficient deliveries.  Instead of waiting for more orders and sending out full trucks, vehicles are sent out to meet their quick delivery promise; reducing vehicle utilization.  This increases the number of vehicles on the road, increases the cost per delivery, and increases vehicle emissions.

Significant impact on cities

It is the roads and sidewalks built by American cities and towns that enable this last mile delivery. In Seattle, 87% of buildings in greater downtown rely solely on the curb for freight access.  These buildings have no off-street parking or loading bays.

Our cities were not built to handle the nature and volume of current freight activity and are struggling to accommodate growth .  At the same time, delivery of goods is just one of the many functions of our transportation networks.  The same roads and sidewalks are also used by pedestrians, cyclists, emergency vehicles, taxis, ride hailing services, buses, restaurants, and street vendors, to name a few.

Capacity on our transportation networks is increasingly scarce.  Texas Transportation Institute’s 2019 Urban Mobility Report, a summary of congestion in America, is titled “Traffic is Bad and Getting Worse”.  Over the past 10 years, the total cost of delay in our nation’s top urban areas has grown by nearly 47%.  It is on top of this already congested network, that we add this growing last mile traffic. American cities have yet to make any headway with congestion, and delivery traffic both adds to, and suffers from, this condition.

To address congestion, many state Departments of Transportation are working to provide safe and competitive alternatives to single occupancy vehicle travel such as transit, bicycling, and walking. Other federal agencies are also working on addressing this issue, such as the Department of Energy, which has awarded UW and Seattle an EERE grant.  In building dedicated bicycle facilities, one common solution is to convert the curb lane to a bike lane, removing commercial vehicle load and unload space.  At the same time, American’s are increasingly using ride-hailing services such as Uber and Lyft .  This also increases the demand for curb space as passengers request pickup and drop-off instead of parking their own vehicle off-street.

The result is too much demand for too little space, and there is ample evidence of a poorly functioning system.  From a study in Seattle, 52% of vehicles parked in commercial vehicle load zones were passenger cars, and 26% of all commercial vehicles parked in passenger load zones.  In New York City, UPS and Fedex received 471,000 parking violations in 2018.  Everyone has seen an image of a truck parked in a bike lane, or been stuck behind a delivery truck occupying an entire residential street.  While we might expect a small percentage of violations, these levels reflect a failure of planning and design to deliver reasonable alternatives to commercial vehicles, and a city that has not caught-up with the changes in supply chain and shopping patterns.

In addition to these operational challenges, commercial vehicles have impacts on American’s health and safety.  Per mile, trucks produce disproportionately more carbon dioxide and local pollutants (NOx, PM) than passenger vehicles so a substitution of delivery trucks for passenger vehicles has the potential to increase emissions.  However, delivery services also present an opportunity to reduce emissions per package as they can consolidate many packages into one vehicle; the same way transit or carpooling can be an emissions advantage over single occupancy vehicle trips.  Research shows that in most cases a well-run delivery service would provide a carbon dioxide reduction over typical car-based shopping behavior.  While there is the opportunity for delivery services to provide this emissions benefit, the move towards very fast delivery erodes that benefit as delivery services are unable to achieve the same level of consolidation and begin to look more like butler services.

Diesel powered vehicles, often used for the movement of freight, produce disproportionately more particular matter and NOx pollution than gasoline engines, so the use of these vehicles in urban areas, where human exposure levels are higher, has significant negative outcomes for human populations in terms of asthma and heart disease.  This is particularly true for the very young, elderly, or immunosuppressed.

While it may seem intuitive that replacing a car trip to the store with a truck delivery would be bad for the city, in fact, delivery services can reduce carbon emissions and total vehicle miles travelled.  This is because the truck is not just delivering to one home, but to many.  In this sense, the truck delivery behaves like a transit vehicle or very large carpool.  This can reduce congestion by reducing the number of vehicles on the road.  Delivery trucks can be an asset when performing in this efficient manner because they consolidate many goods into a single vehicle reducing per package cost, emissions, and congestion impacts.

Banning trucks and requiring or encouraging the use of smaller vehicles INCREASES the number of vehicles and the vehicle miles travelled; exacerbating traffic and parking problems.

Growth in two and one-hour delivery INCREASES the number of vehicles and vehicle miles travelled; exacerbating traffic and parking problems.

The Urban Freight Lab as a Public and Private Sector Collaboration

Businesses are challenged by the high cost of the last mile, and the increasing time pressure for deliveries.  Cities are working to manage congestion, the competing demands of many users, emissions, and intense pressure for curb space.  This presents a complex set of problems, where:

  • private carriers are struggling to comply with city regulations and remain financially competitive while meeting customer expectations
  • customers are benefiting from high levels of convenience but also experiencing high levels of congestion and suffering from the effects of growing emissions
  • cities and towns are struggling to meet demands of multiple stakeholders and enforce existing rules

All of this, in a context where there are very limited data regarding truck or commercial vehicle activity, numbers of deliveries, or other measures of efficiency.  The Freight Analysis Framework , which compiles the nation’s most significant freight datasets such as the Commodity Flow Survey, breaks the country into 153 zones, so that most states can only see what came into or out of the state, not how vehicles move around within cities and towns.  The more recently developed National Performance Management Research Data Set (NPMRDS) , presents truck specific data, and allows for highway speeds to be monitored at a county level, but does not show vehicle volumes, or give any insights into origin-destination patterns.  At the national level, mode-specific datasets provide more spatial, temporal, and activity detail.   For example, the Carload Waybill sample  provides important data on rail cargo movements and the Air Operators Utilization Reports  provide important data on airplane activity.  Unfortunately, the Vehicle Inventory and Use Survey, which provided detailed data on truck and goods movements, was discontinued in 2002.  This leaves cities and towns have no nationally consistent sources of or guidelines for collecting truck activity data.

The most economically efficient solutions to these challenges will be identified through collaboration between cities and private partners.  One particularly successful and innovative solution can be found in the Urban Freight Lab at the University of Washington (https://urbanfreightlab.com/urban-freight-lab-0).  As the director of the Urban Freight Lab, I have built a coalition of private companies and public agencies who work together to identify and measure problems, and develop and pilot-test solutions that will provide benefits for a diverse group of public and the private sector stakeholders.  The goal is to find win-win solutions for businesses and city dwellers, and to avoid short-sighted solutions like blanket truck bans.

The Urban Freight Lab is successful because:

  • All participants have skin in the game.  Private sector contributions elevate public sector research funding and ensure that all participants fully engage.  This is fundamentally different from an advisory board or oversight committee because members must report back to their leadership and justify participation with measurable returns on investment.  This participation from the private sector improves relevance and timeliness of public sector support.
  • Collaboration amongst the private and public sector ensures that products of the lab are as mutually beneficial as possible.
  • Problems, evaluation metrics, and research ideas come from the group and are connected directly to real-world challenges faced, not the research directors, the public, or private sector alone.
  • Private- and public-sector participants are senior executives who have the authority to make decisions in quarterly meetings.  They do not need to return to the organization for approval.
  • Cities need freight planning capacity but currently don’t have any.  The work of the Urban Freight Lab fills gaps in problem definition, data collection, solution generation, orchestration and evaluation of pilot tests.
  • Robust analysis is conducted by University researchers – they serve an important role in taking an unbiased view and base their analysis on data.
  • Quarterly meetings are working meetings with detailed agendas and exit criteria.  The focus is on making progress, making decisions, and moving forward, not simply information sharing.
  • Private sector partners are operational and technical staff with knowledge of operations.
  • Public sector partners represent a breadth of functions including planning, engineering, curb management, mobility, and innovation.
  • University research focusses on practical outcomes and does not hide in theoretical concepts.
  • Solutions are tested on the ground through pilots and real tests.  The slow work of collaboration building and overcoming obstacles to implementation is part of the research.

Current private-sector lab members include Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno Realty Corporation, US Pack, UPS, and  the United States Postal Service (USPS).  The Seattle Department of Transportation represents the public-sector.

Seattle is a growing City and has now been ranked in the top 4 for growth among major cities for five consecutive years.  It is a geographically constrained city surrounded by water and mountains, and boasts some of the highest rates of bike, walk, and transit commuting in the country ; with less than a quarter of City Center commuters now driving alone to work. It is a technologically oriented City; with the region serving as the home to many technology companies such as Amazon, Convoy, Facebook, Google, Microsoft, and Tableau.  The City was one of the first to launch PayByPhone, electronic toll tags, weigh-In-motion, high-occupancy-toll lanes, passive bicycle counters, real-time transit monitoring, bike and car share programs, and most recently, an Open Data Portal .  In this sense, the City provides an excellent example for experimentation where the public and private sector face intense pressure to look for new solutions and approaches; and levels of congestion and pressure that other US Cities can anticipate in their future as populations grow and infrastructure construction does not keep pace.

With this private- and public-sector funding the Urban Freight Lab has:

  • produced foundational research on the Final Fifty Feet of the supply chain
    developed and applied approaches to quantify urban freight infrastructure
    developed and applied approaches to measure infrastructure
    generated and tested approaches to reducing dwell time and failed deliveries in urban areas including common lockers
    developed and implemented an approach to measuring the volume of vehicles entering and exiting the City of Seattle.

Ongoing work is supported in large part by a grant from the Department of Energy U.S. Department of Energy: Energy Efficiency & Renewable Energy (EERE) titled Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption.  This project, funded by DOE, provides $1.5 million over 3 years with matching funds from the City of Seattle, Sound Transit, King County Metro, Kroger, the City of Bellevue, and CBRE.  The project will evaluate the benefit of integrated technology applications on freight efficiency.  Within the scope of this grant, Urban Freight Lab members and the Seattle DOT will be involved in developing and testing applications of technology in the Belltown area of Seattle that will increase commercial efficiency and reduce impact of freight activity on city residents .

Moving Forward

Shopping patterns have evolved, but our infrastructure has not.  We need to rethink how we use our streets, curbs, and sidewalks if we want to maintain and grow our current shopping and delivery habits.

By consolidating many goods into a single route, delivery services could be an asset to communities; growing economic activity, reducing total vehicle miles travelled and associated carbon emissions, and supporting communities  less dependent on cars.  However, the current trend towards faster and faster deliveries; and businesses subsidizing delivery costs means we see lower vehicle utilization, higher numbers of vehicles and congestion, and increased emissions.

While some town and city governments have invested measuring the state of urban freight in their communities and developed improvements, most have limited resources and no guidance from the state or federal level.  For example, they do not know how many trucks operate in the region, what they carry, whether the current curb allocation is satisfactory, or what benefit might result from improvements.

New modes, technologies, and operational innovations provide opportunities for win-win solutions.  These new conditions may allow new modes such as electric assist cargo bikes  to outcompete existing modes. Electric and hybrid vehicles can reduce both global and local pollutants.  New technologies such as robotics, artificial intelligence, and electronic curbs may fundamentally shift the existing infrastructure paradigms.  Private companies are ready to test these innovations, and the US and state DOTs can play a role in supporting these tests and conducting evaluations.

Investments in the freight system must include the last mile, and in particular the final fifty feet of the delivery route as a consideration to ensure economic vitality and support quality of life.  This includes supporting towns and cities in investigating and understanding the current state of goods movement at the municipal scale, identifying and evaluating new solutions for cities and towns to adapt to changing supply chains, integrating freight planning and passenger planning, and ultimately providing healthy environments for businesses to thrive and great places to live.

Recommended Citation:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation." United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials (2019). (Anne Goodchild).
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov
Report

Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities

 
Download PDF  (1.27 MB)
Publication Date: 2023
Summary:

Freight load and unload facilities located off the public right-of-way are typically not documented in publicly available databases. Without detailed knowledge of these facilities, i.e. private freight load and unload infrastructure, cities are limited in their ability to complete system-wide freight planning and to comprehensively evaluate the total supply of load and unload spaces in the city. To address this challenge, this research describes the development and application of a data collection methodology and a typology of private freight load/unload facilities for their inventory and documentation in dense urban centers.

The tools developed in this research are practice-ready and can be implemented in other cities to support research, policy and planning approaches that aim to improve the urban freight system. Assessment of the degree of harmonization between the current delivery vehicle dimensions and infrastructure they service is a crucial step of any policy that addresses private freight load/unload infrastructures. This includes providing: the adequate access dimensions, capacity to accommodate the volume and vehicle type, and an effective connecting design between the facilities and the public right-of-way.

A case study in Downtown Seattle found more than 337 private freight facilities for loading/unloading of goods but that translates into only 5% of the buildings in the densest areas of the city had these facilities. Alleys were found to play a critical role since 36% of this freight infrastructure was accessed through alleys.

This research results in the first urban inventory of private freight load/unload infrastructure, which has been shown to be a valuable resource for the City of Seattle that can be used to better understand and plan for the urban freight system.

Recommended Citation:
Machado León, J., Girón-Valderrama, G., Goodchild, A., & McCormack, E. Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities (2023).
Paper

Providing Curb Availability Information to Delivery Drivers Reduces Cruising for Parking

 
Download PDF  (2.03 MB)
Publication: Scientific Reports
Volume: (2022) 12:19355
Publication Date: 2022
Summary:

Delivery vehicle drivers are experiencing increasing challenges in finding available curb space to park in urban areas, which increases instances of cruising for parking and parking in unauthorized spaces. Policies traditionally used to reduce cruising for parking for passenger vehicles, such as parking fees and congestion pricing, are not effective at changing delivery drivers’ travel and parking behaviors.

Intelligent parking systems that use real-time curb availability information to better route and park vehicles can reduce cruising for parking, but they have never been tested for delivery vehicle drivers.

This study tested whether providing real-time curb availability information to delivery drivers reduces the travel time and distance spent cruising for parking. A curb parking information system deployed in a study area in Seattle, Wash., displayed real-time curb availabilities on a mobile app called OpenPark. A controlled experiment assigned drivers’ deliveries in the study area with and without access to OpenPark.

The data collected showed that when curb availability information was provided to drivers, their cruising for parking time significantly decreased by 27.9 percent, and their cruising distance decreased by 12.4 percent. These results demonstrate the potential for implementing intelligent parking systems to improve the efficiency of urban logistics systems.

Recommended Citation:
Dalla Chiara, G., Krutein, K.F., Ranjbari, A. et al. Providing curb availability information to delivery drivers reduces cruising for parking. Sci Rep 12, 19355 (2022). https://doi.org/10.1038/s41598-022-23987-z
Paper

Modeling the Competing Demands of Carriers, Building Managers, and Urban Planners to Identify Balanced Solutions for Allocating Building and Parking Resources

 
Download PDF  (5.20 MB)
Publication: Transportation Research Interdisciplinary Perspectives
Volume: 15
Publication Date: 2022
Summary:

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between supply and demand, preventing the current resources from meeting the future needs of urban freight activities.

This study aimed to discover the future delivery rates that would overflow the current delivery systems and find the optimal number of resources. To achieve this objective, we introduced a multi-objective, simulation-based optimization model to define the complex freight delivery cost relationships among delivery workers, building managers, and city planners, based on the real-world observations of the final 50 feet of urban freight activities at an office building in downtown Seattle, Washington, U.S.A.

Our discrete-event simulation model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and parking resources. The optimal numbers of resources that would minimize the costs for all three parties were then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary algorithm based on decomposition (MOEA/D).

Our study sheds new light on a data-driven approach for determining the best combination of resources that would help the three entities work as a team to better prepare for the future demand for urban goods deliveries.

Authors: Haena KimDr. Anne Goodchild, Linda Boyle
Recommended Citation:
Kim, H., Goodchild, A., & Boyle, L. N. (2022). Modeling The Competing Demands Of Carriers, Building Managers, And Urban Planners To Identify Balanced Solutions For Allocating Building And Parking Resources. In Transportation Research Interdisciplinary Perspectives (Vol. 15, p. 100656). Elsevier BV. https://doi.org/10.1016/j.trip.2022.100656