Skip to content
Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
Article

The Freight of the West

 
Download PDF  (0.64 MB)
Publication: Thinking Cities
Volume: December 2017
Pages: 82-85
Publication Date: 2017
Summary:

More than 80 percent of Americans have purchased goods online and, in 2016, more than 8 percent of all retail sales in the U.S. took place online. The growth of ecommerce is putting increasing pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. It is also forcing building developers and managers to plan for the influx of online goods.

To develop practical solutions to these problems, in 2016 the University of Washington launched the Urban Freight Lab (UFL), a partnership between private and public industry stakeholders. The UFL provides a place for companies and public agencies to work together to develop and ground-test low-cost, promising solutions to deliver these goods while maintaining livability and economic vitality.

As part of this research effort, a three-year strategic research partnership with the City of Seattle Department of Transportation (SDOT) has been established to advance understanding of urban goods movement in support of the City’s goals for safe, predictable and efficient goods movement and economic vibrancy.

By entering into a long-term strategic partnership with the university and industry, SDOT demonstrated its interest in developing innovative solutions to achieve their policy goals. The city’s willingness to pilot test and potentially adopt solutions that provided both public and private good was essential in attracting private sector firms to engage fully in the work.

The Urban Freight Lab

In 2016, the Urban Freight Lab recruited founding industry members from Charlie’s Produce, Costco Wholesale, Nordstrom, UPS, and the United States Postal Service (USPS) to develop solutions to improve the way goods are delivered in the urban environment.

Private sector members of the Urban Freight Lab at the University of Washington, in partnership with SDOT, are using a systems engineering approach to solve delivery problems that overlap the spheres of control of the city and business sector.

The Lab has created a multi-year strategic research plan with principles and innovative approaches to produce evidence-based improvement strategies.

The role of the Urban Freight Lab is to be a living laboratory where potential solutions are generated, evaluated, and then pilot-tested on real city streets. Members provide clear and open input as to whether proposed solutions are sustainable in their and other firms’ business models.

The Final 50 Feet

The Urban Freight Lab and its members have defined and focused on the Final 50 Feet; the urban supply chain segment that begins where delivery vehicles park at the curb, alley or in a building’s freight parking space. It tracks the delivery process inside buildings and ends at the receipt of goods by the receiver. The Final 50 Feet concept represents the first time that the Lab have identified the importance of analyzing deliveries moving along the street grid and in cities’ vertical space (office, hotel, retail and residential towers) as a unified goods delivery system.

Development of the Final 50 Feet concept is the necessary first step in defining rigorous, goal-oriented improvement teams that can take coordinated action to reduce truck trips, delivery delays, cost, emissions, and improve delivery service to tenants and consumers. It provides them with the ability to analyze and improve the process flows meaningfully from the beginning-to-end of the last piece of the urban goods system.

The Urban Freight Lab members and SDOT have identified two priority goals, with both public and private benefits, for the 2017-2020 research partnership:

  1. Reduce the number of failed first delivery attempts. The failed first delivery can be as high as 15 percent. Benefits of reducing failed first deliveries include:
    • Improve urban online shoppers’ experiences and protect retailers’ brands;
    • Cut business costs for the retail sector and logistics firms;
    • Lower traffic congestion in cities, as delivery trucks could make up to 15 percent fewer trips while still completing the same number of deliveries.
  2. Reduce dwell time. The time a truck is parked in a load/ unload space. There are both public and private benefits to reaching this goal, including:
    • Lower costs for delivery firms, and therefore potentially lower costs for their customers;
    • Better utilization of public and private truck load/unload spaces;
    • Less congestion, as spaces turn over more quickly.

Overview of the Innovative Approaches Taken to Identify and Quantitatively Assess the Final 50 Feet of the Urban Goods Delivery System

Building the first comprehensive database of urban off-street infrastructure for delivery and pick-up operations

The urban goods delivery system includes both public and private facilities. While on-street parking facilities are well documented in Seattle’s databases, facilities out of the public right of way (i.e. privately held) are not. SCTL research assistants, developed a ground-truthed data collection method to build a comprehensive database inventory, capturing geospatial locations and documenting the visible features of all private freight parking infrastructure in five urban centers in the Seattle area.

For this task, the team collaborated with one of the private carrier members of the Urban Freight Lab to further improve the accuracy of the data collection method. Carrier drivers with deep knowledge of city routes and infrastructure, review the closed door locations.

This review allowed the Lab to rule out 98 percent (206) of the locations behind closed doors, reducing uncertainty in the final database from 38 percent to less than 1 percent.

Researchers found that 87 percent of buildings in the City’s dense urban centers are completely reliant on nearby public commercial vehicle load zones (CVLZs) and alley truck load/unload spaces to receive goods deliveries. These buildings do not have underground or adjacent freight bays on their property.

Building a delivery process flow for delivery inside the building environment

The Lab created detailed process flow maps of the Final 50’ in and around five prototype city buildings in Seattle, Washington.

The team collected original data by following delivery persons from the buildings’ freight bays or nearby commercial vehicle zones (CVLZs) into each of the buildings, until delivery was completed or the return to the truck when there was a failed delivery. The Lab designed and built an application for collectors to enter the precise time that the delivery people began and ended each process step. The team then collected data for up to a week in peak delivery periods for each building. They analyzed the range and average of delay in the process steps to understand where improvement strategies will have the most significant ability to achieve project goals (13). Based on this analysis, the Lab found that the greatest opportunities to reduce the number of failed first deliveries and dwell time in truck load/unload spaces are inside buildings when delivery persons:

  • Interact with security personnel; and
  • Attempt to locate tenants.

In the next phase of the Final 50 Feet project, the Urban Freight Lab and SDOT will pilot test promising improvement strategies in and on the streets around the Seattle Municipal Tower over four weeks.

Benefits

Final 50’ project findings will be used to provide decision support to city officials and private-sector firms managing scarce resources. By applying systems engineering and evidence-based planning, we can make receiving online goods as efficient as ordering them – without clogging city streets and curb space.

We have received requests from many other cities, including Washington, D.C., to share results and lessons learned during the Freight Master Plan development process and early actions coming out of this three-year program. Seattle is committed to being a leader in urban goods policy and problem-solving and keeping our economy thriving.

According to City of Seattle officials Mr. Christopher Eaves and Ms. Jude Willcher, “Seattle is one fastest growing cities in the country. The Seattle Department of Transportation is committed meeting the urban goods delivery challenges facing most big cities in the U.S. We know that issuing parking tickets to companies who are simply trying to meet the daily delivery needs of residents and businesses isn’t the right solution. So, our goal is to identify and implement scalable strategies that improve deliveries at existing building, as well as initiate strategic research to mine new data to improve and inform new construction designs that support freight and delivery in the city. And we are incredibly grateful to have found a strong and innovative partner in the UW Freight Lab and SCTL”.

Recommended Citation:
Urban Freight Lab. “The freight of the West” Thinking Cities Magazine, December 2017, 82-85
Article

More Online Shopping Means More Delivery Trucks. Are Cities Ready?

 
Download PDF  (2.46 MB)
Publication: The Conversation
Publication Date: 2016
Summary:

Two converging trends — the rise of e-commerce and urban population growth — are creating big challenges for cities. Online shoppers are learning to expect the urban freight delivery system to bring them whatever they want, wherever they want it, within one to two hours. That’s especially true during the holidays, as shipping companies hustle to deliver gift orders on time.

City managers and policymakers were already grappling with high demand and competing uses for scarce road, curb, and sidewalk space. If cities do not act quickly to revamp the way they manage increasing numbers of commercial vehicles unloading goods in streets and alleys and into buildings, they will drown in a sea of double-parked trucks.

The University of Washington has formed a new Urban Freight Lab to solve delivery system problems that cities and the business sector cannot handle on their own. Funders of this long-term strategic research partnership include the City of Seattle Department of Transportation (SDOT) and five founding corporate members: Costco, FedEx, Nordstrom, UPS, and the U.S. Postal Service.

The core problem facing cities is that they are trying to manage their part of a sophisticated data-powered 21st-century delivery system with tools designed for the 1800s — and they are often trying to do it alone. Consumers can order groceries, clothes, and electronics with a click, but most cities only have a stripe of colored paint to manage truck parking at the curb. The Urban Freight Lab brings building managers, retailers, logistics and tech firms, and city government together to do applied research and develop advanced solutions.

Moving more goods, more quickly

We have reached the point where millions of people who live and work in cities purchase more than half of their goods online. This trend is putting tremendous pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. It also forces building operators to plan for the influx of online goods. A few years ago, building concierges may have received a few flower bouquets. Now many are sorting and storing groceries and other goods for hundreds of residents every week.

In the first quarter of 2016, almost 8 percent of total U.S. retail sales took place online. Surging growth in U.S. online sales has averaged more than 15 percent year-over-year since 2010. Black Friday web sales soared by 22 percent from 2015 to 2016.

Online shoppers’ expectations for service are also rising. Two out of three shoppers expect to be able to place an order as late as 5:00 p.m. for next-day delivery. Three out of five believe orders placed by noon should be delivered the same day, and one out of four believe orders placed by 4:00 p.m. or later should still be delivered on the same day.

City living and shopping is still all about location, location, location. People are attracted to urban neighborhoods because they prefer to walk more and drive less. Respondents in the 2015 National Multifamily Housing Council-Kingsley Apartment Resident Preferences Survey preferred walking to grocery stores and restaurants rather than driving by seven points. But this lifestyle requires merchants to deliver goods to customers’ homes, office buildings or stores close to where they live.

Smarter delivery systems

SDOT recently published Seattle’s first draft Freight Master Plan, which includes high-level strategies to improve the urban goods delivery system. But before city managers act, they need evidence to prove which concepts will deliver results.

To lay the groundwork for our research, an SCTL team led by Dr. Ed McCormack and graduate students Jose Machado Leon and Gabriela Giron surveyed 523 blocks of Seattle’s downtown (including Belltown, the commercial core, Pioneer Square and International District), South Lake Union and Uptown urban centers in the fall of 2016. They compiled GIS coordinates and infrastructure characteristics for all observable freight loading bays within buildings. Our next step is to combine this information with existing GIS layers of the city’s curbside commercial vehicle load zones and alleys to produce a complete map of Seattle’s urban delivery infrastructure.

In our first research project, the Urban Freight Lab is using data-based process improvement tools to purposefully manage both public and private operations of the Final-50-Feet space. The final 50 feet of the urban delivery system begins when a truck stops at a city-owned curb, commercial vehicle load zone or alley. It extends along sidewalks and through privately owned building freight bays, and may end in common areas within a building, such as the lobby.

One key issue is failed deliveries: Some city residents don’t receive their parcels due to theft or because they weren’t home to accept them. Could there be secure, common drop-off points for multiple carriers to use, attached to bus stops or on the sidewalk?

The most pressing issue is the lack of space for trucks to park and deliver goods downtown. It may be possible to use technology to get more use out of existing commercial vehicle load zones. For example, trucks might be able to use spaces now reserved exclusively for other uses during off-peak hours or seasons.

To analyze the fundamental problems in the urban logistics system, our research team will create process flow maps of each step in the goods delivery process for five buildings in Seattle. We will collect data and build a model to analyze “what if” scenarios for one location. Then we will pilot test several promising low-cost, high-value actions on Seattle streets in the fall of 2017. The pilots may involve actively managing city load zones and alleys to maximize truck use, or changing the way people use freight elevators.

By using information technologies and creative planning, we can make receiving online goods as efficient as ordering them — without clogging our streets or losing our packages.

Recommended Citation:
Goodchild, A., & Ivanov, B. (2016, December 20). More online shopping means more delivery trucks. Are cities ready? The Conversation. https://theconversation.com/more-online-shopping-means-more-delivery-trucks-are-cities-ready-67686.
Report

The Final 50 Feet of the Urban Goods Delivery System (Final Report)

 
Download PDF  (6.73 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Goods delivery is an essential but little-noticed activity in urban areas. For the last 40 years, deliveries have been mostly performed by a private sector shipping industry that operates within general city traffic conditions. However, in recent years e-commerce has created a rapid increase in deliveries, which implies an explosion of activity in the future.

Meeting current and future demand is creating unprecedented challenges for shippers to meet both increased volumes and increasing customer expectations for efficient and timely delivery. Anecdotal evidence suggests that increasing demand is overwhelming goods delivery infrastructure and operations. Delivery vehicles parked in travel lanes, unloading taking place on crowded sidewalks, and commercial truck noise during late night and early morning hours are familiar stories in urban areas.

These conditions are noticeable throughout the City of Seattle as our population and employment rapidly increase. However, goods delivery issues are particularly problematic in Seattle’s high-density areas of Downtown, Belltown, South Lake Union, Pioneer Square, First Hill, Capitol Hill and Queen Anne, described as Seattle’s “Center City”. Urban goods transportation makes our economy and quality of life possible.

As the Seattle Department of Transportation (SDOT) responds to the many travel challenges of a complex urban environment, we recognize that goods delivery needs to be better understood and supported to retain the vitality and livability of our busiest neighborhoods.

U.S. cities do not have much information about the urban goods delivery system. While public agencies have data on city streets, public transportation and designated curbside parking, the “final 50 feet” in goods delivery also utilizes private vehicles, private loading facilities, and privately-owned and operated buildings outside the traditional realm of urban planning.

Bridging the information gap between the public and private sectors requires a new way of thinking about urban systems. Specifically, it requires trusted data sharing between public and private partners, and a data-driven approach to asking and answering the right questions, to successfully meet modern urban goods delivery needs.

The Urban Freight Lab (UFL) provides a standing forum to solve a range of short-term as well as long-term strategic urban goods problem solving, that provides evidence of effectiveness before strategies are widely implemented in the City.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System.
Article

How Many Amazon Packages Get Delivered Each Year?

Publication: The Conversation
Publication Date: 2022
Summary:

How many Amazon packages get delivered each year? – Aya K., age 9, Illinois

It’s incredibly convenient to buy something online, right from your computer or phone. Whether it’s a high-end telescope or a resupply of toothpaste, the goods appear right at your doorstep. This kind of shopping is called “e-commerce” and it’s becoming more popular each year. In the U.S., it has grown from a mere 7% of retail purchases in 2012 to 19.6% of retail and $791.7 billion in sales in 2020.

Amazon’s growing reach
For Amazon, the biggest player in e-commerce, this means delivering lots of packages.

In 2021 Amazon shipped an estimated 7.7 billion packages globally, based on its nearly $470 billion in sales.

In 2021 Amazon shipped an estimated 7.7 billion packages globally.

If each of these packages were a 1-foot square box and they were stacked on top of one another, the pile would be six times higher than the distance from the Earth to the Moon. Laid end to end, they would wrap around the Earth 62 times.

Back in the early 2010s, most things bought from Amazon.com were shipped using a third-party carrier like FedEx or UPS. In 2014, however, Amazon began delivering packages itself with a service called “Fulfilled by Amazon.” That’s when those signature blue delivery vans started appearing on local streets.

Since then, Amazon’s logistics arm has grown from relying entirely on other carriers to shipping 22% of all packages in the U.S. in 2021. This is greater than FedEx’s 19% market share and within striking distance of UPS’s 24%. Amazon’s multichannel fulfillment service allows other websites to use its warehousing and shipping services. So your order from Etsy or eBay could also be packed and shipped by Amazon.

The supply chain
To handle that many packages, shipping companies need an extensive network of manufacturers, vehicles and warehouses that can coordinate together. This is called the supply chain. If you’ve ever used a tracking number to follow a package, you’ve seen it in action.

People who make decisions about where to send vehicles and how to route packages are constantly trying to keep costs down while still getting packages to customers on time. The supply chain can do this very effectively, but it also has downsides.

More delivery vehicles on the road produce more greenhouse gas emissions that contribute to climate change, along with pollutants like nitrogen oxides and particulate matter that are hazardous to breathe. Traffic congestion is also a major concern in cities as delivery drivers try to find parking on busy streets.

Urban freight solutions
Are there ways to balance the increasing number of deliveries while making freight safe, sustainable and fast? At the University of Washington’s Urban Freight Lab, we work with companies like Amazon and UPS and others in the shipping, transportation and real estate sectors to answer questions like this. Here are some solutions for what we and our colleagues call the “last mile” – the last leg of a package’s long journey to your doorstep.

  • Electrification: Transitioning from gasoline and diesel vehicles to fleets of electric or other zero-emission vehicles reduces pollution from delivery trucks. Tax credits and local policies, such as creating so-called green loading zones and zero-emission zones for clean vehicles, create incentives for companies to make the switch.
  • Common carrier lockers: Buildings can install lockers at central locations, such as busy transit stops, so that drivers can drop off packages without going all the way to your doorstep. When you’re ready to pick up your items, you just stop by at a time that’s convenient for you. This reduces both delivery truck mileage and the risk of packages being stolen off of porches.
  • Cargo bicycles: Companies can take the delivery truck out of the equation and use electric cargo bicycles to drop off smaller packages. In addition to being zero-emission, cargo bicycles are relatively inexpensive and easy to park, and they provide a healthier alternative for delivery workers.

To learn more about supply chains and delivery logistics, check with your town or city’s transportation department to see if they are testing or already have goods delivery programs or policies, like those in New York and Seattle. And the next time you order something for delivery, consider your options for receiving it, such as walking or biking to a package locker or pickup point, or consolidating your items into a single delivery.

Package delivery can be both convenient and sustainable if companies keep evolving their supply chains, and everyone thinks about how they want delivery to work in their neighborhoods.

Recommended Citation:
Goodchild, A. How many Amazon packages get delivered each year? The Conversation. https://theconversation.com/how-many-amazon-packages-get-delivered-each-year-187587
Technical Report

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

 
Download PDF  (3.07 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Publication Date: 2019
Summary:

This report presents a pilot test of a common carrier smart locker system — a promising strategy to reduce truck trip and failed first delivery attempts in urban buildings. The Urban Freight Lab tested this system in the 62-story Seattle Municipal Tower skyscraper in downtown Seattle.

The Urban Freight Lab identified two promising strategies for the pilot test: (1) Locker system: smaller- to medium-sized deliveries can be placed into a locker that was temporarily installed during the pilot test; and (2) Grouped-tenant-floor-drop-off-points for medium-sized items if the locker was too small or full (4-6 floor groups set up by Seattle Department of Transportation and Seattle City Light).

Users picked up their goods at the designated drop-off points. Flyers with information on drop-off-points were given to the carriers. UFL researchers evaluated the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by (1) Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and (2) Comparing them to the pilot test goals.

Recommended Citation:
Goodchild, A., Kim, H., & Ivanov, B. Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy. (2019)
Paper

A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes

 
Download PDF  (5.65 MB)
Publication: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume: 62
Pages: 1808-1812
Publication Date: 2018
Summary:

Delivery options have become very diverse with online shoppers demanding faster delivery options (e.g, 2-day delivery, same day delivery options) and more personalized services. For this reason, transportation planners, retailers, and delivery companies are seeking ways to better understand how best to deliver goods and services in urban areas while minimizing disruption to traffic, parking, and building operations. This includes understanding vertical and horizontal goods movements within urban areas.

The goal of this project is to capture the delivery processes within urban buildings in order to minimize these disruptions. This is achieved using a systems approach to understanding the flow of activities and workers as they deliver goods within urban buildings. A mobile application was designed to collect the start and stop times for each task within the delivery process for 31 carriers as they deliver goods within a 62-story office building.

The process flow map helped identify bottlenecks and areas for improvements in the final segment of the delivery operations: the final 50 feet. It also highlighted consistent tasks conducted by all carriers as well as differences with given carrier type. This information is useful to help decision-makers plan appropriately for the design of future cities that encompass a variety of delivery processes.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. (2018) "A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes." In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 1808–1812. https://doi.org/10.1177/1541931218621410
Report

The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower

 
Download PDF  (1.59 MB)
Publication Date: 2018
Summary:

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: Common Carrier Locker Systems that create parcel delivery density and provide secure delivery locations in public spaces.

Common carrier locker systems are an innovative strategy because they may be used by any retailer, carrier, and goods purchaser, and placed on public property.  This contrasts with branded lockers such as those operated by Amazon, UPS, and FedEx that are limited to one retailer’s or one carrier’s use. Common carrier lockers use existing smart locker technology to provide security and convenience to users.

The Common Carrier Locker System Pilot Test in the Seattle Municipal Tower was uniquely designed for multiple retailers’ and delivery firms’ use in a public space. In spring 2018, a common carrier locker system was placed in the 62-floor Seattle Municipal Tower for ten days as part of a joint research project of the Urban Freight Lab (UFL) at the University of Washington’s Supply Chain Transportation & Logistics Center and the Seattle Department of Transportation (SDOT), with additional funding from the Pacific Northwest Transportation Consortium (PacTrans).

This report demonstrates common carrier lockers’ potential to reach both public and private goals by reducing dwell time (the time a truck is parked in a load/unload space in the city) and the number of failed first delivery attempts to dense urban areas. This research provides evidence that delivering multiple packages to a single location such as a locker, rather than delivering packages one-by-one to individual tenants in an urban tower increases the productivity of public and private truck load/unload spaces.

The concept for this empirical pilot test draws on prior UFL-conducted research on the Final 50 Feet of the urban goods delivery system. The Final 50 Feet is the term for the last segment of the supply chain. It begins when a truck parks in a load/unload space, continues as drivers maneuver goods along sidewalks and into urban towers to make the final delivery, and ends where the customer takes receipt of the goods.

The UFL’s 2017 research documented that of the 20 total minutes delivery drivers spent on average in the Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors.  The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which translates into a substantial reduction in truck dwell time.

Recommended Citation:
Urban Freight Lab (2018). The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower.
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

Background

We are living at the convergence of the rise of e-commerce and fast growing cities. Surging growth in U.S. online sales has averaged more than 15% year-over-year since 2010. Total e-commerce sales for 2016 were estimated at $394.9 billion, an increase of 15.1 percent from 2015. This is a huge gain when compared to total retail sales in 2016, which only increased 2.9 percent from 2015. E-commerce sales in 2016 accounted for 8.1 percent of total sales, while accounting for 7.3 percent of total sales in 2015.

This is causing tremendous pressure on local governments to rethink the way they manage street curb parking and alley operations for trucks and other delivery vehicles, and on building operators to plan for the influx of online goods. City managers and policy makers are grappling with high demand for scarce road, curb and sidewalk space, and multiple competing uses. But rapidly growing cities lack data-based evidence for the strategies they are considering to support e-commerce and business vitality, while managing limited parking in street space that is also needed for transit, pedestrians, cars, bikes and trucks.

The Final 50 Feet is the project’s shorthand designation for the last leg of the delivery process, which:

  • Begins when a truck stops at a city-owned Commercial Vehicle Load Zone or alley, or in a privately-owned freight bay or loading dock in a building;
  • May extend along sidewalks or through traffic lanes; and
  • Ends where the end customer takes receipt of delivery.

Research Project

The purpose of the research project is to pilot test a promising strategy to reduce the number of failed first delivery attempts in urban buildings. The test will take place in the Seattle Municipal Tower. It will serve as a case study for transportation and urban planning professionals seeking to reduce truck trips to urban buildings. Urban Freight Lab identified two promising strategies for the pilot test:

  • Locker system: smaller to medium sized deliveries can be placed into a locker which will be temporarily installed during our pilot test
  • Grouped-tenant-floor-drop-off-points for medium sized items if locker is too small or full (4-6 floor groups to be set up by SDOT and Seattle City Light)
  • People will come and pick up the goods at the designated drop off points
  • Flyers with information of drop-off-points will be given to the carriers

UFL will evaluate the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by:

  • Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and
  • Comparing them to the pilot test goals.