Skip to content
Presentation

Resilience of Maritime Transport for Emergency Response Following an Earthquake

Publication: Canadian Transport Research Forum Conference (CTRF) 56th Annual Conference - Ensuring Resilience in Transportation Systems: Anticipating and Responding to Pandemic, Climate, Demographic and Economic Changes
Publication Date: 2021
Summary:

Following an earthquake, coastal and island communities may need to rely primarily on maritime transport for regular and critical supplies during the emergency response phase. However, such a disaster may also disrupt the needed transport activities in several ways, including damage to critical infrastructure (CI) such as ports and roads. The Strategic Planning for Coastal Community Resilience to Marine Transportation Disruption (SIREN) project, comprising teams from four universities, was established with the support of EMBC (Emergency Management British Columbia) and the MEOPAR NCE (Marine Environmental Observation, Prediction and Response – Network of Centres of Excellence) to explore resilience strategies and response options through the development and application of a suite of models. This brief article serves to summarize this broad initiative, relegating the details to other more technical publications under development by the team.

 

Authors: Dr. Anne Goodchild, Ronald Pelot, Floris Goerlandt, Stephanie Chang, David Bristow, Cheng Lin, Lina Zhou
Recommended Citation:
Pelot, Ronald, Floris Goerlandt, Stephanie Chang, David Bristow, Cheng Lin, Lina Zhou, and Anne Goodchild. "Resilience of Maritime Transport for Emergency Response Following an Earthquake." In CTRF 56th Annual Conference-Ensuring Resilience in Transportation Systems: Anticipating and Responding to Pandemic, Climate, Demographic and Economic Changes. 2021.
Presentation

Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Micro-consolidation implementations and pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools.

Recommended Citation:
Şeyma Güneş and Anne Goodchild (2022). Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Presentation

Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency?

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affects such behavior.

In this study, we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in downtown Seattle. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Giacomo Dalla Chiara, Klaas Fiete Krutein, and Anne Goodchild (2022). Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency? 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Presentation

Evaluating Unmanned Aircraft Systems for Snow Avalanche Monitoring in Winter Weather and in Mountainous Terrain

Publication: Transportation Research Board 96th Annual Meeting
Publication Date: 2017
Summary:
The Norwegian Public Roads Administration (NPRA) completed an evaluation of Unmanned Aircraft Systems’ (UAS) ability to operate in winter weather and in mountainous terrain in support of snow avalanche monitoring. Vendors flew nine multi-rotor, rotary-wing, and fixed wing aircraft on four increasingly difficult missions ranging from flights over a nearby road and bridge to a 2.3 kilometer flight to a 1300 meter mountain to inspect avalanche features. Results indicated that there is no single UAS that meets all of the road administration’s needs. The fixed wing aircraft were more capable in bad weather and could fly greater distances to view avalanche release zones. However, they are not always stable camera platforms and required more skill to operate. Multi-rotors were easier to operate and more stable but are less capable in winds and had more limitations when flying to distant features. In general, the photo and video output of the UASs was usable for avalanche assessment. The UAS all flew following the national aviation authority’s line of sight and distance regulations which reduced their ability to travel to out of sight terrain. This suggests that NPRA should work with the authorities to establish permanent danger areas above avalanche zones where beyond line of sight flying is routinely permitted. A multilevel NPRA institutional approach to using UAS was proposed were small multi-rotor aircraft are owned and operated by NPRA and used to look at close-in snow features. For longer flights, fixed wing aircraft flown by a contractors may be the best solution.

 

 

 

Authors: Dr. Ed McCormack, Torgeir Vaa, Gunne Håland
Recommended Citation:
McCormack, E., Vaa, T., & Håland, G. (2017). Evaluating Unmanned Aircraft Systems for Snow Avalanche Monitoring in Winter Weather and in Mountainous Terrain (No. 17-00134).
Presentation

Scheduling Double Girder Bridge Crane with Double Cycling in Rail-Based Transfer Automated Container Terminals

 
Download PDF  (0.44 MB)
Publication: Second Institute for Operations Research and the Management Sciences (INFORMS) Transportation Science and Logistics Society Workshop
Volume: 13-Jun
Publication Date: 2016
Summary:
In automated container terminals, rail based horizontal transfer systems are newly proposed and regarded to be more suitable to intermodal transportation [1]. However, improvements are required in operations scheduling in rail based transfer automated container terminals (RBT-ACT) to take advantage of the infrastructure improvement [2].
In this paper a double girder bridge crane (DGBC) is introduced, whose benefits can be obtained with modest investments, such as combining the existing twin 40-ft double trolley container cranes with a double girder [3]. Each girder has one independent spreader, and the two spreaders work on containers in adjacent bays simultaneously with no change to the safety distance constraints. As a result, operating costs are reduced, potential collision of QCs can be avoided and the vessel service time is reduced.
Most research in this area aims to minimizing crane cycles, not processing times [4], however is it processing time that is of ultimate interest [5]. Our objective is to minimize total processing time, and the sequence dependent setup time is considered [6]. It is well established that double cycling can greatly improve quay crane productivity [7], and we consider its performance in the scheduling strategy for DGBC.

 

 

 

Authors: Dr. Anne Goodchild, Dandan Wang, Xiaoping Li
Recommended Citation:
Wang, D., Goodchild, A., & Li, X. (2013, June). Scheduling double girder bridge crane with double cycling in rail based transfer automated container terminals. In Logistics Society Workshop (p. 91).
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Presentation

Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas

 
Publication: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Urban freight deliveries are increasingly challenged in dense urban areas, particularly where delivery trucks are required to meet delivery time windows. Depending on the route characteristics, Electric Assist (EA) cargo bikes may serve as an economic and environmentally sustainable alternative to delivery trucks. In this paper, the cost trade-offs between a box delivery truck and an EA cargo bikes are compared. The independent and constant variables and assumptions used for a cost function comparison model are gathered through data collection, a literature review, and interviews. An observed route completed by a well-known courier company was used as a control and the same route was modeled with an EA cargo bike. It was found that a delivery truck was a more cost efficient vehicle type given the route and delivery characteristics present. Four separate delivery scenarios were modeled to explore how the distance between distribution center (DC) and neighborhood, a number of stops, distance between each stop, and a number of parcels per stop would impact the optimum vehicle type. The results from the models indicate that the route and delivery characteristics significantly influence whether a delivery truck or EA cargo bike is the best option.

Recommended Citation:
Butrina, Polina, Manali Sheth, Anne Goodchild, and Edward McCormack. Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas. No. 18-05401. 2018.
Presentation

Ecommerce and Environmental Justice in Metro Seattle U.S.

 
Publication: Laboratoire Ville Mobilite Transport (City Transportation Mobility Laboratory), Paris
Publication Date: 2022
Summary:

The central research question for this project explores the distributional impacts of ecommerce and its implications for equity and justice.

The research aims to investigate how commercial land use affects people and communities. In 2018, U.S. warehouses surpassed office buildings as the primary form of commercial and industrial land use, now accounting for 18 billion square feet of floor space. Warehouses have experienced significant growth in both number and square footage, becoming the predominant land use in the U.S. Warehouse expansion has strategically sprawled from port areas to suburbs in order to get closer to populations and transportation access.

The research findings reveal a correlation between warehouse locations and lower-income communities, resulting in increased exposure to air pollution and triple the traffic associated with ecommerce. Conversely, higher-income populations experience the least exposure, despite making more than half of their purchases online compared to their lower-income counterparts.

Factors such as race and proximity to highways and warehouse locations emerge as stronger predictors of the volume of freight activity through ecommerce than individuals’ income levels or the number of orders placed. Going forward, there is an opportunity for retailers and distributors to take into account the health implications of warehouse placement, and governments can provide best practices to facilitate municipal coordination, particularly where local authorities may be unaware of the impacts.

Authors: Travis Fried
Presentation

Development and Application of a Framework to Classify and Mitigate Truck Bottlenecks to Improve Freight Mobility

 
Download PDF  (1.14 MB)
 
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: TRN Annual Meeting
Publication Date: 2018
Summary:

This paper presents a framework to classify and mitigate roadway bottlenecks and that is designed to improve freight mobility. This is in recognition that roadway operations for trucks are under studied, truck-only bottlenecks are often not identified and freight-specific problem areas are therefore often overlooked. The framework uses four-steps:

Step 1: identifies and locates the roadway sections where vehicle travel time is in excess of what would normally occur.

Step 2: made possible by increasingly available truck probe data, identifies bottlenecks for all vehicles or for trucks only. This is necessary to identify bottlenecks that notably impact freight mobility and might not be identified by car-based approaches.

Step 3: classifies bottlenecks as travel speed-based or process-based. This selects the mitigation treatments as mainly due to operational or roadway limitations.

Step 4: which is the core of the paper, supports the mitigation process by determining the cause of the bottleneck. The bottlenecks are identified as due to congestion, limitations where roadway design slows all vehicles, or where a truck’s size or weight can slow vehicles (such as tight curves or bridge restrictions).

The paper present a review of specific roadway attributes that limit a truck’s mobility and is used to suggest mitigation. The framework is demonstrated using a case study. The framework is designed to be applied by planning and infrastructure agencies who want to locate and address freight bottlenecks in a systematic manner using available resources as well as by researchers interested in linking roadway attributes to truck mobility.

Authors: Dr. Ed McCormackDr. Anne Goodchild, William Eisele, Mark Hallenbeck
Recommended Citation:
McCormack, Edward, Anne Goodchild, W. Eisele, and Mark Hallenbeck. "Development and Application of a Framework to Classify and Mitigate Truck Bottlenecks to Improve Freight Mobility." TRN Annual Meeting, Washington D.C. 2018.