Skip to content
Paper

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

 
Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019
Summary:

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143. https://doi.org/10.2495/TDI-V3-N2-132-143
Paper

Smart Growth and Goods Movement: Emerging Research Agendas

Publication: Journal Urbanism: International Research on Placemaking and Urban Sustainability
Volume: 2-Aug
Pages: 115-132
Publication Date: 2015
Summary:

While recent urban planning efforts have focused on the management of growth into developed areas, the research community has not examined the impacts of these development patterns on urban goods movement. Successful implementation of growth strategies has multiple environmental and social benefits but also raises the demand for intra-urban goods movement, potentially increasing conflicts between modes of travel and worsening air quality. Because urban goods movement is critical for economic vitality, understanding the relation between smart growth and goods movement is necessary in the development of appropriate policies.

This paper reviews the academic literature and summarizes the results of six focus groups to identify gaps in the state of knowledge and suggest important future research topics in five sub-areas of smart growth related to goods movement: (1) access, parking, and loading zones; (2) road channelization and bicycle and pedestrian facilities; (3) land use; (4) logistics; and (5) network system management.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Erica Wygonik, Alon Bassok, Daniel Carlson
Recommended Citation:
Wygonik, Erica, Alon Bassok, Anne Goodchild, Edward McCormack, and Daniel Carlson. "Smart Growth and Goods Movement: Emerging Research Agendas." Journal of Urbanism: International Research on Placemaking and Urban Sustainability 8, no. 2 (2015): 115-132.
Paper

Reducing Train Turn Times with Double Cycling in New Terminal Designs

 
Download PDF  (0.79 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2238
Pages: 14-Aug
Publication Date: 2011
Summary:

North American rail terminals need productivity improvements to handle increasing rail volumes and improve terminal performance. This paper examines the benefits of double cycling in wide-span gantry terminals that use automated transfer management systems. The authors demonstrate that the use of double cycling rather than the currently practiced single cycling in these terminals can reduce the number of cycles required to turn a train by almost 50% in most cases and reduce train turn time by almost 40%. This change can provide significant productivity improvements in rail terminals, increasing both efficiency and competitiveness.

Authors: Dr. Anne Goodchild, J. G. McCall, John Zumerchik, Jack Lanigan
Recommended Citation:
Goodchild, Anne, J. G. McCall, John Zumerchik, and Jack Lanigan Sr. "Reducing Train Turn Times with Double Cycling in New Terminal Designs." Transportation Research Record 2238, no. 1 (2011): 8-14.
Paper

Freeway Truck Travel Time Prediction for Freight Planning Using Truck Probe GPS Data

 
Download PDF  (0.41 MB)
Publication: European Journal of Transport and Infrastructure Research.
Volume: 16
Pages: 76-94
Publication Date: 2016
Summary:

Predicting truck (heavy vehicle) travel time is a principal component of freight project prioritization and planning. However, most existing travel time prediction models are designed for passenger vehicles and fail to make truck specific forecasts or use truck specific data. Little is known about the impact of this limitation, or how truck travel time prediction could be improved in response to freight investments with an improved methodology. In light of this, this paper proposes a pragmatic multi-regime speed-density relationship based approach to predict freeway truck travel time using empirical truck probe GPS data (which is increasingly available in North American and Europe) and loop detector data. Traffic regimes are segmented using a cluster analysis approach. Two case studies are presented to illustrate the approach. The travel time estimates are compared with the Bureau of Public Roads (BPR) model and the Akçelik model outputs. It is found that the proposed method is able to estimate more accurate travel times than traditional methods. The predicted travel time can support freight prioritization and planning.

Recommended Citation:
Wang, Zun, Anne V. Goodchild, and Edward McCormack. "Freeway truck travel time prediction for freight planning using truck probe GPS data." European Journal of Transport and Infrastructure Research 16, no. 1 (2016). 
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Paper

Estimating Truck Trips with Product Specific Data: A Disruption Case Study in Washington Potatoes

Publication: Transportation Letters: The International Journal of Transportation Research
Volume: 4 (3)
Publication Date: 2013
Summary:

Currently, knowledge of actual freight flows in the US is insufficient at a level of geographic resolution that permits corridor-level freight transportation analysis and planning. Commodity specific origins, destinations, and routes are typically estimated from four-step models or commodity flow models. At a sub-regional level, both of these families of models are built on important assumptions driven by the limited availability of data. This study was motivated by a desire to determine whether efforts to gather corridor-level freight movement data will bring significant new insights over current approaches to freight transportation modeling. Through a case study of Washington State’s potato and value added potato products industry, we show that significant insight can be gained by collecting commodity-specific truck trip generation and destination data: the approach allows product specific truck trips to be estimated for each roadway link. When considering a network change, the number of affected trips can be identified, and their re-route distance quantified.

Authors: Dr. Anne Goodchild, Derik Andreoli, Eric Jessup
Recommended Citation:
Derik Andreoli, Anne Goodchild & Eric Jessup (2012) Estimating truck trips with product specific data: a disruption case study in Washington potatoes, Transportation Letters, 4:3, 153-166, https://doi.org/10.3328/TL.2012.04.03.153-166
Paper

SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions

Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 141
Publication Date: 2020
Summary:

Despite significant advances in freight transport modeling in recent years, there is still lack of available tools for evaluating novel logistics solutions. We introduce the framework of SimMobility Freight, which is part of SimMobility, a multi-scale agent-based urban transportation simulation platform. SimMobility Freight is capable of simulating commodity contracts, logistics and vehicle operation planning and parking decisions in a fully-disaggregate manner. This allows us to evaluate alternative logistics solutions and measure their impacts. To illustrate its capability, we conduct an analysis of delivery time window regulations, assessing the policy impacts.

Authors: Dr. Giacomo Dalla Chiara, Takanori Sakai, André Romano Alho, B.K. Bhavathrathan, Raja Gopalakrish, Peiyu Jinge, Tetsuro Hyodo, Lynette Cheah, Moshe Ben-Akivae
Recommended Citation:
Sakai, T., Romano Alho, A., Bhavathrathan, B., Chiara, G. D., Gopalakrishnan, R., Jing, P., Hyodo, T., Cheah, L., & Ben-Akiva, M. (2020). SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions. Transportation Research Part E: Logistics and Transportation Review, 141, 102017. https://doi.org/10.1016/j.tre.2020.102017
Paper

GPS Tracking of Freight Vehicles to Identify and Classify Bottlenecks

Publication: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference
Publication Date: 2012
Summary:

This paper presents a systematic methodology for identifying and ranking bottlenecks using probe data collected by commercial GPS fleet management devices. This methodology is based on the hypotheses that truck speed distributions can be represented by either a unimodal or bimodal probability density function, and it proposes a new reliability measure for evaluating roadway performance.

Authors: Dr. Ed McCormack, Wenjuan Zhao, Daniel J. Dailey
Recommended Citation:
McCormack, E., Zhao, W., & Dailey, D. J. (2012, September). GPS Tracking of Freight Vehicles to Identify and Classify Bottlenecks. In 2012 15th International IEEE Conference on Intelligent Transportation Systems (pp. 1245-1249). IEEE.
Paper

Measuring Delivery Route Cost Trade-Offs Between Electric-Assist Cargo Bicycles and Delivery Trucks in Dense Urban Areas

 
Download PDF  (3.79 MB)
 
Publication: European Transport Research Review
Volume: 11
Publication Date: 2019
Summary:

Introduction

Completing urban freight deliveries is increasingly a challenge in congested urban areas, particularly when delivery trucks are required to meet time windows. Depending on the route characteristics, Electric Assist (EA) cargo bicycles may serve as an economically viable alternative to delivery trucks. The purpose of this paper is to compare the delivery route cost trade-offs between box delivery trucks and EA cargo bicycles that have the same route and delivery characteristics, and to explore the question, under what conditions do EA cargo bikes perform at a lower cost than typical delivery trucks?

Methods

The independent variables, constant variables, and assumptions used for the cost function comparison model were gathered through data collection and a literature review. A delivery route in Seattle was observed and used as the base case; the same route was then modeled using EA cargo bicycles.

Four separate delivery scenarios were modeled to evaluate how the following independent route characteristics would impact delivery route cost – distance between a distribution center (DC) and a neighborhood, number of stops, distance between each stop, and number of parcels per stop.

Results

The analysis shows that three of the four modeled route characteristics affect the cost trade-offs between delivery trucks and EA cargo bikes. EA cargo bikes are more cost effective than delivery trucks for deliveries in close proximity to the DC (less than 2 miles for the observed delivery route with 50 parcels per stop and less than 6 miles for the hypothetical delivery route with 10 parcels per stop) and at which there is a high density of residential units and low delivery volumes per stop.

Conclusion

Delivery trucks are more cost effective for greater distances from the DC and for large volume deliveries to one stop.

 

Recommended Citation:
Sheth, Manali, Polina Butrina, Anne Goodchild, and Edward McCormack. "Measuring delivery route cost trade-offs between electric-assist cargo bicycles and delivery trucks in dense urban areas." European Transport Research Review 11, no. 1 (2019): 11.
Paper

A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010

Publication: Transportation Research Board 95th Annual Meeting
Volume: 16-5911
Publication Date: 2016
Summary:

Bicycling is being encouraged across the US and the world as a low-impact, environmentally friendly mode of transportation. In the US, many states and cities, especially cities facing congestion issues, are encouraging cycling as an alternative to automobiles. However, as cities grow and consumption increases, freight traffic in cities will increase as well, leading to higher amounts of interactions between cyclists and trucks. This paper will describe where and how accidents between cyclists and trucks occur. From 2000 to 2010, 807 bicyclists were killed the United States in accidents involving trucks. In 2009, trucks accounted for 9.5% of fatal bicycle accidents, despite trucks only accounting for 4.5% of registered vehicles. The typical fatal bike-truck accident happens in an urban area on an arterial street with a speed limit of 35 or 45 mph. It is about equally likely to occur mid-block or at an intersection. Most accidents involved trucks going straight (56%), and right-turning trucks were involved in a much larger number of accidents (24%) than left turning trucks (7%). Methods such as providing bicycle lanes, or even physically separated bicycle tracks, will not be sufficient to address bicycle-truck collisions, as a significant number of accidents (49%) occur in intersections or are intersection related. Cities with a higher mode-share of bicycling had a lower rate of bicycle-truck fatality accidents.

Authors: Dr. Anne Goodchild, Jerome Drescher
Recommended Citation:
Drescher, Jerome and Anne Goodchild. (2016), "A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010," Accepted for presentation at the 95th Transportation Research Board Annual Meeting, Washington DC, January 10-14. [Paper # 16-5911]