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Abstract. Understanding factors that drive the parking choice of commercial vehicles at
delivery stops in cities can enhance logistics operations and the management of freight
parking infrastructure, mitigate illegal parking, and ultimately reduce traffic congestion. In
this paper, we focus on this decision-making process at large urban freight traffic gen-
erators, such as retail malls and transit terminals, that attract a large share of urban
commercial vehicle traffic. Existing literature on parking behavior modeling has focused
on passenger vehicles. This paper presents a discrete choice model for commercial vehicle
parking choice in urban areas. The model parameters were estimated by using detailed,
real-world data on commercial vehicle parking choices collected in two commercial urban
areas in Singapore. The model analyzes the effect of several variables on the parking
behavior of commercial vehicle drivers, including the presence of congestion and
queueing, attitudes toward illegal parking, and pricing (parking fees). The model was
validated against real data and applied within a discrete-event simulation to test the
economic and environmental impacts of several parking measures, including pricing
strategies and parking enforcement.
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1. Introduction
With the growth in urban populations and the rise of
online shopping, commercial vehicles (delivery and
service trucks and vans) take on an increasingly rel-
evant role in modern urban societies. On the one
hand, they are necessary to sustain cities’ economies
and their dwellers’ lives. On the other hand, they
compete for transport infrastructure with private and
public vehicles, aggravate the state of already con-
gested urban transport systems, and generate nega-
tive externalities for the environment and society.

An increasingly relevant problem in urban areas
is related to the very last meters of a delivery: find-
ing available parking near the destination. Parking
availability in urban areas is usually limited due to the
lack of available space, high land values and oppor-
tunity costs of space, and high parking demand. This

is true for any type of vehicle, but it is especially true
for commercial vehicles delivering/picking up goods
or performing a service in urban areas. First, in
comparison with passenger cars, they often require
more space to park, not only because they are gen-
erally larger in size, but also because they require
more space to load/unload goods and maneuvering
(Jaller, Holguı́n-Veras, and Hodge 2013; Chen and
Conway 2016). Second, commercial vehicles need to
park closer to their destination than cars, as walking
while carrying goods is difficult (Amer and Chow
2017). Third, they often cannot afford to spend time
searching for available parking, as they usually run on
a tight delivery schedule. In the absence of available
parking, commercial vehicle drivers usually choose to
either wait for available space or park illegally on the
curbside or in the travel lane. The consequences of
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commercial vehicle drivers parking behaviors are far-
reaching, affecting the urban transport system, en-
vironment, economy, and society. Han et al. (2005)
found that commercial vehicles stopping in travel
lanes is the third major cause of nonrecurrent urban
congestion, after crashes and construction. They es-
timated the total annual cost of delays caused by il-
legally parked commercial vehicles to be $10 billion
in the United States. Moreover, the lack of parking
spaces consistently ranks among the top 10 issues
for transport and logistics company executives and
among the top three issues for commercial drivers
(American Transportation Research Institute 2018).
Parking fines paid annually by private carriers can
amount to millions of dollars: for instance, carriers
paid $8.2 million in 2011 in Chicago (Kawamura et al.
2014) and $2.5 million in 2009 in Toronto (Nourinejad
et al. 2014) in penalties.

These impacts can be magnified near large urban
freight traffic generators. Such facilities produce and
attract a large number of daily truck trips either in-
dividually or collectively. For instance, the ports of
New York and New Jersey generate approximately
9,000 truck trips per day (Brom et al. 2009), which
represent approximately 5.8% of Manhattan’s daily
truck traffic, or 2.6% of New York City’s (NYC) total
truck trips. Similarly, in a study by Jaller, Wang, and
Holguı́n-Veras (2015), 56 selected large buildings
hosting businesses and services including shopping
malls were identified as large urban freight traffic
generators and were associated with approximately
4% of NYC total freight trips generated. Furthermore,
a recent study of parking requirements for freight
activity inNYC found that the largest occupancy rates
of on-street parking also corresponded to these lo-
cations (Jaller, Holguı́n-Veras, and Hodge 2013). As a
result, carriers are, in most cases, forced to park il-
legally and to pay large amounts of money in parking
fines (USD$500 to USD$1,000 per truck per month;
Holguı́n-Veras et al. 2008). Such experiences are not
unique to NYC and are similar in other large cities
such as Paris (Dablanc and Beziat 2015), where illegal
parking was estimated at approximately 62%; Sin-
gapore (Dalla Chiara and Cheah 2017), where un-
authorized parking in dense commercial urban areas
reached 60% of total vehicle arrivals, and vehicles
queuedonaveragefiveminutes to access private loading/
unloading bay areas; Southampton (Triantafyllou,
Cherrett, and Browne 2014), where the increasing
observed freight congestion and intramodal conflicts
around a largemallmotivated an assessment study on
urban consolidation center; and Dhaka (Zannat et al.
2013), where commercial vehicles occupy most of the
space allocated for private vehicles.

Several parking policies to handle such impacts have
been proposed and deployed around the world with

different results. Capacity extension, parkingand loading
bay management, access and time restrictions, pricing,
and enforcement all rely on significant changes in de-
mand and behavior to influence policy effectiveness.
Modeling frameworks to evaluate potential measures
for large urban freight traffic generators will ulti-
mately rely on better understanding of the changes
in commercial vehicle drivers’ parking behaviors.

1.1. Understanding Urban Parking Behaviors
In the past few decades, researchers have dedicated
considerable effort to studying passenger vehicles’
parking behaviors in urban areas. The results of these
studies have had a twofold contribution. First, they
have identified externalities caused by passenger
vehicles parking in urban areas. Shoup (2006) esti-
mated that 95% of a car’s lifetime is spent parked.
For cars, parking duration is relatively long (several
hours), and a lack of parking spaces causes drivers
to cruise around a neighborhood in search of avail-
able parking, increasing congestion and causing ex-
cess travel, air pollution, and greenhouse gas (GHG)
emissions (Millard-Ball, Weinberger, and Hampshire
2014). Researchers found that, on average, 30% of
road traffic is caused by vehicles cruising (Shoup
2006). Second, the quantitative analyses of passen-
ger vehicle drivers’ parking behaviors have revolu-
tionized parking and travel demand policymaking
in many cities around the world, contributing to re-
ductions in cruising and double parking, and improv-
ing cities’ livability. Examples include data-driven
parking pricing (e.g., Ottosson et al. 2013) and real-
time parking information systems (e.g., San Francisco
Municipal Transportation Agency 2011).
Although the parking literature has focused on

passenger vehicles, little is known about commercial
vehicles’ parking behaviors. As with passenger cars,
parking is also a major time component for com-
mercial vehicles, with vehicles parked 60% to 70% of
their total operating time (Dalla Chiara and Cheah
2017). However, commercial vehicles stop more fre-
quently, with an average parking duration of be-
tween 10 and 20 minutes (Dalla Chiara and Cheah
2017). Moreover, they lack flexibility in their activity
scheduling; whereas individual travelers can modify
their trip and destination according to the state of
road and parking congestion, commercial vehicles are
often committed to preplanned stop locations in order
to meet delivery time windows.
As a consequence, commercial vehicle drivers adopt

parking behaviors different from those of passenger
vehicle drivers. Therefore, travel and parking policies
that target only passenger vehicles might have unex-
pected consequences for the urban logistics system,
causing delays, illegal parking, increased vehicle miles
traveled, and higher delivery costs in urban areas.
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1.2. Research Objectives
Several cities have implemented policies targeted to
commercial vehicles. Common examples include ban-
ning commercial vehicles from traveling and parking
in central areas or during certain times of the day, or
imposing vehicle size limitations for carriers.

Another policy issue is the amount of urban space
that should be allocated to commercial vehicle park-
ing.Minimumparking requirementshavebeenadopted
by many cities around the world, imposing on real
estate developers a minimum number of loading and
unloading bays per unit of space dedicated to com-
mercial activities. However, no guidance is given on
how to manage these spaces, for example, whether
they should be free of charge or priced, and howmuch
they should cost.

With the increase in freight parking demand and
the lack of parking supply, city planners are called
upon to update their freight parking policies and
find new solutions. Examples include centralized
receiving services in multitenant buildings, public
urban consolidation centers, and parking informa-
tion systems.

To estimate the impacts of these initiatives and to
better inform freight parking policies, we need to
better understand commercial vehicle drivers park-
ing behaviors.

Our goal was to empirically investigate commercial
vehicle drivers’ parking behaviors in urban areas by
formulating and estimating the first (to our knowl-
edge) randomutilitymodel of commercial vehicle driver
parking choice. We modeled a driver’s choice between
authorized parking (i.e., parking in a loading/unloading
bay) andunauthorizedparking (i.e., parking in the travel
lane or in spaces dedicated to passenger vehicles),
and analyzed the impacts of several factors affecting
this choice, including the level of the parking fee and
the parking fine, the level of parking enforcement,
and the impact of parking congestion. The model
parameters were estimated by using data on real-life
commercial vehicle parking and delivery opera-
tions collected in two dense urban commercial areas
in Singapore.

We then used the estimated model to assess the
economic and environmental impacts of several park-
ing management strategies, including changes in the
number of loading/unloading bays and their parking
fee, change in enforcement level, and the introduction of
a centralized receiving service.

Results obtained from the current modeling effort can
better inform decision makers, including city planners,
real estate developers, building managers, and private
carriers, on how to account for drivers’ behaviors to
better manage commercial vehicle parking in large
freight traffic generators, such as shopping malls,
transit nodes, and dense urban commercial areas.

Because of the context in which the data were col-
lected, the results from the currentmodeling effort are
less applicable to areas that do not attract a large
number of freight vehicle trips and are served only
by curb parking (e.g., residential areas or low-rise
commercial buildings).
Thenext section summarizes the literature onparking

choice and commercial vehicle driver parking behav-
iors and parking policies. Section 3 introduces a be-
havioral framework for commercial vehicle driver
parking choice. Section 4 describes the data collection
and processing methods, the context in which the
data were collected, and the sample used for model
estimation. Section 5 describes the formulation and
estimation of the parking choice model, and Section 6
contains the empirical model results and model val-
idation. The parking choice model was then used
within the simulation framework, which is described
in Section 7. Section 8 concludes the paper and dis-
cusses policy implications.

2. Relevant Literature
2.1. Parking Choice Modeling
Most disaggregate parking models proposed in the
literature have focused on passenger vehicle drivers.
Table 1 lists the most relevant works and summarizes
their modeling approaches.
Parking measures can represent powerful tools to

manage travel demand in urban areas. Consequently,
researchers and practitioners have developed data-
driven models to better understand travelers’ re-
sponses to parking policies, such as changes in pricing
or parking access restrictions.
Early studies focused on modeling individuals’

choice of parking location by dividing a study
area into clusters of geographically close parking
places, which then represented the alternatives of
the universal choice set. Gillen (1978) and Lambe
(1996) studied parking location choice alone; Van Der
Goot (1982) andHunt and Teply (1993) studied jointly
parking location and parking type; Hensher and
King (2001) studied jointly parking location and
travel mode.
Gillen (1978) was among the earliest to model the

parking location choices of individual drivers. In
his model, each parking location is considered as a
separate good, characterized by a monetary cost
component (parking fee) and a time cost component
(walking time to the final destination, which we refer
to as “egress time”). A driver will park at the location
that minimizes these cost components. By modeling
the trade-off between parking cost and egress time, it
is possible to estimate the “re-location” effect, that is,
the shift in parking demand from urban to subur-
ban areas, caused by the introduction of different
parking measures.

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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Hunt and Teply (1993) used a Nested Logit (NL)
model to simultaneously represent the choice of parking
location and type, considering on-street, off-street, and
employer-arranged parking (for commuters). Similarly,
Hensher and King (2001) used an NL model to rep-
resent the choice of parking location and travel mode,
including as alternatives the possibility to switch
from private to public transport and to forego the trip.

A shift in paradigm in the modeling of parking
choice occurred when researchers acknowledged the
inefficiency generated by on-street parking: drivers
generally prefer to park on-street rather than off-
street because they are closer to the final destina-
tion; this causes on-street parking congestion, which
consequently generates the phenomenon of “cruis-
ing.” Cruising was described by Shoup (2006, p. 479)
as “a mobile queue of cars that are waiting for curb
vacancies.” Cruising was estimated to contribute to a
considerable amount of urban road traffic (Shoup
2006). Therefore, later studies on parking shifted
from modeling the location choice to the choice be-
tween on-street and off-street parking.

Axhausen and Polak (1991) were among the first to
use Stated parking Preferences (SP) data to model the
choice among free/paid on-street, off-street, and il-
legal parking types. They also introduced in the
utility formulation time-specific variables other than
egress time: access time (travel time from the origin to
the parking location) and search time (time spent
searching and queueing for parking).

In recentwork, Qin et al. (2017) used anNLmodel to
analyze the parking choice behavior of air travelers at
airports. At the upper level of the nested model, the
choice between off-site and on-site parking was
modeled, whereas at the lower level the choice be-
tween different connection models from the parking
facility to the airport terminals was modeled.
The attitude toward attributes of parking alterna-

tives such as price, fine, search time, and egress time
varies across drivers. A thorough exploration of in-
dividual preference heterogeneity was performed
by Hess and Polak (2004), who found that, although
deterministic preference heterogeneity can be cap-
tured by segmenting the population into groups
of individuals sharing common characteristics, there
exists “random” taste variation among individuals
within segments. This variation, if not properly
accounted for, might cause potential bias and poor
model fit. The Mixed Logit (ML) model can repre-
sent both deterministic and random taste variation.
Hess and Polak (2004) found significant random taste
variation for both time-related attributes (access time,
search time, and egress time) and cost attributes. In
particular, parking cost was modeled separately for
legal and illegal parking, with the latter showing
significant taste variation across individuals. One
conclusion from the study was that drivers behave as
risk-takers: one dollar spent in (legal) parking cost
brings about more disutility than one dollar of an
expected parking fine.

Table 1. Studies on Passenger Vehicles Parking Choice Modeling

Study Data Choice Model

Main covariates

Parking
cost

Egress
time

Access
time

Search
time

Parking
capacity

Parking
duration

Parking
fine

Gillen (1978) RP Loc BL 3 3

Van Der Goot (1982) RP Loc, Type MNL 3 3 3

Axhausen and Polak (1991) SP Type MNL 3 3 3 3

Hunt and Teply (1993) RP Loc, Type NL 3 3 3

Lambe (1996) RP Loc MNP 3 3 3

Hensher and King (2001) SP Loc, Mode NL 3 3 3

Golias, Yannis, and Harvatis (2002) SP Type BL 3 3 3 3

Hess and Polak (2004) SP Type ML 3 3 3 3 3

Anderson, Das, and Tyrrell (2006) SP Loc ML 3 3

Habib, Morency, and Trépanier
(2012)

RP Type, Dur, Dep DC 3 3 3

Hilvert, Toledo, and Bekhor (2012) S&RP Type ML 3 3 3 3 3

Kobus et al. (2013) RP Type PL 3

Ibeas et al. (2014) SP Type ML 3 3 3

Chaniotakis and Pel (2015) SP Type ML 3 3 3

Qin et al. (2017) SP Type, Mode NL 3 3

Soto, Márquez, and Macea (2018) SP Type HDC 3 3 3

Note. SP, stated preferences; RP, revealed preferences; S&RP, combined stated and revealed preferences; Loc, parking location; Type, parking
type (e.g., on-street/off-street/illegal parking types); Mode, travel mode (e.g., private car/public transport); Dur, parking duration; Dep,
departure time; BL, binary logit; MNL, multinomial logit; NL, nested logit; PC, probit choice; ML, mixed logit; DC, discrete continuous; HDC,
hybrid discrete choice.
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After Hess and Polak (2004), the use of the ML
model framework with SP data became the state-of-
the-art in parking choice modeling (Anderson, Das,
and Tyrrell 2006; Hilvert, Toledo, and Bekhor 2012;
Ibeas et al. 2014; Chaniotakis and Pel 2015).

Several papers have also explored the effects of
parking congestion. Among these, Hilvert, Toledo,
and Bekhor (2012) found that driverswho need longer
parking durations are more willing to spend time
searching for parking and queueing. Ibeas et al. (2014)
found that drivers have a higher value of access time
than the value of egress time. Chaniotakis and Pel
(2015) found that, after parking cost, the uncer-
tainty of finding a vacant parking lot is the sec-
ond most important variable explaining the parking
type choice.

The duration of parking plays a key role in deter-
mining parking choice. Although previous works had
generally treated parking duration as an exogenous
explanatory variable, more recent works by Kobus
et al. (2013) and Habib, Morency, and Trépanier
(2012) have explored its endogeneity with parking
choice. To estimate the effect of parking fees on the
choice between on- and off-street parking, Kobus
et al. (2013) used a large data set of individuals’
parking duration and accounted for variable endo-
geneity using an Instrumental Variable (IV) approach.
Habib, Morency, and Trépanier (2012) integrated the
choice of parking with activity-scheduling decisions
such as trip departure time and parking duration,
estimating a Discrete-Continuous (DC) model for
parking choice, duration, and departure time.

Although most of the literature described ana-
lyzed the effects of observable factors on the parking
choice, Soto, Márquez, and Macea (2018) explored
the inclusion of individual attitudes (risk-averse at-
titude and positive-car attitude) in the modeling of
parking choice by using a Hybrid Discrete Choice
(HDC) model. The introduction of latent attitudes
was found to improve the model fit and influence
time valuations.

2.2. Parking Policies
We found three main classes of modeling approaches
used to evaluate ex-ante the impact of commercial
vehicle parking policies in the literature: analytic,
simulation, and discrete choice models.

Analytic parking models have been used to eval-
uate the effects of changes in parking price and
parking space allocation (Arnott and Inci 2006, Lam
et al. 2006). However, these studies have usually not
distinguished between freight and passenger vehi-
cles, and often have not represented parking behav-
iors. One exception was the study by Amer and Chow
(2017), which extended the on-street parking model
developed byArnott and Inci (2006) and analyzed the

impact of allocating more curb space for loading/
unloading of commercial vehicles. In their model,
trucks’ parking behavior differed from that of cars,
as cars were found to cruise for parking whenever
there were no available parking lots, whereas com-
mercial vehicles parked illegally and did not cruise
for parking.
Agent-based simulation models have been used to

evaluate parking policies, mostly from the perspec-
tive of private cars and not of commercial vehicles
(Benenson, Martens, and Birfir 2008; Waraich and
Axhausen 2012). Moreover, illegal parking has not
often been modeled. The few studies that have sim-
ulated commercial vehicle parking (Gao and Ozbay
2016, Iwan et al. 2018) have focused on testing policies
related to different curb allocation to load/unload
zones, but they have not simulated policies such as
pricing and parking enforcement, which require the
modeling of drivers’ parking behaviors.
Marcucci, Gatta, and Scaccia (2015) and Gatta and

Marcucci (2016) collected stated preference data from
transport and logistics companies to evaluate their
sensitivity toward the number of loading bays, park-
ing congestion, and road pricing. Dell’Olio et al. (2017)
focused on receivers, studying their willingness to
adopt off-hours delivery strategies and urban dis-
tribution centers. Although these papers contributed
to a better understanding of the impacts of urban
logistics and parking policies from a strategic point of
view, they did not carry out an operational analysis of
such changes. Quak and de Koster (2009) employed a
two-step methodology in which strategic responses
to delivery time windows and vehicle access re-
strictions were analyzed, and their environmental
and financial performances were evaluated by sim-
ulation. However, this approach did not incorporate
the behavior of truck drivers.
To the knowledge of the authors, the work by

Nourinejad et al. (2014) has been the only disaggre-
gate modeling of parking for truck drivers. In this
study, truck parking events were observed, and data
were used to estimate a binary logit model of the
parking location. A driver’s acceptance or rejection of
a specific parking lot was modeled as a function of
two variables: distance from final destination and
parking type (on-street vs. loading/unloading bay).
The model was implemented within an agent-based
simulation software to evaluate different allocations of
parking spaces. The combination of discrete parking
choice model and simulation model resulted in a
powerful tool to simulate parking policies. However,
this study had some limitations: (i) the model did not
estimate the effects of parking pricing or parking
enforcement on parking choice; (ii) no vehicle or
activity-specific variables were collected; (iii) in col-
lecting the data used to estimate the parking choice
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model, the authors assumed that the rejected parking
locations were available, although no data were
collected on the actual parking occupancy and con-
gestion; (iv) no data were collected on illegal parking;
and (v) the model was not policy-sensitive, that is, it
could not be used to simulate behavioral responses to
policy changes.

2.3. Research Gaps and Contributions of the
Current Work

This paper builds upon the previous work on parking
choice modeling for passenger vehicle drivers and
addresses a critical research gap in the area of com-
mercial vehicle parking behavior in urban areas. The
model developed in the rest of the paper is based on a
unique data set of revealed preferences and models
commercial vehicle parking choice.

Although several works have provided empiri-
cal evidence that commercial vehicles behave dif-
ferently than passenger vehicles, none of these works
have attempted to incorporate these differences into
a behavioral model. The current work contributes
to the empirical parking literature by analyzing sev-
eral aspects of commercial vehicle drivers’ parking
behaviors, including their willingness to pay for
parking, the effects of parking congestion and their
queueing behavior, and their attitude toward ille-
gal parking.

Finally, few studies have simulated the impacts of
parking policies for commercial vehicles, and the
models currently available allow the study of only
a limited number of policies, such as changes in
curb allocation to loading/unloading zones. So far,
no simulation framework has been developed to
test “soft-policies” such as parking pricing and
parking enforcement.

We address these research gaps in the rest of the
paper, developing a behavioral framework for mod-
eling commercial vehicle parking choice and a simu-
lation model to test different commercial vehicle
parking policies.

3. Behavioral Framework
3.1. Decision Makers and Parking Alternatives
In this study, we modeled the parking choice of a
commercial vehicle driver delivering goods, picking
up goods, or performing a service in an urban area. In
this section, we define who is the decision maker, the
choice considered, and the alternatives the decision
maker faces.

The action of parking is performed by commercial
vehicle drivers, who, upon arrival at a location, choose
where to park the vehicle while performing the desig-
nated activity. Although different stakeholders influ-
ence the parking choice (e.g., city authorities, building
managers, carrier managers, etc.), the decision-makers

considered here were commercial vehicle drivers alone.
Chatterjee and Cohen (2004, p. 3-1) defined com-
mercial vehicles as “any vehicle used for commercial
purposes” and categorized them into commercial
passenger vehicles (e.g., private shuttles and buses),
commercial freight vehicles, and commercial service
vehicles. In this study, only the latter two types were
considered: freight vehicles used to deliver and col-
lect core goods of the commercial establishments
served; service vehicles used to transport ancillary
goods and to perform several retail support functions
(e.g., maintenance and repair, cleaning and hygienic
services, safety, and security).
The decision a driver makes upon arrival at a de-

livery location iswhere to park the vehicle (the parking
choice) among a set of possible alternatives. Table 2
classifies parking alternatives across two dimensions:
whether the parking alternative is considered legal or
illegal and whether the parking occurs on-street or
off-street. Among the four combinations identified,
we restrict our attention to three of them:
• the loading/unloading bay area (LB) is a space re-

served for commercial vehicles, comprising one or
more loading/unloading bays, and often suited for
parking of larger trucks (heavy goods vehicles or
HGVs) and for the loading/unloading of a large
amount of goods;
• the passenger carpark (CRP) is primarily intended

for passenger vehicles, but smaller commercial vans
can also park;
• illegal on-street parking (STR), such as double-

parking, is a form of parking that involves the risk
of being fined if a vehicle is caught by traffic police.
We did not consider on-street legal parking (curbside
parking), given our focus on large freight traffic
generators in urban areas and the study areas ob-
served (see Section 4.2), in which curbside parking
was not available.
The provision of designated LB parking is often

regulated by the city authorities, who provide guide-
lines and regulations on theminimumparking capacity
of these facilities. However, because of land constraints
and high land values, such facilities are often not
well suited to accommodate the growing demand for
large commercial vehicle parking and are often con-
gested. Consequently, vehicle drivers face a choice of
whether to park at the LB (and potentially wait in a

Table 2. Classification of Parking Alternatives for
Commercial Vehicles

Legal Tolerated/illegal

On-street • Curbside parking • Double parking (STR)
Off-street • Loading/unloading bay

area (LB)
• Public carpark (CRP)

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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queue if all the parking slots are busy) or to choose
alternative parking locations. In the following section,
we discuss which factors influence this choice.

3.2. Determinants of Parking Choice
Commercial vehicle drivers do not operate in isolation,
as they are part of a supply chain, linking shipperswith
receivers (Holguı́n-Veras, Aros-Vera, and Browne
2015). Their actions and behaviors are usually con-
strained within a “freight activity schedule,” a plan
listing the daily sequence of pick-up and delivery
locations and, for each location, the activity to be
performed and the expected arrival time. Very often
receiving businesses prefer to have the goods deliv-
ered during their operating times, which often overlap
with peak hour traffic. Therefore, it is common for
commercial vehicles to face parking congestion upon
arrival, especially at the LB. The driver then chooses
between waiting in a queue to access the LB, or park
elsewhere (STR or CRP). We expected that the longer
the queue to access the LB, the more likely a driver will
choose an alternative parking location.

Another important determinant is the parking cost,
which often increases with the parking duration. We
considered a vehicle’s parking duration as deter-
ministic and known in advance, such that a driver is
able to correctly estimate and compare the costs of
different parking alternatives. We considered this to
be a reasonable assumption, given that such duration
often depends on the type of activity to be performed
(e.g., by the type of commodities and volumes to be
handled) and by the time at which the next con-
signment is scheduled, both of which are determined
by the freight activity schedule. The parking duration
is also an indirect measure of how much time the
driver is willing to spend at a given destination,
considering how tight is his/her daily schedule.

We grouped the attributes influencing the parking
choice into three general categories:

• alternatives-specific attributes are factors that char-
acterize the parking alternatives, usually comprising
time-invariant variables such as the parking cost and
the parking capacity, as well as time-variant factors
such as the current state of congestion;

• vehicle-specific attributes are factors that describe
the vehicle used, as well as other characteristics such
as the number of workers (which might comprise not
only the vehicle driver but also one or more helpers)
and the vehicle ownership (e.g., whether the vehicle is
owned by a retailer, supplier, or a transport and lo-
gistics company);

• activity-specific attributes describe the activity to
be performed at a given location, including the ac-
tivity purpose (e.g., whether it is a pick-up, delivery,
or service), the type of commodity handled and its
volume, and the parking duration.

There are other possible factors that also might ex-
plain the parking choice as well. One is the individual
drivers’ attitudes toward illegal parking,whichmight
be influenced by personal traits, previous history of
being fined by traffic police, the driver’s employer
attitude, and internal company policies.

3.3. A Random Utility Model of Parking
In this section, we introduce a random utility model
(RUM) of parking choice for commercial vehicles (for
further discussion on RUM we refer to Train (2003)
and Ben-Akiva and Lerman (1985)).
Consider a commercial vehicle n arriving at time t

in the vicinity of a destination where an activity
(delivery/pick-up/service) should be performed.
A vehicle is characterized by a vehicle type vn (light
or heavy goods vehicle, LGV or HGV), a parking
duration dn (exogenous and known by the driver
before making a parking choice), and by a set of other
vehicle- and activity-specific attributes Zn.
A destination is served by a universal set of parking

alternatives C, which we assumed consisting of C �
{LB,CRP, STR}, as defined.
We assumed that the individual set Cn of feasible

parking alternatives faced by a vehicle nonly depends
on its vehicle type:

Cn � LB,STR,CRP{ } if vn � LGV
LB,STR{ } if vn � HGV.

{

We assumed that a driver is free to choose any
parking location desired, considering as constraint
only whether the parking location is physically ac-
cessible (generally HGVs are too large to access
carparks suited for passenger cars and vans).
Vehicle ndriver chooses a parking alternative i ∈ Cn

considering the following alternative-specific attri-
butes: the state of congestion qit, whichwe assumed to
be time- and alternative-variant, and the parking cost
cni(dn, vn), which we assumed to be a function of the
parking duration and the vehicle type, as well as
varying across alternatives. We introduce the nota-
tion xnit � h(qit, cni,Zn), where h is any vector-valued
function, such that alternative-specific attributes can
interact nonlinearly with any other vehicle- and
activity-specific attribute.
Vehicle n driver perceives utilities {Uni}i∈Cn

for each
alternative and will choose the alternative i, which
provides him or her with the highest utility in com-
parison with the other alternatives in the individual
choice set. We modeled utilities as random variables
being a linear combination of (i) deterministic com-
ponents Vni, often referred to as the “representative”
part of the utilities and (ii) unobserved factors cap-
tured by random error terms εni. The representative
utility was modeled as a function of the observed

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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attributes Vni � β′xnit, where β is a vector of param-
eters to be estimated describing the effect of covari-
ates xnit on the utilities. The utilities can be written as
follows:

Uni � β′xnit + εni

Assuming the error terms εni to be independent, and
identically and extreme-value distributed with loca-
tion parameter η � 0 and scale parameter μ � 1, we
can compute the Multinomial Logit (MNL) choice
probabilities Pni as follows:

Pni � eβ
′xnit∑

j∈Cn e
β′xnjt

. (1)

In order to obtain estimates of the parameters β̂ and
choice probabilities P̂ni, we collected disaggregate
data of commercial vehicles parking and delivering
goods at several urban retail malls in Singapore.

4. Data Description
Detailed data on real-world commercial vehicle park-
ing and delivery operations were collected in com-
mercial urban areas in Singapore between 2015 and
2017. The following sections describe the context
and specific sites in which the data were collected,
the data collection method, and describe the sample
obtained.

4.1. Context
Singapore is a city-state and island country located
in Southeast Asia and characterized by one of the
highest population densities in the world (almost
8,000 people per km2). As the country experienced a
growing population and economy amid land con-
straints, traffic congestion soon became amajor concern.

Commercial vehicles in Singapore account for 17%
of the motor vehicle population (162,712 commercial

vehicles in 2017), travel more than private cars (a com-
mercial vehicle travels on average 35,200 km/year vs.
17,400 km/year for a car), and are usually older (ap-
proximately 36% 10 years or older vs. the 13% for cars)
(Singapore Land Transport Authority 2015, 2017).
Approximately 94% of retail sales are store-based,

and retail outlets are commonly found within urban
shopping malls, multistory buildings operated by a
mall operator (Euromonitor International 2016). Sin-
gapore has 212 malls (as of 2017), hosting 24,375 in-
mall stores. An average mall hosts approximately 120
stores and has a floor area of 35,000m2 (authors’ data).
The geographical distribution of large retail malls in
Singapore is displayed in Figure 1a.
These malls contribute to a large share of the city’s

vehicle traffic, attracting large numbers of both pas-
senger and commercial vehicles. On an average week-
day, the estimated number of total freight trips gener-
ated by all malls in Singapore is 48,750 freight trips
(authors’ data). This high number of freight trips
translates into a high demand for freight parking.
However, because of limited land availability, high
land values, and the high opportunity costs of land
usage in urban centers, malls often lack adequate
parking and logistics infrastructure to meet demand.
As a consequence, the burden of freight parking is
often shared with the neighboring streets, where
vehicles park on the curb, illegally on-street, and in
passenger-reserved parking lots.

4.2. Sites Description
We monitored vehicle arrivals at two commercial
urban areas, each hosting a large shopping mall,
thereafter named mall A and mall B. Table 3 reports
their main features. The two malls were expected to
generate similar parking demand because they hos-
ted a similar number of stores and had a similar retail
mix. However, their parking facilities were different:

Figure 1. (Color online) (a) Map of Retail Malls in Singapore (Size of Circle and Color Indicate the Number of Stores per Mall)
and (b) Distribution of Number of Stores per Retail Mall in Singapore, as of 2018

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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mall A’s LB area had a smaller parking capacity of six
parking lots, while mall B’s LB area hosted 16 parking
slots for commercial vehicles. The management of
mall A shared that commercial vehicle illegal parking
was perceived to be a significant problem. The two
malls also differed in their parking management: the
LB area at mall A was free-of-charge, whereas mall
B cost SG$1 for every 30 minutes of parking or part
thereof (SG$1 = US$0.75 as of 2018). In the streets
surrounding both malls, double continuous yellow
lines mandated no parking at all times on each
roadside (Singapore Government 1995). Moreover,
no curb space was allocated to any type of vehicle
parking. Therefore, any on-street parking in the study
areas was considered to be illegal. However, because
no parking enforcement cameras were in operation,
the only enforcement in the study areas was per-
formed by patrolling traffic police vehicles.

4.3. Data Collection Method and Data Processing
The roads and parking infrastructure surrounding
malls A and mall B were monitored for three and four
weekdays, respectively, from 7:00 a.m. to 5:00 p.m.
The observed days were distant from holidays or
sales periods. The data collection times were chosen
for the following reasons: (i) they included peak hours
(respectively at 10:00–11:00 a.m. and 2:00–3:00 p.m.);
(ii) on average, 80% of total arrivals to the loading/
unloading bay occurred during these times (Dalla
Chiara and Cheah 2017); and (iii) stores opening
times were usually at 10:00 a.m., and most deliveries
occurred when shopkeepers were present. The data
collection took place between 2015 and 2017.

Datawere simultaneously obtained from two sources
at each site: automatic road-side video recordings and
intercept driver survey. We describe both data sources
in the rest of this section.

Figure 2 depicts a hypothetical study area char-
acterized by three main elements: an LB area, a public
carpark, and a road network. At each site, several
video cameras were deployed to monitor vehicle
movements. Video cameras were placed at the en-
trances and exits of the sites’ road networks, as well as
at the entrances of the different parking facilities.
The videos were subsequently analyzed using a

license plate recognition algorithm to obtain, for each
vehicle passing through a camera location, its license
plate number (used as a vehicle’s unique identifier),
and a timestamp (refer to Sun et al. (2017) for details
on the license plate recognition algorithmdeveloped).
By tracking a vehicle across different cameras, we
obtained a set of timestamps that corresponded to the
boxes in Figure 3: (1) vehicles arriving at the study
area, (2) parking, (3) leaving the parking lot, and
(4) exiting.
The raw data points collected by the video re-

cordings were postprocessed to obtain the variables
described as follows:
• Dwell time is the total time a vehicle spent in the

study area.
• Queue length is the number of vehicleswaiting for

a parking spot in the LB to become available; it was
estimated by using the historical records of vehicles’
arrival and departure times (the queue length esti-
mation algorithm is described in Appendix B in the
online supplemental material).
• Queueing time is the time a vehicle waited to

access the LB, and was estimated as follows: (1) for all
vehicles entering the LB, the difference between the
time at which a vehicle parked and the time a vehicle
entered the study area was calculated (respectively,
timestamps 2 and 1 in Figure 3); (2) the mean of this
time interval for those vehicles that did not queue
(i.e., for which, at the time of arrival to the study area,

Table 3. Comparison Between Case Study Areas

Attribute Mall A Mall B

Commercial activities
Retail floor area 21,800 m2 29,200 m2

No. of floors 6 7
No. of stores 162 170
Retail mix - Dining: 26% - Dining: 32%

- Electronics: 19% - Electronics: 6%
- Fashion: 30% - Fashion: 31%
- Others: 25% - Others: 31%

No. of anchor tenantsa 3 5
Parking infrastructure
LB parking capacity 6 parking lots 16 parking lots
LB price Free-of-charge 1 SG$ per 30 minutes
CRP price 1.2 SG$ (first hour), 0.8 SG$

per subsequent 30 minutes
1.07 SG$ (first hour), 0.32 SG$

per subsequent 30 minutes

aStores that are larger in size and tends to produce a large amount of freight trips (e.g., supermarkets, department
stores, etc.).

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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at least one parking slot in the LB was available) was
obtained andused as the estimated travel time through
the road; (3) the estimated travel time was subtracted
from the previously computed time difference for
those vehicles that did queue to access the LB, hence
obtaining an estimate of their queueing time; (4) the
queueing time was set to zero for those vehicles that
did not queue.

• Parking duration is the time interval a vehicle was
parked andwas estimated as the difference between the
time at which a vehicle left and arrived at the parking
slot (respectively, timestamps 3 and 2 in Figure 3).

• Parking choice is either LB, CRP, or STR. Al-
though alternatives LB and CRP were directly ob-
served, we distinguished between vehicles transiting
the study area and STR parked vehicles according to
their dwell time: if a vehicle was not observed en-
tering any off-street parking facilities, and its dwell
time exceeded four minutes, then it was classified as
STR; if instead its dwell time was below four minutes,
then it was classified as in-transit. The four-minute
boundarywas the minimumdwell time of the illegally
parked vehicles, which were recorded manually.

Simultaneously with the video recordings, we con-
ducted intercept driver surveys.Apure “choice-based”
sampling protocol was used; interviewed drivers
were randomly selected within each of the three
possible parking locations. We strove to achieve a
uniform sampling rate over time. Interviews were
performed after each vehicle driver was about to
leave the parking area, with each interview lasting
approximately two to three minutes.

In addition to a vehicle plate and parking choice,
the variables recorded in the survey include activ-
ity purpose (delivery/pick-up or service), type and

volume of commodities handled, and the number of
workers (Appendix A in the online supplemental
material describes all the variables collected in the
surveys). Data from the manually collected sur-
vey were matched with the data automatically col-
lected from the road-side video cameras using the
license plates.

4.4. Sample Description
Table 4 reports the total number of commercial ve-
hicle trips observed at each mall, by data source and
parking location.
Using road-side video cameras, a total of 4,339

commercial vehicle-trips were observed arriving and
parking. We observed approximately 500 arrivals
per day at mall A, and 700 at mall B. The larger num-
ber of vehicles parking at mall B was expected, given
that mall B hosted more stores and more anchor
(larger) tenants. Figure 4a compares the hourly ar-
rival rates for mall A and B. We noted two peak hours:
the first around 10:00 a.m. and the second one around
2:00–3:00 p.m.

Figure 2. (Color online) Parking System with a One-Way Road, Two Off-Street Parking Facilities (a Loading Bay Area and a
Carpark) and Road-Side Video Cameras Deployed

Figure 3. Baseline Process Flow of Commercial Vehicle
Parking Operations

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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Weobserved a different parking distribution across
the two malls: mall A arrivals distributed equally
across different parking types, whereas mall B ar-
rivals seemed to favor the loading/unloading bay
area, followed by the carpark and on-street parking.
This was also expected, given mall B’s larger LB in
comparison with that of mall A. The mean parking
duration and LB queueing time were similar across
the two malls. Figure 4b shows the histogram of
parking duration, combining data from both malls.
We observed a right-skewed empirical distribution,
similar to a log-normal distribution. For a detailed
analysis of the data obtained, we refer to Dalla Chiara
and Cheah (2017).

Of the vehicles tracked by video cameras, 740
drivers (17% of all arrivals) were interviewed.

Several difficulties were encountered during the
interviews. In particular, vehicles illegally parked on
STR were generally reluctant to participate in the
survey. Moreover, it was not always possible to
survey carparks, as mall operators were less willing

to give permission. This resulted in sampling bias,
which was taken into account during the modeling.
Table 5 analyzes the sample composition described

by the vehicle- and activity-specific attributes ob-
served. Of the drivers interviewed, 60% used light
goods vehicles (LGVs) and, for a similar share of
vehicles, the driver alone performed the activity.
Most of the vehicles were owned by businesses
classified as “wholesale trade” (according to the
Singapore Standard Industrial Classification), fol-
lowed by transport and logistics, manufacturing, and
retailing businesses.
Regarding the activity performed, most vehicles

were observed carrying out only deliveries (84%), 8%
carried out a service activity, and another 8% were
involved in a pick-up. Although 44% delivered small
quantities of goods (less than 0.5 m3), a consid-
erable share (20%) moved large quantities (> 2m3).
A large share of vehicles carried fresh and frozen
food, whereas the remaining share distributed all
other commodity type categories. This was expected,

Table 4. Data Collection Summary

Statistic Mall A Mall B

No. days monitored 3 days 4 days
Total vehicle trips recorded by video 1,536 2,803
No. (share) vehicle trips observed parking at:
Loading/unloading bay area (LB) 498 (0.32) 1,720 (0.61)
Carpark (CRP) 504 (0.33) 671 (0.24)
On-street (STR) 534 (0.35) 412 (0.15)

No. (sharea) vehicle drivers interviewed 374 (0.24) 381 (0.14)
Mean parking duration 23.3 minutes 27.5 minutes
Mean queueing timeb 6.2 minutes 5.2 minutes

aShare of vehicles interviewed over the total vehicles detected by video recordings.
bAveraged over the queueing times of vehicles that parked at the LB only.

Figure 4. (Color online) (a) Average Commercial Vehicle Arrival Rates (Vehicles/Hour); (b) Empirical Distribution of
Parking Duration (Minutes)
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as both case study areas presented a uniform retail
mix with different kinds of stores and services sold.

5. Model Specification
Consider the case of a commercial vehicle driver nwho,
upon arrival at time t at the vicinity of the destination,
chooses parking alternative i. In the initial formula-
tion of the behavioral model of parking choice, we
assumed the following:

• the driver knows the parking duration dn;
• the driver knows (or can estimate, in the case of

illegal parking) the total parking cost, given the
parking duration;

• the driver is able to observe the queue length qit,
the number of vehicles waiting in the queue outside a
parking facility i.

The basic model specification of the representative
utility is as follows:

Vni � βi + βci ci dn( ) + β
q
i qit, i ⊆ LB,CRP,STR{ }, (2)

where βi, β
q
i , and βci are alternative specific unknown

parameters to be estimated representing, respectively,
themean of the unobserved factors, themarginal effect
of queueing, and themarginal effect of parking cost, on

the respective parking utilities. We expect both β
q
i and

βci to be negative.Moreover, wewill normalize βLB � 0
for identification purposes.
In the following sections, we discuss different for-

mulations of the effects of cost and queueing on the
parking choice, as well as behavioral heterogeneity
among drivers.

5.1. Effect of Parking Cost
Different parking alternatives have different parking
costs. Off-street parking (LB and CRP) are priced
according to a parking tariff, a fixed price per unit of
parking time or part thereof. These costs (cLB and cCRP)
are an increasing nonlinear function of parking du-
ration. Figure 5 displays the total cost of parking at
mall B (mall A’s cost functions are similar) for varying
levels of parking duration. The cost function for off-
street parking appears as a step function.
In this study, on-street parking was considered to

be a form of illegal parking,which involved a cost that
equals to the parking fine only if a parked vehicle was
caught by a patrolling traffic police car. This (cSTR)
was modeled as an expected cost:

cSTR � E fine
[ ] � fine vn( ) × pfine, (3)

Table 5. Sample Composition

Attribute Level Share

Vehicle attributes
Vehicle type Light goods vehicle (LGV) 0.61

Heavy goods vehicle (HGV) 0.39
Number of passengers 1 passenger (driver only) 0.62

> 1 passengers 0.38
Vehicle owner type Wholesale 0.39

Transportation and logistics 0.17
Manufacturing 0.12
Retail 0.11
Others 0.05
Unknown 0.16

Activity attributes
Activity purpose Delivery only 0.84

Service activity 0.08
Delivery and pick-up 0.06
Pick-up only 0.02

Volume [0, 0.5]m3 0.44
(0.5, 1]m3 0.22
(1, 2]m3 0.17
> 2m3 0.17

Commodity type Fresh and frozen food 0.25
Nonperishable food 0.15
Prepared food 0.12
Service vehicles 0.08
Clothing and accessories 0.07
Recreational goods and stationeries 0.07
Optics, photography and electronics 0.07
Cosmetics, cleaning, pharmaceutical 0.05
Household goods 0.02
Unknown 0.12
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where fine(vn) is the level of the parking fine as a
function of vehicle type (in Singapore the fine level for
LGVs is SG$70, for HGVs is SG$100), and pfine is the
probability of getting fined, which increases with the
parking duration and with the level enforcement.
Let’s assume a traffic police car patrols the area
according to a Poisson process with rate λ (arrivals
per minute). Because of the memory-less property of
the Poisson distribution, the time interval T between
the arrival of vehicle n that parks illegally and the time
of arrival of the next patrolling car is exponentially
distributed with parameter λ. Then, given that the
vehicle stays time dn minutes on-street, and assuming
a patrolling rate λ, the probability of being fined is

pfine � P T ≤ dn( ) � 1 − e−λdn , (4)
and therefore, the expected cost of on-street parking is

cSTR � fine vn( ) × 1 − e−λdn
( )

. (5)
Different values for λwere tried, and the enforcement
level of two visits per day resulted in the highest
model goodness-of-fit. Hence, in the rest of the study,
we assumed two visits per day, which corresponds to
λ � 2/(24 ∗ 60) � 0.0014 per minute.

The expected fine cost for on-street parking is
plotted in Figure 5 separately for LGVs andHGVs and
for varying levels of parking duration.We observe the
following: (i) for HGVs, the STR alternative is the
most expensive parking option for parking durations
of longer than 15 minutes; (ii) for LGVs, the expected
cost of STR follows the cost of CRP and becomes
increasingly more expensive with longer durations;

(iii) for vehicles with parking durations of shorter
than 15 minutes, the expected cost of STR is lower
than the cost of LB.
We tested for nonlinearity for both the effects of on-

street and off-street parking and found no significant
improvement in the model goodness-of-fit.

5.2. Effect of Parking Congestion
Although CRP parking capacity is very large and STR
parking can take place virtually anywhere on a road,
the LB parking capacity is limited. At any point in
time, there is a probability that the LB capacity is
fully utilized, and arriving vehicles might have to
queue to access the LB. A driver who observes a long
queue upon arrival might choose to park elsewhere.
Therefore, parking congestion is an important variable
that influences parking choice. We explored (i) how a
driver estimates the queueing time, (ii) potential non-
linearity, and (iii) endogeneity problems of parking
congestion affecting parking choice.
At arrival, a vehicle driver observes the queue

length qt to enter the LB, measured as the number
of vehicles waiting on-street to access the facility.
A “naı̈ve driver” estimates thewaiting time by looking
at qt alone. However, different LBs might have dif-
ferent parking capacity, and therefore an “informed
driver” is able to better estimate the expected queueing
time by considering both the queue length and the
parking capacity: for a given queue length, a queue is
expected to deplete faster at a larger LB than at a
smaller one.
Previous studies that analyzed consumers’ queue-

ing behaviors (Lu et al. 2013; Conte, Scarsini, and
Sürücü 2016) found two types of individuals: those
who consider only the queue length and those who
consider both queue length and its speed in esti-
mating the expected queueing time. In general, the
effect of queueing seems to be context-dependent. In
our specific case, we expected commercial vehicle
drivers to have knowledge of the system (hence of
the parking capacity at a given location) and to
therefore be able to estimate correctly the expected
queueing time.
In Table 6 we show eight different tested specifi-

cations of a choice model (I) and compare their
goodness-of-fit. In specifications I–IV the state of the
queue was a function of queue length alone (qt),
whereas in specifications V–VIII it was entered as
fraction qt/N, where N is the parking capacity. The
specifications that took into account parking capacity
performed better than those that considered queue
length alone. We concluded that in our case the
commercial vehicle drivers behave as informeddrivers
who use not only queue length but also parking ca-
pacity to estimate queueing time.

Figure 5. Total Cost (Singapore Dollars) of Parking by
Parking Duration and Parking Choice (at Mall B)
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We also tested for nonlinearity in the effect of
queueing on parking choice. Three nonlinear for-
mulations of queue length were tested: quadratic,
Box-Cox, and piecewise linear transformation. In the
quadratic transformation, an extra term multiplied
the square of queue length. The Box-Cox transfor-
mation was formulated as follows:

qt
( )δ−1

δ
, (6)

where δ is the unknown transformation parameter to
be estimated. Finally, the piecewise transformation
tested whether different queue lengths influence the
parking choice differently, in particular, we tested
separately for short (only one vehicle in the queue),
medium (two to three vehicles in the queue), and long
(four-plus vehicles in the queue) lengths.

In Table 6, among the models accounting for
parking capacity (models V–VIII), thosewith the best
goodness-of-fit weremodel VI, inwhich the term qt/N
entered both as linear and as quadratic; andmodel VII,
in which the term qt/N was transformed according
to the Box-Cox transformation. In comparison with
the quadratic form, the Box-Cox transformation has
several advantages: it avoids potential collinearity
between the linear and the quadratic terms, and it is
a more flexible functional form. Figure 6 compares
the effect of different functional forms for the term
qt/N on the utility. Note that, in the quadratic func-
tional form, utility seemed to improve whenever
qt/N > 0.61. This is explained by the fact that less than
5% of the observed vehicles experienced such long
queues (> 4 in mall A, and > 10 in mall B). The Box-
Cox transformation did not show such behavior and,
therefore, was the preferred transformation.

5.2.1. Endogeneity of Queue Length. One necessary
condition to obtain unbiased estimates of the un-
known parameters is the exogeneity of the explana-
tory variables. Whenever an observable covariate is
correlated with unobserved factors contained in the

error term (hence its endogeneity), its coefficient es-
timate will capture not only the effect of the variable
itself but also the effect of the correlated unobserved
factors on the utility (Train 2003).
In the parking situation analyzed, an arriving ve-

hicle driver who observes a long queue might choose
to not join it and park elsewhere. However, other
factors such as a temporary closure of a road lane or
the passage of a police car might also influence the
vehicle driver, who would then be willing to join
queues that were unacceptable in a normal situation.
Therefore, we suspected that the queue length is
positively correlated with unobserved factors that
make the LB a more attractive alternative, introduc-
ing a bias toward zero.
A Control Function (CF) approach was used to

correct the coefficient bias of the queue coefficient due
to the endogeneity of queue length. The CF consists of
a two-step procedure (Guevara and Ben-Akiva 2006,

Table 6. Goodness-of-Fit Comparison for Different Specifications of the Effect of Queue on
Parking Choice

Model Attribute
Functional

form
No.

param.a
(-) Log-

likelihood
Akaike Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

I qt Linear 1 365.043 (8)b 742.085 (8)b 769.725 (7)b

II qt Quadratic 2 363.412 (7) 740.823 (7) 773.070 (8)
III qt Box-Cox 2 359.055 (5) 732.110 (4) 764.356 (5)
IV qt Piecewise l. 3 358.064 (4) 732.128 (5) 768.981 (6)
V qt/N Linear 1 360.421 (6) 732.842 (6) 760.481 (3)
VI qt/N Quadratic 2 354.591 (1) 723.182 (1) 755.428 (1)
VII qt/N Box-Cox 2 354.635 (2) 723.270 (2) 755.516 (2)
VIII qt/N Piecewise l. 3 355.034 (3) 726.067 (3) 762.920 (4)

aNumber of parameters estimated.
bRanking from 1 (best) to 8 (worst) model goodness-of-fit.

Figure 6. (Color online) Comparison of Different
Specifications of Queue Length Effect on the Utilities
of Different Parking Alternatives
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Petrin and Train 2010). First, an auxiliary regression
of the queue length on an instrumental variable
is estimated:

qnt � α0 + α1arrt + μnt, (7)
where arrt represents the number of arrivals to the LB
in the time interval (t, t − 1h), α0 and α1 are unknown
coefficients to be estimated, and μnt is a random error
term. arrt is a good instrumental variable if it is cor-
related with the queue length and uncorrelated with
other factors that positively affect the utility of LB.
Then the error term μnt captures the factors that in-
duce correlation between the queue length and the
error term εni in Equation (2). Next, we compute the
regression residuals of Equation (7), denoting them as
μ̂nt. These fitted residuals are then included as an
explanatory variable in the utility function 2.

5.3. Preference Heterogeneity
The effect of cost, expected fine, and queueing on the
parking choice might vary across drivers. These dif-
ferencesmight be related to observable characteristics
of the decision makers. For instance, we expected
LGV drivers to differ from HGV drivers in their at-
titudes toward parking fines, given that their choice
set is larger and the parking fine is lower. We also
expected drivers with a larger volume of goods to be
delivered to prefer the LB, because it is often equipped
with freight elevators and elevated platforms.

Systematic taste variation was tested by segment-
ing the population into different groups using the
vehicle- and activity-specific variables listed in Table 5.
First, each of these variables was entered alone in the
model, hence testing their influence on each alter-
native’s alternative-specific constant (ASC). Then,
the variable was interacted with alternative-specific
variables, thus testing whether the effects of parking
cost, expected fine, or queueing differ across groups.
The model addition is retained only if it provides a
significant improvement to the model goodness-of-fit.

An additional, purely random variation in taste
might exist as a result of unobserved population
segments or simply due to individuals’ differences.
The presence of such random taste variation can
be tested by using the Mixed Logit (ML) model
framework. We assumed that the coefficient of the
alternative-specific variables varied according to a
random continuous distribution, with unknown dis-
tribution parameters to be estimated. Both normal and
lognormal distributions were tested. Although it is not
recommended to assume a normal distribution for
parameters that are expected to be negative, the use of
a lognormal distribution resulted in extremely large
estimates for standard deviations. Moreover, by as-
suming normally distributed parameters, we obtained

a small (below 2%) cumulative probability of the co-
efficients to be positive. We, therefore, assumed nor-
mallydistributedparameters for the alternative-specific
variables and tested whether the estimated standard
deviations were significantly different from zero.

5.4. Final Model Specification
The final model specification is reported below (we
omit the subscript n to simplify notations):

ULB � βcLBcLB d( ) + βc,servLB cLB d( )1 service[ ]

+ β
q
LB

qt/N
( )δ−1

δ

( )
+ βvolLB

volume
workers

( )
+ λμ̂ + εLB

UCRP � βCRP + βcCRPcCRP d( ) + εCRP

USTR � βSTR + β
f
STRcSTR d( ) + β

f ,hgv
STR cSTR d( )1 HGV[ ]

+ β
help
STR1 workers≥1[ ] + βtlSTR1 TL[ ] + εSTR,

(8)
where
• βCRP, βSTR are unknown Alternative Specific Con-

stants (ASC) for carpark (CRP) and on-street (STR)
parking alternatives; the ASC for LB parking is nor-
malized to zero for identification purposes;
• βcLB is the unknown parameter that multiplies the

LB parking cost cLB; whenever the activity purpose is
service, then an additional effect of LB cost is βc,servLB ,
which multiplies the LB cost and dummy variable
1[service] that takes a value of 1whenever the vehicle is a
service vehicle;
• βcCRP is the unknown parameter that multiplies

cCRP(d), the total cost of CRP;
• β

f
STR is the unknown parameter that multiplies

the STR cost; whenever the vehicle is HGV, an ad-
ditional effect of STR cost is βf ,hgvSTR , whichmultiplies the
STR cost and dummy variable 1[HGV];
• β

q
LB is the unknown parameter representing the

effect of congestion at the LB; it multiplies the Box-
Cox transformation of the queue length;
• βvolLB is the unknown parameter for the effect of

volume of goods handled per worker, which multi-
plies the total volume of goods (volume) divided by
the total number of workers (workers);
• λ is the unknown parameter that multiplies the

control function fitted residuals (μ), to correct for the
endogeneity of queue length;
• β

help
STR is the unknown parameter multiplying

dummy variable 1[workers≥1], which takes a value of 1
whenever the driver has one or more helpers, and
0 otherwise;
• βtlSTR is the unknown parameter multiplying

dummy variable 1[TL], which takes a value of 1
whenever the vehicle owner is a transport and lo-
gistics company; and
• εLB, εCRP, εSTR are random error terms.
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We noted that the effect of parking duration was
indirectly captured in the model, as parking cost is a
function of duration. However, the direct effect of
duration on the parking choice was not included
in the final model. Several variants of the model
here formulated are estimated and compared in the
next section.

6. Empirical Results
Parameters of model 8 were estimated by using the
sample of commercial vehicles observed at mall A
and B, described in Section 4.4.

We compared three nested formulations ofmodel 8:
• Model I is an MNL model with alternative-

specific variables only;
• Model II uses the same formulation as model I,

but additionally it segments the population of com-
mercial vehicle drivers into segments showing sig-
nificantly different parking behaviors;

• Model III is an ML model that, in addition to
model II, includes random taste variation.
Estimation was performed by using PythonBiogeme,
an open-source free-ware for maximum likelihood
estimation (Bierlaire 2016). The model coefficients
were first estimated by Exogenous Sample Maxi-
mum Likelihood (ESML). A correction to the model
alternative-specific constants was then applied to
account for sampling bias (following Manski and
Lerman 1977) due to difficulties encountered in col-
lecting data at STR and CRP locations (explained in
Section 4.4). Appendix C in the online supplemental
material describes the estimation procedure and the
bias correction method.

Table 7 reports, for each model, the estimates of the
coefficients, their asymptotic robust standard devi-
ations, and the p-values of the individual coefficients’
t-tests, which describes whether a coefficient is sig-
nificantly different from zero.

The estimated coefficients have the following
implications.

• Parking cost has a negative effect on both al-
ternatives CRP and LB. By dividing the coefficient for
LB parking cost by the coefficient for the CRP cost, we
obtained a ratio of 0.795 (using the estimates from
model III) for freight vehicles and a ratio of 1.114 for
service vehicles. Hence, service vehicles are more
willing to pay for CRP than for the LB,whereas freight
vehicles are more willing to pay for LB than CRP.

• The sign of the coefficient of the expected parking
fine is negative. However, its magnitude varies for
LGVs andHGVs. Interestingly, one dollar of expected
fine generates more disutility to LGV drivers than to
HGV drivers, even if the fine is larger for HGVs. This
might be explained by the fact that LGV drivers
can choose among more parking alternatives than
HGVs. Consequently, HGVs are less flexible and

more willing to accept the payment of higher parking
fines. Moreover, the coefficient for the expected fine is
the only parameter that showed random taste vari-
ation. We compared the effect of expected fine with
the cost of parking at the LB by dividing the two
respective coefficients. We obtained, for both
freight and service vehicles, and for both LGVs and
HGVs, ratios below one. This means that a single
dollar paid in LB parking fees carries less disutility
than one dollar paid in parking fine. However, con-
sidering the distribution of the expected fine, we can
compute the percentage of vehicles for which this
ratio is above one. Although less than 10% of LGVs
have a ratio above one, this percentage increases to
20% for HGVs, indicating that HGVs are more prone
to illegal parking than to LGVs. However, in com-
paring the results with that from a similar analysis
carried out for passenger vehicles (see tables 3–5 in
Hess and Polak 2004), we noted that passenger ve-
hicle drivers are more risk-prone than commercial
vehicle drivers. One reason could be that it is a
common practice for logistics companies to pay for
parking fees, whereas parking fines are charged to
the driver.
• The parameter capturing the effect of parking

congestion is negative, and its Box-Cox transforma-
tion parameter δ is not significantly different from
zero. However, δ is significantly different from 1 at a
0.01 significance level for all three models. Therefore,
queue length has a nonlinear effect on the choice
of LB, and the relationship is approximately loga-
rithmic. The effect of congestion on the attractiveness
of LB seemed to decrease in magnitude as congestion
increases. This is counter-intuitive, but it might be
explained by the fact that drivers arriving during
peak hours might expect longer queues, which make
the presence of congestion less important to their
parking choice. On the other hand, “unexpected
congestion” in the form of smaller queues forming
occasionally might deter drivers arriving during off-
peak hours, who perhaps do not expect congestion at
all. Moreover, as discussed in Section 5.2, the model
goodness-of-fit improved when parking congestion
wasmodeled as the fraction of queue length by parking
capacity, instead of queue length alone, which might
indicate that drivers are well informed of the parking
capacity and use this information to better predict
queueing time. Finally, the parameter λ multiplying
the control function residuals is significantly different
from zero. When added to the model, the effect of
queue length increases in magnitude, which might be
interpreted as a correction of the endogeneity of
queue length.
• Preference for a certain parking type varies

with vehicle- and activity-specific characteristics.
The larger the volume of goods handled per worker,

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
Transportation Science, 2020, vol. 54, no. 3, pp. 606–630, © 2020 The Author(s) 621

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
4.

36
.4

7.
12

] 
on

 2
7 

O
ct

ob
er

 2
02

3,
 a

t 1
4:

17
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



the more likely a vehicle is to park at the LB. This
result is expected, because the LB is often equipped
with freight elevators and ramps, making it easier for
workers to carry larger quantities of goods. On the
other hand, whenever there are one or more helpers,
the driver is more likely to park illegally. One ex-
planation for this behavior is that whenever there are
helpers, the driver is able to stay in the vehicle while
the other performs the delivery/pick-up, with the
advantage of being able to move the vehicle when-
ever traffic police are seen arriving. Finally, there is a
tendency for vehicles owned by transport and lo-
gistics companies (e.g., couriers) to be more willing
to park illegally on-street. This might be explained
by the fact that these vehicles may be more in of a
“hurry” than vehicles owned by manufacturers, sup-
pliers, or retailers because they may have to perform
more deliveries in a single day, hence the tendency to
resort to illegal forms of parking. Finally, we did not
observe any significant improvement of the model

goodness-of-fit by adding the type of commodity as a
set of binary variables to the model, and therefore they
were not added to the final model formulation.
Table 8 reports the summary statistics of eachmodel’s
goodness-of-fit. A large decrease in the final log-
likelihood can be seen when vehicle- and activity-
specific variables were added to the model (going
from model I to II). However, the inclusion of ran-
dom taste variation in model III did not bring about
much further decrease in the final log-likelihood,
with only the coefficient for the expected fine being
randomly distributed.

6.1. Model Validation
The predictive abilities of the models derived above
were tested on out-of-sample data by leave-d-out
cross-validation (see Appendix D in the online sup-
plemental material). We iteratively partitioned the
original sample into test and training sets K times,
each time random sampling without replacement d

Table 7. Estimation Results

Coefficient estimates (robust standard error)

Coefficient Explanatory variable Model I Model II Model III

LB-specific attributes
βcLB LB park cost −0.428∗∗∗ −0.816∗∗∗ −1.049∗∗∗

(0.118) (0.193) (0.294)
βc,servLB LB park cost × Dummy: service vehicle / −0.514∗∗ −0.421·

(0.185) (0.243)
β
q
LB Queue length / LB capacity −1.510∗∗ −2.340∗ −2.495∗

(0.559) (1.070) (1.100)
δ Box-Cox transformation parameter −0.357 −0.891 −0.668

(0.448) (0.706) (0.608)
βvolLB Total volume/No. passengers / 0.526∗∗∗ 0.584∗∗∗

(0.179) (0.205)
λ Control function residuals / −0.133∗∗∗ −0.121∗

(0.037) (0.051)
CRP-specific attributes

βCRP CRP alternative specific constant −1.005∗∗∗ −2.425∗∗∗ −2.505∗∗∗
(0.343) (0.727) (1.010)

βcCRP CRP park cost −0.121 −1.140∗∗∗ −1.319∗∗∗
(0.307) (0.374) (0.424)

STR-specific attributes
βSTR STR alternative specific constant −0.760∗∗∗ −3.170∗∗∗ −2.170∗

(0.286) (0.762) (1.290)
β
f
STR Mean expected fine −0.682∗∗∗ −1.380∗∗∗ −3.076∗∗∗

(0.151) (0.289) (1.090)
σf Standard deviation of expected fine / / 1.103∗

(0.506)
β
f ,hgv
STR Expected fine × Dummy: HGV / 0.759∗∗∗ 1.125∗∗∗

(0.224) (0.396)
β
help
STR Dummy: ≥ 1 helper / 1.380∗∗∗ 1.776∗∗∗

(0.269) (0.378)
βtlSTR Dummy: transport and logistic sector / 0.555 · 1.009∗

(0.306) (0.483)

Note. CRP, carpark; HGV, heavy goods vehicle; LB, loading/unloading bay area; STR, on-street.
***p ≤ 0.001; **p ∈ (0.001, 0.01]; *p ∈ (0.01, 0.05]; ·p ∈ (0.05, 0.1].
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observations, leaving them out as a test set, and us-
ing the remaining as a training set. At each iteration,
the model coefficients were estimated by using the
training set, and the choice probabilities were com-
puted for each observation in the test set. Then, a
Monte Carlo simulation was performed on each ob-
servation in the test set B times, each time predicting a
parking choice. We then computed the “hit rate” by
assigning a score of 1 whenever the predicted choice
corresponded to the observed choice, and 0 other-
wise. The mean hit rate and its standard deviation
were reported for different model formulations. The
higher the mean hit rate, the higher is the model
predictive capability to predict the parking choices for
the test set. We compared four different model for-
mulations: a constant-only MNL model, whose esti-
mation required only observing the parking shares
without any need of disaggregated data at the level of
individual vehicle arrivals; and models I–III, de-
scribed in Section 6. Table 9 reports the means and
standard deviations of the hit rates for each model
formulation. Twenty percent of the observationswere
used as a test set, and parameters K and B were set
equal to 100. Moreover, because the parameter rep-
resenting the effect of the expected parking fine in
model III (ML model) was randomly distributed, in-
dividuals faced different values for this parameter,
randomly sampling it from the estimated distribution.

Themean hit rate was computed for all individuals,
as well as separately for individuals choosing LB,
CRP, and STR. All models, including the base model,

showed a good predictive ability for LB parking,
because this was the preferred choice. In compari-
son with the base model, by adding the alternative-
specific variables in model I, the prediction improved
slightly for LB, CRP prediction largely improved, and
STR parking was still poorly predicted. By adding
vehicle- and activity-specific variables (model II and
III), the largest improvement in prediction was seen
for STR parking. Finally, models II and III had similar
predictive performance, with model III showing a
slightly larger standard deviation than model II.

7. Policy Simulation
The parking choice model (model II described in Sec-
tion 6) was used to assess the operational impacts of
different parking policies. In this section, we discuss a
method to simulate a hypothetical parking system,
such as the one described in Figure 2. Historical
records of the 4,400 commercial vehicles collected at
the urban malls described in Section 4.3 were used as
input to a discrete-event simulation, which tracked
vehicles as they arrived and made their way through
the network of parking facilities. The choice of parking
was simulated for each vehicle arrival by Monte Carlo
simulation using the probability distributions over the
choice sets obtained from the parking choice model. In
addition to individuals’ parking choices, the model
also outputs the resulting system congestion.
We simulated different policies: changes in loading/

unloading parking capacity, changes in parking tariffs
and parking fines, and the introduction of a central-
ized receiving policy, in which helpers staged at the
loading/unloading bays area (LB) would reduce in-
dividuals’ parking duration by helping drivers per-
forming the delivery/pick-up.
The simulated policies were compared in their

ability to reduce the mean delivery cost, and carbon
dioxide emissions, which we will refer to, respec-
tively, as financial and environmental impacts.

7.1. Simulation Model
A mall can be described as a queueing system in
which the system arrivals are commercial vehicles
and the system resources are its road and parking

Table 8. Model Estimation Summary Statistics

Statistics Model I Model II Model III

No. parameters 7 13 14
Sample size 740 740 740
Initial log likelihood −613.079 −613.079 −613.079
Final log likelihood −354.635 −296.753 −292.075
ρ2 0.422 0.516 0.524
ρ̄2 0.410 0.495 0.501
Akaike Information

Criterion (AIC)
723.270 619.506 612.149

Bayesian Information
Criterion (BIC)

755.516 679.392 676.642

No. draws / / 100,000

Table 9. Hit Rate Means and Standard Deviations

Model Description

Mean (standard deviation) hit rate

All LB CRP STR

Base Constants-only MNL model 0.649 (0.036) 0.787 (0.039) 0.252 (0.127) 0.144 (0.077)
I MNL model without segmentation 0.704 (0.034) 0.825 (0.035) 0.402 (0.143) 0.235 (0.093)
II MNL model with segmentation 0.759 (0.032) 0.854 (0.032) 0.494 (0.144) 0.407 (0.103)
III ML model 0.763 (0.076) 0.856 (0.112) 0.532 (0.154) 0.406 (0.183)

Note. CRP, carpark; LB, loading/unloading bay area; MNL, multinomial logit; STR, on-street; ML,
mixed logit.
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infrastructures. Each resource is characterized by a
given number of servers (number of spaces that can be
occupied by one vehicle at a time). When all the
servers are busy, vehicle arrivals have to wait in a
queue until a server becomes available. In order for a
vehicle to successfully perform its activity (delivery,
pick-up, or service), it has to occupy a parking server
for a given parking duration.

ADiscrete-Event Simulation (DES)modelwas used
to simulate such a queueing system (Law 2015).
Figure 7 depicts the DES model implemented, which
is characterized by three types of resources (repre-
sented as circles):

• STR resources represent a road, which is virtu-
ally split into three segments: an ingress segment
(STR-I); a parking segment (STR-P), which illegally
parked vehicles occupy; and an egress segment (STR-E).
STR-types of resources are characterized by an in-
finite number of servers (no queue forms). Each ve-
hicle spends a random amount of time at the STR-I
and STR-E, representing the travel time in and out
of the system;

• the LB resource represents the loading/unloading
bays area and is characterized by a finite number
of servers;

• the CRP resource represents a public carpark and
is characterized by an infinite number of servers.
Resources are linked by arrows representing different
vehicle trajectories. After accessing the system by
occupying a server at the STR-I, a vehicle driver
would choose where to park among LB, STR-P, or
CRP. The parking choice was simulated by using the
choice model presented. The choice model took as
inputs a vehicle’s parking duration, activity, and
vehicle-specific characteristics (deterministic inputs
except the parking duration in the case of the cen-
tralized receiving policy scenarios); the number of
vehicles waiting in queue to access the LB at the time
of the vehicle arrival (output of the DES model); and
the characteristics of the parking alternatives (fixed
by the researcher according to the desired policy
scenario). The choice model estimated a vehicle’s

choice probabilities, and a Monte Carlo simulation
was performed to choose a parking resource. We
assumed that (i) once a parking resource had been
chosen, the driver would not change his or her mind,
and (ii) a vehicle would not leave the system until its
parking duration had been completed.
The DES model takes two sets of inputs: parking

supply and parking demand inputs. Parking sup-
ply inputs are a set of parameters whose values are
fixed by the researcher, describing the main fea-
tures of the parking infrastructure and its man-
agement. Each combination of parking supply input
values determines a “scenario.” These parameters
were as follows:
• LB parking capacity (we assumed all other nodes

had infinite capacity);
• LB and CRP parking cost (SG$ per unit of time);
• fine level for LGVs and HGVs (SG$); and
• parking enforcement level (number of traffic

police visits per day).
The parking demand consisted of the complete record
of historical arrivals and departures of approximately
4,400 commercial vehicle trips, collected atmall A and
mall B (described in Section 4.3). Each vehicle’s real
arrival and departure time, parking duration, and
typewere used asfixed inputs to themodel.However,
because to simulate the parking choice, the full set of
individual attributes was needed, and these were
available only for a subset of the arrivals (those
manually surveyed), we artificially input the missing
values by using a Random Forest regression method
(Stekhoven and Buhlmann 2012), trained using the
arrivals for which the complete set of attributes is
available (approximately 750 observations).
For each vehicle arrival, the DES model records the

simulated parking choice and the time spent queue-
ing (if any).
The model was calibrated against the real observed

parking demands and queueing time distribution.We
calibrated two sets of parameters: the STR-I travel
time was adjusted to reflect the observed travel time
distribution; and the alternative-specific constants
(ASC) of the choice model were adjusted to reflect
site-specific parking demands by iteratively adding
the term log(Mi/M̂ik) in the respective utility func-
tions, where Mi is the observed share of vehicle
choosing alternative i and M̂ik the simulated share for i
at iteration k. We iteratively (i) simulated, (ii) com-
puted the parking demand shares, and (iii) adjusted
the model ASCs, until the observed and simulated
shares were close enough (Train 2003).
Appendix E in the online supplemental material

compares the observed parking demands and aver-
age queueing time with the respective quantities
obtained by simulating the system using the actual
parking supply inputs (“baseline” scenario) after

Figure 7. (Color online) Discrete-Event Simulation
Model Framework
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calibration. The derived model was found to closely
replicate real parking behaviors and parking con-
gestion. In the next section, we describe policy sce-
narios tested.

7.2. Policy Scenarios
The current state of the system, reflected in the data
collected at mall A and mall B, is referred to as the
baseline scenario, for which parking supply inputs
are described in Table 3. Each “parking policy” de-
viated from the baseline scenario by changing one
attribute (e.g., the parking price or the parking ca-
pacity). For each policy, we identified two scenarios:
one associatedwith a “positive” change, and the other
related to a “negative” change. Table 10 describes the
parking policy scenarios we were interested in sim-
ulating. The attributes’ values were chosen to re-
flect actual changes that might take place in the
observed context.

The Centralized Receiving (CR) policy consists of
placing at the LB specialized personnel to help vehicle
drivers perform deliveries/pick-ups. We simulated
the effect of this policy by assuming that these helpers
would reduce a vehicle parking duration d to a given
level d̄ as follows:

dCR � min d, d̄
( )

, (9)

where dCR is the parking duration of a vehicle that
parked at the LB under the CR policy regime. We
tested two scenarios of such a policy: an “efficient”CR
regime with d̄ � 15 minutes, and an “inefficient” CR
regime with d̄ � 30minutes. We further assumed that
all vehicles choosing LB would be served by CR at a
cost of SG$4 per m3 of goods handled on top of the
parking cost (service vehicles would not be affected
by this policy).

7.3. Impact Metrics and Policy Classification
Three types of policy impacts were obtained from the
simulation: operational, financial, and environmental

impacts. In the following paragraphs, we describe
how these metrics were computed (for more details,
we refer to Dalla Chiara 2018).
Operational impact metrics were the aggregate de-

mands for the different parking alternatives and the mean
time that vehicles parking at the LB spent queueing.
The financial impact was measured as the average

generalized cost (in SG$) incurred by a carrier to park
and perform a delivery/pick-up or a service. We
considered three cost components: labor, parking,
and fuel cost. Labor cost was defined as the product of
a vehicle’s dwell time (which included queueing and
parking duration) and its value of time. Parking cost
consisted of the parking fee or the expected parking
fine (according to whether a vehicle was parked le-
gally or illegally). Fuel cost was computed by mul-
tiplying the total fuel consumed while idling on-
street (either queueing or on-street parking) by the
fuel cost.
The environmental impact was measured as the

total amount of carbon dioxide (CO2) emitted by all
vehicles transiting and parking in the system. There
were two types of emitting agents: (on-street) idling
vehicles and in-transit vehicles. Commercial vehicles
idle on-street (usually leaving the engine on) either
waiting to park or parking illegally. Transiting ve-
hicles are those that do not intend to park but whose
travel speeds through the area are negatively affected
by the idling vehicles. Idling emissions were com-
puted simply by multiplying the total time spent on-
street by appropriate emission factors, which con-
verted the idling time intoCO2 emissions. To compute
the driving emissions, we used the formulas derived
in Hickman (1999), in which the amount of CO2
emitted by a vehicle traveling a road segment is a
function of the vehicle type (LGV, HGV, or passenger
car), the length of the road segment, and the average
travel speed. The latter one depends on the current
traffic conditions and on the number of vehicles idling
on-street, which is an output of our DES model. We
computed the effects of idling vehicles on the average

Table 10. Parking Policies and Scenarios Description

Policy Scenario Description

Parking capacity PC-1 Increase loading bay capacity (add 2 lots)
PC-2 Decrease loading bay capacity (remove 2 lots)

Loading bay pricing PRL-1 Free loading bay parking
PRL-2 Expensive loading bay parking (1.5 SG$/15 minutes)

Carpark pricing PRC-1 Free carpark parking
PRC-2 Expensive carpark parking (1.5 SG$/15 minutes)

Parking fine PF-1 Decrease parking fine by 25%
PF-2 Increase parking fine by 25%

Parking enforcement PE-1 Low enforcement level (1 visit per day)
PE-2 High enforcement level (5 visits per day)

Centralized receiving CR-1 Efficient centralized receiving (15 minutes upper bound)
CR-2 Inefficient centralized receiving (30 minutes upper bound)

Dalla Chiara et al: Modeling Commercial Vehicles Parking Choice
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travel speed by using the formulas derived by Amer
and Chow (2017).

According to the changes in financial and envi-
ronmental impacts with respect to the baseline sce-
nario, we categorized the policy scenarios into four
categories, represented on a two-dimensional plot in
Figure 8: (I) cost-saving scenarios are those that de-
crease costs but increase emissions; (II) inefficient
scenarios are those that increase costs and emissions;
(III) optimal scenarios are those that decrease both costs
and emissions; (IV) green scenarios are those that only
decrease emissions but increase costs.

7.4. Simulation Results
The DES model described was implemented by using
the Simmer package for the R software (Ucar, Smeets,
and Azcorra 2019). For a given scenario, each day of
recorded vehicle arrivals was simulated 1,000 times.
For each day, vehicles’ arrival times, vehicle- and
activity-specific characteristics, and their parking du-
rations did not change across simulations. The only
sources of randomness were the parking choices (for
which the probability distribution was estimated for
each vehicle arrival by the random utility model de-
rived in the previous sections), the resulting parking
congestion (hence the queueing times), and the road
travel times.

For each simulated day, the operational, financial, and
environmental impact metrics were derived, and the
percentage changes with respect to the baseline scenario
values were computed (see Appendix E in the online
supplementalmaterial). Themeanpercentage changes in

financial and environmental impacts (the averages were
taken over all days for which input arrivals were
recorded in the samemall) for all the 12 policy scenarios
are reported in Table 11, separately for mall A and
mall B. The scenario operational impact metrics are
reported in Appendix F in the online supplemental
material. According to the resulting impact changes,
scenarios are classified into optimal, green, cost-
efficient, and inefficient (Figures 8 and 9).
Three scenarioswere classified as “optimal” in both

malls: increase parking capacity (PC-1), free-of-charge
carpark (PRC-1), and efficient CR policy (CR-1).
By enlarging the LB capacity, more vehicles could

park inside the LB and the queue would be perceived
as faster. Consequently, wewould expect demand for
the LB to increase, whereas demand for both STR and
CRP to decrease. An increase in LBdemandwould not
cause an increase in queueing because of the increase
in parking capacity. This would result in an overall
decrease in mean delivery cost, due to a decrease in
queueing times, and a decrease in emissions, as fewer
vehicles would be parked on-street and road con-
gestion would be lessened.
By making the CRP the cheapest alternative, its

demand would be expected to increase for LGVs
(HGVs are not able to park inside the CRP). In par-
ticular, those LGVs with longer parking durations
(hence with the highest parking costs) would benefit
the most from a free-of-charge CRP. Therefore, the LB
would be freed from LGVs with long parking dura-
tions (often service vehicles), and more parking ca-
pacity would be available for HGVs, which otherwise
would be forced to park illegally on-street. This
would result in a more efficient distribution of ve-
hicles across the parking facilities, a reduction in
costs, and reductions in CO2.
The CR-1 scenario would bring about the largest

reduction in mean cost and CO2 emissions. The sig-
nificant reduction in parking durations for LB parked
vehicles would increases the demand for LB and re-
duce illegal and carpark parking. Interestingly, even
if the CR regime added an additional service fee to the
total delivery cost, the cost increasewould be offset by
the reduction in parking durations (hence savings in
labor cost). Further, by reducing queueing and illegal
parking, CO2 emissions would decrease. However,
such improvements would be reached under the
condition that the CR regimewas efficient, that is, had
the ability to effectively reduce the parking durations
to under 15minutes. The inefficient CR scenario (CR2)
showed mixed results.
Scenario PRL-2 was classified as “green” for both

sites. As the LB becomes more expensive, we would
expect demand for it to decrease, as more vehi-
cles would choose to park elsewhere. This, in turn,
would reduce queueing. Interestingly, the reduction

Figure 8. Classification System for Parking Policy
Scenarios Impacts
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in vehicles idling on-street while waiting to parkwould
not be offset by an increase in illegal parking, and the
total environmental impact would improve. However,
the mean cost would increase, because of the higher
parking price.

Three scenarios, namely PRL-1, PF-1, and PE-1,
showed mixed results, being classified as inefficient
for mall A and “cost savings” for mall B. A common
trait of all these scenarios was that they would result
in an increase in vehicles idling on-street. PRL-1, by
making the LB free of charge, would increase LB
demand and consequently increase queueing times.
PF-1 and PE-1 would decrease the expected fine, and
therefore increase STR demand, with consequently
more vehicles parking illegally on-street. The vehicles
idling on-street would create road blockages, slowing

traffic and increasing emissions. The reduction in
parking fee or parking fine would generate savings at
mall B. However, althoughmall B had anLBwith a large
capacity,mallAhada smaller LB.Consequently, the cost
savings were offset at mall A because of an increase in
queueing time, hence an increase in labor cost.
Scenarios PRC-2, PF-2, and PE-2 made the system

worse-off. These scenarios either increased the cost of
CRP or the expected cost of STR. By making these
alternativesmore expensive, the demand for LBwould
increase, and consequently queueing times would
increase. Moreover, reducing LB parking capacity,
even if by a small amount, would have a negative
impact on the system, generating longer queues and
shifting demand on-street, with the consequence of
increasing both costs and emissions.

Figure 9. (Color online) Comparison of Policy Scenarios Impacts (see Legend in Table 11)

Table 11. (Color online) Financial and Environmental Impacts Results

Scenario (symbol)

Mall A Mall B

Financial
impact (%)a

Environmental
impact (%)a Category

Financial
impact (%)a

Environmental
impact (%)a Category

PC-1 (	) −4.15 −14.22 Optimal −2.84 −3.03 Optimal
PC-2 (	) 5.4 33.12 Inefficient 5.28 6.83 Inefficient
PRL-1 (×) 0.52 1.48 Inefficient −5.66 1.36 Cost-saving
PRL-2 (×) 6.15 −4.55 Green 6.17 −0.24 Green
PRC-1 (
) −7.09 −12.8 Optimal −4.46 −1.68 Optimal
PRC-2 (
) 14.26 64.46 Inefficient 12.52 7.37 Inefficient
PF-1 (�) 4.87 362.1 Inefficient −0.18 42.98 Cost-saving
PF-2 (�) 6.54 5.38 Inefficient 2.89 0.77 Inefficient
PE-1 (+) 3.16 460.41 Inefficient −2.75 114.43 Cost-sav.
PE-2 (+) 21.45 158.09 Inefficient 5.01 1.85 Inefficient
CR-1 (◦) −35.75 −21.6 Optimal −16.62 −5.45 Optimal
CR-2 (◦) −1.85 61.7 Cost-saving 0.62 −3.47 Green

aPercentage change with respect to baseline scenario.
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8. Conclusion and Policy Implications
In this paper, we study commercial vehicle driver
parking choice behaviors in urban areas. In particu-
lar, we study how a driver’s choice between legal
parking (in a loading/unloading area or in a carpark)
and illegal parking (in the travel lane) is affected by
parking cost, parking fine, and parking congestion.
We then explore the implication of drivers’ parking
behavior on the environmental and economic impacts
of different parking management strategies, using
urban retail malls in Singapore as case studies.

In the first part of the paper, we formulated a
random utility model of parking choice model for
commercial vehicle drivers. To our knowledge, this is
the first study formulating a policy-sensitive parking
choice model for commercial vehicle drivers. Most
of the scientific literature has focused on studying
parking choice of passenger vehicles. We found that,
as expected, higher parking costs disincentivize ve-
hicle drivers parking in off-street parking facilities.
However, not all vehicles have the same willingness
to pay. We found that service vehicles are more
willing to pay for parking in carparks (reserved
for passenger vehicles) than loading/unloading bay
areas, compared with vehicles delivering/picking up
goods. Regarding the parking fine, we found that
commercial vehicles are generally rule-abiding, with
one dollar paid for parking in an off-street parking
facility carrying less disutility than one dollar paid
in parking fine. However, we found that drivers of
heavy goods vehicles are more prone to park illegally
in the travel lane than light goods vehicles. Finally,we
found that commercial vehicle drivers behave as in-
formed drivers: they are more willing to join longer
queues for loading/unloading areas that have larger
parking capacities.

In the second part of the paper,we used the estimated
parking choice models within a simulation framework
to test the impacts of different parking management
strategies, taking into consideration drivers’ parking
behaviors. Large urban freight traffic generators (e.g.,
retail malls) provide loading/unloading bay areas
to accommodate the parking demand of commer-
cial vehicles delivering/picking up goods or per-
forming services. However, we found that excessive
freight parking demand generates parking conges-
tion, forming queues of vehicles waiting to park,
spilling over neighboring streets, blocking traffic,
increasing air pollution, and generating unsafe situ-
ations. Moreover, long queueing times, besides in-
creasing delivery costs, also reduce the attractiveness
of the loading/unloading bay areas, and incentivize
drivers to park illegally in the travel lane, causing
further road blockages. In the observed study areas,we

found that between 15% and 35% of the commercial
vehicles parked illegally in the travel lane. Moreover,
drivers waited on average approximately 5.7 minutes
to park in the loading/unloading bay area. The only
way to improve the parking system at large urban
freight traffic generators is to reduce both queues and
queueing times for vehicleswaiting to park at loading/
unloading bay areas and illegal parking in the travel
lane. Although parking pricing and parking enforce-
ment are commonly used parking policies to manage
parking demand, such policies resulted in a worse-off
system when applied to commercial vehicles. Exces-
sive pricing of the loading/unloading bay area in-
creases illegal parking, whereas excessive parking
enforcement increases demand for loading/unloading
bay area parking and therefore queueing. Through our
simulations, we found that, to both reduce queueing
and illegal parking, two strategies are most effective:
reduce parking durations and provide incentives for
lights goods vehicles and service vehicles to park in
larger carparks usually reserved for passenger vehicles.
New data collection opportunities arise when tra-

ditionalmanual data collection techniques (in this case
face-to-face surveys) are enhanced with new auto-
matic data collection methods such as image recog-
nition technology and automatic video processing.
The empirical framework here proposed collecting
“time-stamps data” on commercial vehicle parking
and delivery operations. This is a new approach to
the subject, providing a better understanding of
commercial vehicle movements in urban areas. This
type of data are commonly collected for other fields of
service engineering, such as emergency services, hos-
pitals, and call centers but less common in urban logistics.
Future research will work to address some of the

study limitations. In the presented parking choice
model, parking duration is a key explanatory vari-
able. Although it was assumed as exogenous, no
difference was made between observed (realized)
parking duration and expected duration (before the
parking choice ismade). In such a case, parking duration
could be more correctly treated as a latent variable.
Furthermore, although in this paper we describe

simulating a single node of a logistics network, the
model could be implemented in a larger network by
using an agent-based transport simulator to estimate
the impacts of freight parking policies on a wider
urban area. The extension from a single node to a
whole network of commercial activities would raise
several interesting questions, such as, How should
parking pricing be coordinated across different fa-
cilities? What is the impact of commercial vehicle
parking policies on passenger vehicles and vice-versa?
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Which other area-wide policies can reduce road and
parking congestion in central urban areas?

Acknowledgments
The authors acknowledge their sponsor, the Info-communications
Media Development Authority of Singapore; the Singapore
University of Technology and Design (SUTD)-Massachusetts
Institute of Technology (MIT) International Design Centre for
use of the Titan High Performance Computing facilities, and
Narasimha Boddeti for technical support; Ngai-Man Cheung
and team for supporting the video data processing; Costas
Courcoubetis and Karthik Natarajan for their valuable
comments. Part of the work was completed while Giacomo
Dalla Chiara was visiting the MIT Intelligent Transportation
Systems Laboratory.

References
Amer A, Chow JY (2017) A downtown on-street parking model with

urban truck delivery behavior. Transportation Res. Part A: Policy
Practice 102:51–67.

American Transportation Research Institute (2018) Critical issues
in the trucking industry. Report, American Transportation Re-
search Institute, Arlington, VA.

Anderson CM, Das C, Tyrrell TJ (2006) Parking preferences among
tourists in Newport, Rhode Island. Transportation Res. Part A:
Policy Practice 40(4):334–353.

Arnott R, Inci E (2006) An integrated model of downtown parking
and traffic congestion. J. Urban Econom. 60(3):418–442.

Axhausen KW, Polak JW (1991) Choice of parking: Stated preference
approach. Transportation 18(1):59–81.

Ben-Akiva ME, Lerman SR (1985)Discrete Choice Analysis (MIT Press,
Cambridge, MA).

Benenson I, Martens K, Birfir S (2008) PARKAGENT: An agent-based
model of parking in the city. Comput. Environ. Urban Systems
32(6):431–439.

Bierlaire M (2016) PythonBiogeme: A short introduction. Technical
report, Transport and Mobility Laboratory, School of Architec-
ture, Civil and Environmental Engineering, Ecole Polytechnique
Federale de Lausanne, Lausanne.

Brom M, Gonzales C, Holguı́n-Veras J, Collura J (2009) Congestion:
Are ports the one to blame for urban congestion? Presentation,
3rd METRANS National Urban Freight Conference, October 21,
Long Beach, CA.

Chaniotakis E, Pel AJ (2015) Drivers’ parking location choice under
uncertain parking availability and search times: A stated pref-
erence experiment. Transportation Res. Part A: Policy Practice 82:
228–239.

Chatterjee A, Cohen H (2004) Accounting for commercial vehicles
in urban transportation models. Technical report, Cambridge
Systematics, Inc., Cambridge, MA.

Chen Q, Conway A (2016) Commercial vehicle parking availability
and behaviour for residential delivery in New York City. Trans-
portation Research Board 95th Annual Meeting (Washington, DC).

Conte A, Scarsini M, Sürücü O (2016) The impact of time limitation:
Insights from a queueing experiment. Judgment Decision Making
11(3):260–274.

Dablanc L, Beziat A (2015) Parking for freight vehicles in dense urban
centers: The issue of delivery areas in Paris. Technical report,
French Institute of Science and Technology for Transport, De-
velopment and Networks IFSTTAR, Marne la Vallee, France.

Dalla Chiara G (2018) Commercial vehicles parking in congested
urban areas. PhD thesis, Singapore University of Technology
and Design, Singapore.

Dalla Chiara G, Cheah L (2017) Data stories from urban loading bays.
Eur. Trans. Res. Rev. 9:Article 50.

Dell’Olio L, Moura JL, Ibeas A, Cordera R, Holguı́n-veras J (2017)
Receivers’ willingness-to-adopt novel urban goods distribution
practices. Transportation Res. Part A: Policy Practice 102:130–141.

Euromonitor International (2016) Retailing in Singapore. Technical
Report, Euromonitor International, London.

Gao J, Ozbay K (2016) Modeling double parking impacts on urban
street. Transportation Research Board 95th Annual Meeting, vol. 12
(Washington, DC).

Gatta V, Marcucci E (2016) Behavioural implications of non-linear
effects on urban freight transport policies: The case of retailers
and transport providers in Rome. Case Stud. Transport Policy
4(1):22–28.

Gillen DW (1978) Parking policy, parking location decisions and the
distribution of congestion. Transportation 7(1):69–85.

Golias J, Yannis G, Harvatis M (2002) Off-Street parking choice
sensitivity. Transportation Planning Tech. 25(4):333–348.

Guevara C, Ben-Akiva ME (2006) Endogeneity in residential location
choice models. Transportation Res. Record: J. Transportation Res.
Board 1977:60–66.

Habib KM, Morency C, Trépanier M (2012) Integrating parking
behaviour in activity-based travel demand modelling: Investi-
gation of the relationship between parking type choice and
activity scheduling process. Transportation Res. Part A: Policy
Practice 46(1):154–166.

Han L, Chin SM, Franzese O, Hwang H (2005) Estimating the impact
of pickup- and delivery-related illegal parking activities on
traffic. Transportation Res. Record: J. Transportation Res. Board
1906:49–55.

Hensher DA, King J (2001) Parking demand and responsiveness to
supply, pricing and location in the Sydney central business
district. Transportation Res. Part A: Policy Practice 35(3):177–196.

Hess S, Polak JW (2004) An analysis of parking behaviour using
discrete choicemodels calibrated on SP datasets.Working paper,
Imperial College London, London.

Hickman AJ (1999) Methodology for calculating transport emissions
and energy consumption. Technical Report SE/491/98, Trans-
port Research Laboratory, Crowthorne, UK.

Hilvert O, Toledo T, Bekhor S (2012) Framework and model for
parking decisions. Transportation Res. Record: J. Transportation
Res. Board 2319:30–38.

Holguı́n-Veras J, Aros-Vera F, Browne M (2015) Agent interactions
and the response of supply chains to pricing and incentives.
Econom. Transportation 4(3):147–155.

Holguı́n-Veras J, Silas M, Polimeni J, Cruz B (2008) An investigation
on the effectiveness of joint receiver–carrier policies to increase
truck traffic in the off-peak hours. Part II: the behaviour of
carriers. Networks Spatial Econom. 8(4):327–354.

Hunt JD, Teply S (1993) A nested logit model of parking location
choice. Transportation Res. Part B: Methodological 27(4):253–265.
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