Skip to content

Balancing Freight and Goods Delivery Needs in Designing Complete Streets

The Infrastructure and Investment Jobs Act (IIJA) introduced provisions that are important for both freight movement and implementation of Complete Streets policies. Per the IIJA, Complete Streets standards and policies “ensure the safe and adequate accommodation of all users of transportation systems, including pedestrians, bicyclists, public transportation users, children, individuals who are aging, individuals with disabilities, motorists, and freight vehicles” (Pub. L. 117-58, Section 11206(a). Complete Streets can be considered synonymous with active transportation, which refers to human-powered activities such as walking, biking, or rolling. However, freight is explicitly referenced in the Federal Highway Administration’s Complete Streets description; state departments of transportation (DOTs) are required to allocate resources for activities related to Complete Streets, and freight must be considered concurrently.

With the rise of e-commerce and smaller delivery vehicles, curbside goods delivery, bicycle and pedestrian needs, advancing technologies, and other factors, research is needed to identify knowledge gaps and explore how to integrate the needs of freight movement with the active transportation approaches of Complete Streets to create more efficient, comprehensive, resilient, and cohesive networks.

Objective

The objective of this research is to develop a guide to incorporate design and operational considerations for freight into Complete Streets strategies across land use topologies.

In developing the research approach, considerations should include:

  • For the purpose of defining scope parameters, freight movement is related to surface transportation and includes trucks, cargo bikes, autonomous delivery robots, rail, and drones, as applicable;
  • Local, state, and federal transportation needs and economic development funding mechanisms;
  • Innovative solutions that prioritize the use of existing rights-of-way;
  • Applicable local, state, and federal codes and regulations;
  • Advanced technologies including autonomous delivery (e.g., autonomous trucks, drones, and personal delivery devices); and
  • Equitable outcomes for varying types of communities, businesses, and freight operators.
  • Accomplishment of the project objective will require at least the following tasks.

Tasks

PHASE I

Task 1. Analyze, describe, and critique pertinent domestic and international research on the bases of applicability, conclusiveness of findings, and usefulness for the integration of freight in Complete Streets processes. Include completed research and research currently underway.

Task 2. Identify effective and successful practices for integrating freight in Complete Streets processes. This information may include performance data, metrics, research findings, and other information assembled from technical literature and from a survey of practitioners.

Task 3. Prepare a detailed outline of the proposed guide intended to aid in incorporating the design and operational considerations of freight with Complete Streets.

Task 4. Prepare an interim report that documents the work completed in Tasks 1 through 3. Include a detailed work plan for the work anticipated in Phase II. Following a review of the interim report by the NCHRP, the research team will be required to make a presentation to the project panel.

PHASE II

Task 5. Building on the findings of Phase I, use partnership engagement to identify and summarize common challenges and conflicts related to policy, equity, funding, planning, design, prioritization and reporting, personnel, and the use and interpretation of Complete Streets policies as they relate to freight transportation. Interested parties shall include local municipalities, metropolitan planning organizations, DOTs, and freight providers and generators.

Task 6. Develop case studies that represent a broad range of land use topologies using the findings from Tasks 1 through 5. The case studies should highlight challenges and opportunities.

Task 7. Prepare Interim Report 2 summarizing the findings from Tasks 1 through 6.

PHASE III

Task 8. Develop a freight and Complete Streets integration tool kit that includes a checklist, visual library, and primers on the following areas: equity, policy, design, funding mechanisms, community engagement strategies, partnership opportunities, operations, and maintenance.

Task 9. Prepare a guide that describes how practitioners may consider all modes of surface transportation while balancing the needs of transportation systems users with the demands of freight.

Task 10. Prepare final deliverables, which shall include, at a minimum: (1) a final research report documenting the entire research effort, findings, and lessons learned; (2) a guide to integrating freight and Complete Streets; (3) a freight and Complete Streets integration tool kit; (4) prioritized recommendations for future research; (5) a PowerPoint presentation describing the background, objectives, research approach, findings, and conclusions; (6) a stand-alone technical memorandum titled “Implementation of Research Findings and Products”; and (7) a presentation, as possible, of findings to two American Association of State Highway and Transportation Officials (AASHTO) councils or committees concerned with the integration of freight and Complete Streets.

Zero-Emission Delivery Zone: City of Portland SMART Grant

The Portland Bureau of Transportation (PBOT) was awarded a nearly $2 million Strengthening Mobility and Revolutionizing Transportation (SMART) Grant by the US Department of Transportation (USDOT) in Fall 2023 to pilot the country’s first regulated Zero-Emission Delivery Zone in downtown Portland and test digital infrastructure tools. This project will test an innovative set of incentives and regulations to better understand what technology and strategies municipalities can use to support and reduce greenhouse gas emissions in the freight sector.

While other cities in the United States have piloted voluntary Zero-Emission Delivery Zones (ZEDZs) to encourage the transition of commercial fleets to zero-emission modes, Portland will be the first U.S. city to pilot a regulated ZEDZ. The regulated ZEDZ will be active during a demonstration period of approximately six months beginning in late summer/early fall of 2024. During this temporary demonstration period, the parking rules for all truck loading zones within the project area will be changed to prioritize access for zero-emission vehicles only (see Figure 1). Loading zones within the ZEDZ will be monitored by parking sensors, both before and after the approximately six-month long demonstration period, so that project staff can better understand the impact of this regulation. These loading zones will be referred to as Zero-Emission Loading Zones.

This pilot project will also test a variety of partnerships and incentives to accelerate the movement of “clean goods,” or goods with fewer negative impacts to health and the environment. This could include diverting existing deliveries into the ZEDZ to local fleets of electric-assist cargo trikes and electric vehicles, vans and trucks, or supporting local delivery companies in transitioning their own fleets to zero-emission modes.

This project is enabled by a nearly $2 million USDOT SMART Stage 1 pilot and prototyping grant. Depending on outcomes from this pilot project, PBOT will have the opportunity to apply for a Stage 2 implementation grant for up to $15 million to refine or scale promising strategies identified in the initial pilot project. The two stages of the SMART grant program are unique in that they allow the City of Portland to test several strategies on a small scale before exploring any larger-scale implementation. All of this work is in service to Portland’s values around climate and transportation justice: a safer, cleaner, and more equitable system for delivering goods and services.

Draft map of project area showing proposed zero-emission load zones updated in March 2024. Loading zone site selection will be refined with stakeholder input in late Spring 2024.

Scope of Work

The Urban Freight Lab (UFL) was approached by PBOT to assist in their Phase 1 SMART grant implementation. The UFL will provide subject matter expertise on the topics of urban freight, curb management, and freight decarbonization. They will support PBOT in the form of interviews and/or surveys to summarize current carrier operations, current and future fleet composition, and loading activities.

  • Task 1. Project management and subject matter expertise support
    • Deliverables: Attend meetings and provide subject matter expert consultation as needed.
  • Task 2. Document how some carriers and delivery operators would be impacted by a zero-emission delivery zone (ZEDZ) in Portland, including understanding current and planned fleet composition, interactions with the curb, and barriers and opportunities for the City to support.
    • Deliverables: Interview questionnaire and summaries of answers (we will aggregate and anonymize results). Draft and final technical memo, with one PBOT review of the draft
Paper

Evaluating Spatial Inequity in Last-Mile Delivery: A National Analysis

 
Download PDF  (2.98 MB)
Publication: International Journal of Physical Distribution & Logistics Management
Publication Date: 2024
Summary:

Purpose
Despite large bodies of research related to the impacts of e-commerce on last-mile logistics and sustainability, there has been limited effort to evaluate urban freight using an equity lens. Therefore, this study proposes a modeling framework that enables researchers and planners to estimate the baseline equity performance of a major e-commerce platform and evaluate equity impacts of possible urban freight management strategies. The study also analyzes the sensitivity of various operational decisions to mitigate bias in the analysis.

Design/methodology/approach
The model adapts empirical methodologies from activity-based modeling, transport equity evaluation, and residential freight trip generation (RFTG) to estimate person- and household-level delivery demand and cargo van traffic exposure in 41 U.S. Metropolitan Statistical Areas (MSAs).

Findings
Evaluating 12 measurements across varying population segments and spatial units, the study finds robust evidence for racial and socio-economic inequities in last-mile delivery for low-income and, especially, populations of color (POC). By the most conservative measurement, POC are exposed to roughly 35% more cargo van traffic than white populations on average, despite ordering less than half as many packages. The study explores the model’s utility by evaluating a simple scenario that finds marginal equity gains for urban freight management strategies that prioritize line-haul efficiency improvements over those improving intra-neighborhood circulations.

Originality/value
Presents a first effort in building a modeling framework for more equitable decision-making in last-mile delivery operations and broader city planning.

Authors: Travis FriedDr. Anne Goodchild, Ivan Sanchez Diaz (Chalmers University), Michael Browne (Gothenburg University)
Recommended Citation:
Fried, T., Goodchild, A.V., Sanchez-Diaz, I. and Browne, M. (2024), "Evaluating spatial inequity in last-mile delivery: a national analysis", International Journal of Physical Distribution & Logistics Management.
Chapter

New Urban Freight Developments and Land Use

Publication: Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change
Volume: Chapter 22
Pages: 383-397
Publication Date: 2023
Summary:

Urban freight denotes vehicle and commodity flows in an urban environment. These flows depend on a complex set of relationships among various stakeholders. In the last decades, urban freight has experienced an incredible pace of evolution, which has occurred due to various technological factors. One example is the ubiquity of internet access and the advance in information technology, leading to e-commerce adoption. Another is the development of algorithms to forecast demand, design and maintain supply chains and plan vehicle routes. In this chapter, we summarize critical changes in urban freight developments and land use. We highlight the interactions between passenger and freight travel, the recent shifts in freight flows and associated planning needs.

Authors: Dr. Giacomo Dalla Chiara, André Alho, Takanori Sakai
Recommended Citation:
Alho, André, Takanori Sakai, and Giacomo Dalla Chiara. "New urban freight developments and land use." Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change (2023): 383.
Paper

Ecommerce and Environmental Justice in Metro Seattle

 
Download PDF  (8.55 MB)
Publication: Research in Transportation Economics
Volume: 103
Publication Date: 2023
Summary:

Urban distribution centers (UDCs) are opening at unprecedented rates to meet rising home delivery demand. The trend has raised concerns over the equity and environmental justice implications of ecommerce’s negative externalities. However, little research exists connecting UDC location to the concentration of urban freight-derived air pollution among marginalized populations.

Using spatial data of Amazon UDCs in metropolitan Seattle, this study quantifies the socio-spatial distribution of home delivery-related commercial vehicle kilometers traveled (VKT), corresponding air pollution, and explanatory factors. Results reveal that racial and income factors are relevant to criteria air pollutant exposure caused by home deliveries, due to tracts with majority people of color being closer in proximity to UDCs and highways. Tracts with majority people of color face the highest median concentration of delivery vehicle activity and emissions despite ordering less packages than white populations. While both cargo van and heavy-duty truck emissions disproportionately affect people of color, the socio-spatial distribution of truck emissions shows higher sensitivity to fluctuations in utilization.

Prioritizing environmental mitigation of freight activity further up the urban distribution chain in proximity to UDCs, therefore, would have an outsized impact in minimizing disparities in ecommerce’s negative externalities.

Recommended Citation:
Fried, T., Verma, R., & Goodchild, A. (2024). Ecommerce and Environmental Justice in Metro Seattle. Research in Transportation Economics, 103, 101382. https://doi.org/10.1016/j.retrec.2023.101382
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.
Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.

Dr. Anne Goodchild

Dr. Anne Goodchild
Dr. Anne Goodchild
  • Founder, Urban Freight Lab
  • Professor, Civil and Environmental Engineering
annegood@uw.edu  |  206-543-3747  |  Wilson Ceramics Lab 103
  • Urban goods delivery systems and land use
  • Logistics hubs and ports
  • Sustainable freight transportation systems
  • Supply chain management and freight transportation

Dr. Anne Goodchild is interested in the intersection between supply chain management and freight transportation. As an example of this, recent research is evaluating the changing nature of shopping and implications for goods delivery on CO2 emissions, local pollutants, and vehicle miles travelled. Her interest in economic and environmental sustainability is also demonstrated by her work looking at CO2 emissions in strategic routing and schedule planning in urban pick-up and delivery systems. Dr. Goodchild’s work in understanding supply chains, as they relate to the transport system, is demonstrated by her research funded by the SHRP2 freight data and modeling program, NCFRP 20, the FHWA’s Behavioral based National Freight Demand Model, and surveys and analysis funded by both the Washington and Oregon Departments of Transportation.

  • Innovation in Education Award, Institute of Transportation Engineers (ITE) Transportation Education Council (2021)
  • Outstanding Researcher Award, Pacific Northwest Transportation Consortium (PacTrans) (2021)
  • Outstanding Mentor Award, Department of Civil and Environmental Engineering (2020)
  • Person of the Year, Transportation Club of Seattle (2017)
  • Allan and Inger Osberg Endowed Professorship (2012 – 2016)
  • Community of Innovators Junior Faculty Research Award, College of Engineering (2012)
  • 2nd Prize, College-Industry Council on MH Education Outstanding Material Handling and Logistics paper (2008)
  • Dissertation Prize Honorable Mention, INFORMS Transportation Science and Logistics (2006)
  • PRISMS Presentation Competition Finalist, Institute for Operations Research and Management Science (2003)
  • Ph.D., Civil and Environmental Engineering, UC Berkeley (2005)
    (Dissertation: Crane Double Cycling in Container Ports: Algorithms, Evaluation, and Planning)
  • M.S., Civil and Environmental Engineering, UC Berkeley (2003)
  • B.S., Mathematics, UC Davis (1995)

Dr. Anne Goodchild leads the University of Washington’s academic and research efforts in the area of supply chain, logistics, and freight transportation. She is Professor of Civil and Environmental Engineering and Founder of both the Supply Chain Transportation & Logistics online Master’s degree program and the Urban Freight Lab (UFL).

Under Goodchild’s leadership, the UFL coined the increasingly used term “Final 50 Feet” and defined it as the last leg of the supply chain for urban deliveries—including finding parking, moving items from a delivery vehicle, navigating traffic, sidewalks, intersections, bike lanes, and building security, and ending with the recipient. In addition to being key to customer satisfaction, this final segment is both the most expensive (where an estimated 25-50% of total supply chain costs are incurred) and most time-consuming part of the delivery process—and ripe for improvement. One of the hurdles in the final 50 feet is that many different parties are involved—city departments of transportation, delivery carriers, property owners, residents, and consumers—making a collaborative effort between sectors essential for developing mutually beneficial solutions. Using a systems engineering approach, the UFL has completed innovative research projects that provide foundational data and proven strategies, such as:

Dr. Goodchild’s contributions to transportation engineering in the U.S. and abroad have been significant. She is an expert in international border and port operations and has been instrumental in bringing supply chain concepts to freight model architectures. She has worked at the forefront of GPS data applications, identifying observable transportation characteristics that statistically predict transportation behavior.

She is the author or co-author of more than 100 research publications, and serves as associate editor for the peer-reviewed scientific journal Transportation Letters. From 2016 to 2018 she chaired the National Academies of Science, Engineering, and Medicine’s Transportation Research Board (TRB) Freight and Marine Chairs group, the top national research organization in her field. She teaches logistics and analysis, global trade, transportation & logistics management, and advises graduate students in transportation engineering, and has won several teaching and research awards.

Dr. Goodchild is the recipient of numerous research grants, including recent awards from the U.S. Department of Transportation, PacTrans (Regional University Transportation Center for Federal Region 10), Seattle Department of Transportation, Federal Highway Administration’s Strategic Highway Research Program (SHRP2), TRB’s National Cooperative Freight Research Program, and the Washington and Oregon State Departments of Transportation.

Dr. Goodchild holds both a doctorate (2005) and a master’s degree (2003) in civil and environmental engineering from the University of California, Berkeley, and a bachelor’s degree (with high honors) in mathematics from University of California, Davis. Before earning her Ph.D. she worked for PricewaterhouseCoopers LLP and Applied Decision Analysis Inc. in Europe and North America designing efficient airline schedules and optimizing research portfolios. She joined the Department of Civil and Environmental Engineering faculty at the University of Washington in 2005. In addition, she holds a Visiting Professorship at the University of Gothenburg in Sweden and a Research Affiliateship at Urban@UW (an initiative of the Office of Research and CoMotion at the University of Washington).

  • Adjunct Professor, Industrial & Systems Engineering, University of Washington
  • Visiting Professor, School of Business, Economics and Law, University of Gothenburg (Sweden)
  • Affiliate, Urban @ UW, University of Washington
  • Co-Chair, Aurora Urban Freight Consortium
  • Member, NECTAR (The Network on European Communications and Transport Activity Research) Cluster 3 Organizing Committee, Logistics and Freight
  • Member, Washington State Freight Advisory Committee (Chair, 2011-2013)
  • Organizing Committee, International Urban Freight Conference (I-NUF), Long Beach, CA (2017, 2019, 2021)
  • Associate Editor, Transportation Research Record (TRR) (2019-2020)
  • Member, National Academies of Sciences, Engineering, and Medicine, Transportation Research Board (TRB), Taskforce on Development of Freight Fluidity Performance Measures (2016-2019)
  • Group Chair, National Academies of Sciences, Engineering, and Medicine, Transportation Research Board (TRB), Freight Group (2016-2019)
  • Chair, National Academies of Sciences, Engineering, and Medicine, Transportation Research Board (TRB), Freight and Marine Chairs Group (2016-2018)
  • Chair, National Academies of Sciences, Engineering, and Medicine, Transportation Research Board (TRB) Standing Committee on Intermodal Freight Transportation (AT045) (2013-2016)
  • Member, National Academy of Sciences, Committee for Study of Freight Rail Transportation and Regulation (2014-2015)
  • Editor, International Journal of Logistics and Transportation Research (2013-2014)
  • Member, Puget Sound Regional Council Freight Advisory Panel (2008-2011)
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.
Technical Report

Changing Retail Business Models and the Impact on CO2 Emissions from Transport: E-commerce Deliveries in Urban and Rural Areas

 
Download PDF  (2.21 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Volume: 2013-S-UW-0023
Publication Date: 2014
Summary:

While researchers have found relationships between passenger vehicle travel and smart growth development patterns, similar relationships have not been extensively studied between urban form and goods movement trip-making patterns. In rural areas, where shopping choice is more limited, goods movement delivery has the potential to be relatively more important than in more urban areas. As such, this work examines the relationships between certain development pattern characteristics including density and distance from warehousing. This work models the amount of carbon dioxide (CO2), nitrogen oxides (NOx), and Particle Matter (PM10) generated by personal travel and delivery vehicles in several different scenarios, including various warehouse locations. Linear models were estimated via regression modeling for each dependent variable for each goods movement strategy. Parsimonious models maintained nearly all of the explanatory power of more complex models and relied on one or two variables – a measure of road density and a measure of distance to the warehouse. Increasing road density or decreasing the distance to the warehouse reduces the impacts as measured in the dependent variables (vehicle miles traveled (VMT), CO2, NOx, and PM10). The authors find that delivery services offer relatively more CO2 reduction benefit in rural areas when compared to CO2 urban areas, and that in all cases delivery services offer significant VMT reductions. Delivery services in both urban and rural areas, however, increase NOX and PM10 emissions.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Goodchild, Anne, and Erica Wygonik. Changing retail business models and the impact on CO2 emissions from transport: e-commerce deliveries in urban and rural areas. No. 2013-S-UW-0023. Pacific Northwest Transportation Consortium, 2014.