Skip to content
Paper

Evaluating CO2 Emissions, Cost, and Service Quality Trade-Offs in an Urban Delivery System Case Study

 
Download PDF  (0.63 MB)
Publication: International Association of Traffic and Safety Sciences (IATSS)
Volume: 35 (1)
Pages: 15-Jul
Publication Date: 2011
Summary:

Growing pressure to limit greenhouse gas emissions is changing the way businesses operate. This paper presents the trade-offs between cost, service quality (represented by time window guarantees), and emissions of an urban pickup and delivery system under these changing pressures. A model, developed by the authors in ArcGIS, is used to evaluate these trade-offs for a specific case study involving a real fleet with specific operational characteristics. The problem is modeled as an emissions minimization vehicle routing problem with time windows. Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost, service quality, and emissions. Specific consideration of the influence of time windows, customer density, and vehicle choice are included.

The results show a stable relationship between monetary cost and kilograms of CO2, with each kilogram of CO2 associated with a $3.50 increase in cost, illustrating the influence of fuel use on both cost and emissions. In addition, customer density and time window length are strongly correlated with monetary cost and kilograms of CO2 per order. The addition of 80 customers or extending the time window 100 minutes would save approximately $3.50 and 1 kilogram of CO2 per order. Lastly, the evaluation of four different fleets illustrates significant environmental and monetary gains can be achieved through the use of hybrid vehicles.

The results demonstrate there is not a trade-off between CO2 emissions and cost, but that these two metrics trend together. This suggests the most effective way to encourage fleet operators to limit emissions is to increase the cost of fuel or CO2 production, as this is consistent with current incentives that exist to reduce cost, and therefore emissions.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. "Evaluating CO2 Emissions, Cost, and Service Quality Trade-Offs in an Urban Delivery System Case Study." IATSS Research 35, No. 1 (2011): 7-15.

Roadblocks to Sustainable Urban Freight

While freight transportation is a necessary activity to sustain cities’ social and economic life, enabling the movement and deployment of goods and services in and between urbanized areas, it also accounts for a significant portion of greenhouse gas (GHG) emissions, and therefore it is a major contributor to climate change. Guaranteeing an efficient and sustainable urban freight transport ecosystem is necessary for cities to survive and tackle the climate emergency.
Several stakeholders in the private and public sectors are currently taking action and drafting roadmaps to achieve such goals. However, as the urban freight ecosystem is a complex network of stakeholders, achieving such sustainability goals requires collaboration and coordination between multiple agents.
The project will collect and synthesize expert views from both the private and public sectors on what is needed to sustainably deliver the last mile and aims at identifying the roadblocks towards this goal. All types of goods and services will be considered, with the end goal of raising the entire industry’s understanding of the barriers to achieving sustainable urban freight.

Approach

Task 1: Research Scan (September-November 2020) Subtasks:

  1. identify an accepted and shared definition of sustainable urban freight;
  2. identify and classify the main agents of the urban freight system from both the private and public sectors and their main role in the last-mile ecosystem;
  3. identify and classify the main accepted strategies currently adopted towards sustainability.
The research team will also define the boundaries of the study, including the geographical region of concentration.

Task 2: Private sector expert interviews (December 2020-April 2021)

The main private sector agents identified in Task 1 will include vehicle manufacturers, retailers, carriers and more. The research team will identify and reach out to representatives of at least 15 companies. Participants will be interviewed using an open question format and will have an optional follow-up online survey. The objectives of the interviews and surveys are:
  1. listing the current strategies adopted to reach sustainable urban freight;
  2. understanding what the impacts are of other private and public sectors agents’ decisions on their sustainability strategies;
  3. identifying agents’ needs and obstacles to achieve their stated sustainable goals.

Task 3: Public sector expert interviews (December 2020-April 2021)

The research team will identify different urban typologies, classifying cities into homogeneous groups according to economic, demographic, urban form, mobility and sustainability indicators. The typologies will be used to sample cities from each identified urban typology.
The team will then reach out to representatives from the public sector agents from the sampled cities, including regulators, planners and public utility representatives, and perform a combination of online survey and online/phone interviews. At least 15 representatives from public sector agents will be contacted. The objectives of the interviews are:
  1. listing the current policies adopted by cities towards sustainable urban freight, including infrastructure investments and transport demand management;
  2. understanding what the obstacles are to achieve sustainability goals.

Task 4: Synthesizing research and identifying roadblocks (May-June 2021)

Synthesizing the work of the previous 3 tasks, and applying the research team’s own expertise, this task will identify the key obstacles to sustainable urban freight. Through a review of existing writings, discussions with experts, and their own domain expertise, the research team will identify the obstacles in the areas of transportation technology, infrastructure, and policy. This review will consider the obstacles in public sector, barriers to private business decision making, and where the two sectors need to take a collaborative approach. The results obtained in the study will be made available publicly as a white paper or submitted for scientific journal publication.
Student Thesis and Dissertations

Examining the Effects of Common Carrier Lockers on Residential Delivery

 
Download PDF  (0.22 MB)
Publication Date: 2021
Summary:
In recent years, e-commerce has dramatically increased deliveries to residential areas. The rise in delivery vehicle activity creates externalities for the transportation system, including congestion, competition for parking space, and emissions. Common carrier lockers have emerged as a way to manage these effects by consolidating deliveries, but they remain largely untested in the United States. This thesis examines the effects of a common carrier locker placed in a residential building in downtown Seattle, Washington. An experimental design with on-street data tests the effect of the locker on dwell times and time that delivery people spend in the building. Data collected by the locker provider gives insight into the e-commerce behavior patterns of residents. Finally, a simulation model was constructed to obtain the optimal configuration of box sizes in similar lockers. The results show that the locker had a statistically significant effect on time spent within the building, but not on dwell times or curb productivity. However, dwell times for similar vehicles in this sample decreased somewhat. The simulation demonstrated that time-based policies and flexible locker designs can prove to be effective strategies for managing demand.

 

 

 

 

Authors: Caleb Diehl
Recommended Citation:
Diehl, Caleb. (2021). Examining the Effects of Common Carrier Lockers on Residential Delivery. http://hdl.handle.net/1773/47716. University of Washington Master's Thesis.
Paper

Sustainable Urban Goods Movement: Emerging Research Agendas

Publication: Journal of Urbanism
Volume: 8(20)
Pages: 115-132
Publication Date: 2014
Summary:

While recent urban planning efforts have focused on smart growth development and management of growth into developed areas, the research community has not examined the impacts of these development patterns on urban goods movement. Successful implementation of growth strategies has multiple environmental and social benefits, but it also raises the demand for intraurban goods movement, potentially increasing conflicts between modes of travel and worsening air quality. Because urban goods movement is critical for economic vitality, and as policies are developed to manage urban goods movement, understanding the relationship between smart growth and goods movement is necessary. This paper reviews the academic literature and summarizes the results of guided interviews to identify the existing gaps in the state of knowledge and suggest important future research topics. Little research exists that directly examines the relationship between smart growth and goods movement; therefore, smart growth is dissected into sub-areas that relate to goods movement, and these areas are individually examined. These five key sub-areas are 1) access, parking, and loading zones; 2) road channelization, bicycle, and pedestrian facilities; 3) land use; 4) logistics; and 5) network system management. The existing state of knowledge is discussed in each of these areas and identify specific areas of concern determined from guided interviews. With these inputs, important areas of future research are identified.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Erica Wygonik, Alon Bassok, Daniel Carlson
Recommended Citation:
Wygonik, Erica, Alon Bassok, Anne V. Goodchild, Edward McCormack and Daniel Fred Carlson. “Sustainable Urban Goods Movement: Emerging Research Agendas.” (2012).

UPS E-Bike Delivery Pilot Test in Seattle: Analysis of Public Benefits and Costs (Task Order 6)

The City of Seattle granted a permit to United Parcel Service, Inc. (UPS) in fall 2018 to pilot test a new e-bike parcel delivery system in the Pioneer Square/Belltown area for one year. The Seattle Department of Transportation (SDOT) commissioned the Urban Freight Lab (UFL) to quantify and document the public impacts of this multimodal delivery system change in the final 50 feet of supply chains, to provide data and evidence for development of future urban freight policies.

The UFL will conduct analyses into the following research questions:

  1. What are the total changes in VMT and emissions (PM and GHG) to all three affected cargo van routes due to the e-bike pilot test in the Pike Place Market and neighboring areas?
  2. What is the change in the delivery van’s dwell time, e.g. the amount of time the van is parked, before and after introducing the e-bike?
  3. How does the e-bike system affect UPS’ failed first delivery (FFD) attempt rate along the route?
  4. If UPS begins to stage drop boxes along the route for the e-bike (instead of having to replenish from the parked trailer) what are the impacts to total VMT and emissions?
  5. How do e-bike delivery operations impact pedestrian, other bike, and motor traffic?
Technical Report

Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (2.46 MB)
Publication: U.S. Department of Energy
Publication Date: 2021
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

In Year 2, the team executed the implementation plan:

  • oversaw installation of the in-road sensors, and collecting and processing data,
  • managed installation, marketing and operations of three common locker systems in the pilot test area,
  • tested the prototype smart phone parking app with initial data stream, and
  • developed a truck parking behavior simulation model.
Recommended Citation:
Urban Freight Lab (2021). Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Paper

Evaluation of Emissions Reduction in Urban Pickup Systems Heterogeneous Fleet Case Study

 
Download PDF  (0.31 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2224
Pages: 8-16
Publication Date: 2011
Summary:

A case study of the University of Washington Mailing Services, which operates a heterogeneous fleet of vehicles, provides insight into the impact of operational changes on cost, service quality, and emissions. An emissions minimization problem was formulated and solutions were identified with a creation and local search algorithm based on the I1 and 2-opts heuristics.

The algorithm could be used to find many solutions that could improve existing routing on both cost and emissions metrics, reduce emissions by an average of almost 6%, and reduce costs by an average of 9%. More significant cost and emissions savings could be found with service quality reductions. For example, reducing delivery frequency to once a day could lead to emissions and cost savings of close to 35% and 3%, respectively.

Rules of thumb for vehicle assignment within heterogeneous fleets were explored to gain an understanding of simple implementations, such as assigning cleaner vehicles to routes with more customers and longer travel distances.

This case study identified significant emissions reductions that could be obtained with minimal effects on cost and service and that offered new, practical applications that could be used by fleet managers interested in reducing their carbon footprint.

Authors: Dr. Anne Goodchild, Kelly Pitera, Felipe Sandoval
Recommended Citation:
Pitera, Kelly, Felipe Sandoval, and Anne Goodchild. "Evaluation of Emissions Reduction in Urban Pickup Systems: Heterogeneous Fleet Case Study." Transportation Research Record 2224, no. 1 (2011): 8-16. 

Common Microhub (Seattle Neighborhood Delivery Hub)

Background

The importance of efficient urban logistics has never been greater. The response to COVID-19 has put new constraints and demands on the urban freight system but also highlighted the essential and critical nature of delivery and distribution. New requirements for reducing human contact only add weight to many of the strategies such as neighborhood kitchens, locker deliveries, and autonomous driverless delivery vehicles, already envisioned before the coronavirus pandemic. Social distancing and virus vector management also add new requirements and metrics for evaluating and managing logistics that are catalyzing innovation and motivating change in the urban logistics space.

What is a Common Microhub?

Also known as an urban consolidation center or a delivery transfer point, a microhub is a central drop-off/pick-up location for goods and services, which can be used by multiple delivery providers, retailers, and consumers. Microhubs can reduce energy consumption, noise pollution, congestion, and cost, and increase access, sustainability, and livability in cities, by allowing the final mile of delivery to be shifted to low-emission vehicles or soft transportation modes (cargo bike or walking), In addition to allowing for consolidation or deconsolidation of shipments, the design also enables neighbors to engage with additional services.

Microhubs provide:

  • access points for shared mobility
  • touchless pick-up and drop-off points
  • a home base for zero-emissions last-mile delivery, autonomous, and modalities
  • a shared public space
  • charging infrastructure
  • increased delivery density, reducing traffic and delivery vehicle dwell time
  • trip chaining capability

Urban Freight Lab’s Common Microhub Pilot: The Seattle Neighborhood Delivery Hub

The Urban Freight Lab’s Common Microhub project—the Seattle Neighborhood Delivery Hub—provides an opportunity for members to test and evaluate urban logistics strategies on the ground in Seattle’s Uptown neighborhood. As third-party logistics companies entering the last-mile space and more cities committing to environmental focus and zero-emissions vision, the interest in creating logistics places in urban proximity is growing. The outcomes of this research can guide the development of future microhub implementations in other cities. Participating stakeholders, while collaborative, operate with relative independence within the hub space. Data collection and analysis are ongoing; key indicators being measured include both operator performance and expected local impacts. In addition, lessons learned are encountered continuously and shared with UFL members as the project progresses.

Participants and Products

Product: Common Carrier Parcel Lockers
Host: Urban Freight LabDescription: The Urban Freight Lab is operating a common carrier parcel locker — a secure, automated, self-service storage system designed to accommodate deliveries from multiple transportation providers delivering a range of parcel sizes and open to all neighbors and commuters. Such lockers create delivery density, enabling vehicles to transport many packages to a single stop, rather than making multiple trips to accomplish the same task. This new approach reduces dwell time and failed first deliveries, both of which produce congestion and emissions, and increase costs. During the COVID-19 pandemic, the lockers also provide a no-contact solution for customers.

REEF neighborhood kitchen

Product: Neighborhood Kitchen and Infrastructure
Host: REEF

Description: Neighborhood kitchens are non-customer-facing modular vessels where food is prepared for mobile app or delivery orders. Removing front-of-house operations reduces a restaurant’s footprint, increases sustainability, and gives food entrepreneurs a platform by reducing overhead costs.

REEF is also the infrastructure partner, leveraging their parking lot holdings for the Seattle Neighborhood Delivery Hub location.

Coaster Cycles bike

Product: Electric-Assist Cargo Bike Fleet
Host: ​​Coaster Cycles

Description: Montana-based Coaster Cycles is providing an electric-assist cargo trikes fleet. These trikes are customized to carry BrightDrop EP1s, providing an agile, sustainable last-mile delivery solution in dense urban areas, reducing the emissions, congestion, and noise produced by traditional truck delivery.
(Watch the Coaster Cycle / EP1 deployment: https://vimeo.com/528552173)

Screenshot of Axlehire app

Product: Last-Mile Delivery Routing Software
HostAxleHire

Description: Berkeley-based logistics startup Axlehire provides last-mile delivery routing software that creates the fastest, most efficient routes possible. AxleHire is using the Seattle Neighborhood Delivery Hub site as a transshipment point, where trucks will transfer packages transported from a suburban depot to smaller, more nimble Coaster Cycle electrically-assisted bicycles, which are driven by Axlehire operators to a final customer.

Brightdrop's EP1 electric pallet

Product: Electric Pallet (EP1)
Host: ​BrightDrop (General Motors)

Description: BrightDrop (a subsidiary of General Motors) focuses on electrifying and improving the delivery of goods and services. BrightDrop’s first product to market is the EP1, a propulsion-assisted electric pallet designed to easily move goods over short distances. Because the pallet is electric-powered, it supports sustainability efforts, improves driver safety and freight security, lowers labor costs, and reduces errors and package touches.

Product: MUST Devices and Data Collection
Host: University of Washington Smart Transportation Application & Research (STAR) Lab

Description: To assess performance, researchers have deployed a multitude of sensors, including STAR Lab’s Mobile Unit for Sensing Traffic (MUST) sensors, cameras with vehicle recognition technology, GPS tracking sensors, and parking occupancy sensors. Researchers can gain a comprehensive understanding of delivery operations (such as miles traveled, infrastructure usage, speed, battery usage, interaction with other vehicles, bikes, and pedestrians) and activities at the site itself (such as parking occupancy, duration and, mode distribution of vehicle types at the site).

Location

The Seattle Neighborhood Delivery Hub is located at 130 5th Ave. N. in Seattle’s Uptown neighborhood.

Goals

The goals of the Common Microhub Research Project are to:

    1. Conduct a research scan of published reports that provide data-based evidence of the results of projects that have elements that are similar to Common Microhubs.
    2. Identify and characterize informal microhub activities observed in cities worldwide.
    3. Solicit input from UFL members as to the perceived benefits of microhubs and  the desired physical characteristics of a microhub
    4. Compare and contrast the priorities of UFL members with established metrics in the literature.
    5. Seek agreement from UFL members as to the microhub characteristics and location that would be feasible and desirable to operate in the Seattle region. Priority will be given to current UFL members, but should a third party external to UFL be necessary to run the microhub, proposals to host the microhub would be sought.
    6. Collect and analyze field data to measure both operator performance (including VMT, parking demand, fuel, and energy consumption) and expected local impacts (including travel and parking activity) before and after implementation. Data collection will rely on VMT, GPS, and travel time sources where available, but we expect to develop and implement customized methods to collect additional traffic and travel time data as needed. We may also interview the microhub operator and users to obtain qualitative data on the operations. The following tasks will be completed by the Urban Freight Lab in the two-year project.

Project Tasks

The following tasks will be completed by the Urban Freight Lab in the two-year project.

Task 1: Research Scan

Subtasks:

  1. Conduct a research scan of published reports that provide data-based evidence of the results of projects that have elements that are similar to Common MicroHubs.
  2. Identify and characterize informal microhub activities observed in cities worldwide.
  3. Write a summary of the results.

Task 2: Develop MicroHub Priorities

Subtasks:

  1. Solicit input from UFL members as to:
    • the perceived benefits of microhubs
    • the desired physical characteristics of a microhub
  2. Compare and contrast the priorities of UFL members with priorities demonstrated in the literature.

Task 3: Select Operator and Define Operational Model

Subtasks:

  1. With the help of a microhub operator, seek agreement from UFL members as to the microhub characteristics, services, operational goals and location that would be feasible and desirable to operate in the Seattle region.
    • Priority will be given to current UFL members to operate the Hub, but should a third party external to UFL be necessary to run the microhub, proposals to host the microhub would be sought.
  2. Go/No Go decision by researchers, UFL members, and microhub operator as to whether a pilot test will move forward.
    • Sufficient interest amongst participating UFL members and an understanding of the operating model and participants’ business objectives will be necessary to move forward as per the operator’s approval.
    • The operator will work independently with participants and/or the University of Washington to establish operating model(s) under separate agreement(s).

Task 4: Select Operator and Define Operational Model

Subtasks:

  1. Define key metrics for evaluation and data collection plan.
  2. With the support of UFL members participating in the pilot, collect “before” data to contrast with data collected during pilot operations.

Task 5: Implementation

Subtasks:

  1. Support the implementation of a microhub with UFL partners that have agreed to the terms of the pilot.
  2. Project schedule will allow for 6 months of operations, followed by 3 months for analysis.
  3. Collect and analyze field data to measure both operator performance (including VMT, parking demand, fuel, and energy consumption) and expected local impacts (including travel and parking activity) after implementation. Data collection will rely on VMT, GPS, and travel time sources where available, but we expect to develop and implement customized methods to collect additional traffic and travel time data as needed. We may also interview the operator and users to obtain qualitative data on the operations.

Task 6: Evaluate Operations

Subtasks:

  1. Provide progress reports at quarterly UFL meetings.
  2. Final report with key project findings.
Paper

Empirical Analysis of Relieving High-Speed Rail Freight Congestion in China

 
Download PDF  (0.94 MB)
Publication: Sustainability
Volume: 12(23)
Publication Date: 2020
Summary:

This paper discusses how to promote high-speed rail (HSR) freight business by solving the congestion problem. First, we define the existing operation modes in China and propose the idea of relieving congestion by reserving more carriages of HSR passenger trains for freight between cities with large potential volume or small capacity. Second, we take one HSR corridor as a case to study, and use predictive regression and integrated time series methods to forecast the growth of HSR freight volume along the corridor. Finally, combined with forecast results and available capacity during the peak month of 2018, we offer suggestions on the mode adoption in each segment during the peak month from 2019 to 2022. Results demonstrate: (1) Among all 84 Origin-Destination (OD) city flows, the percentage of those monthly volumes over 1 ton increases from 17.9% in 2018 to 84.6% in 2022, and those over 30 tons rise from 3.6% to 26.2%. (2) Among the segments between seven main cities in the HSR corridor, T-J should be given priority to operate trains with reserved mode; the segment between X and J deserves to reserve most carriages during the peak month in the future. Specifically, our model suggests reserving 5.3–10.1 carriages/day for J-X, and 4.8–16.3 carriages/day for X-J during the peak month from 2019 to 2022.

Authors: Hanlin GaoDr. Anne Goodchild, Meiqing Zhang
Recommended Citation:
Hanlin Gao, Meiqing Zhang, & Anne Goodchild. (2020). Empirical Analysis of Relieving High-Speed Rail Freight Congestion in China. Sustainability (Basel, Switzerland), 12(23). https://doi.org/10.3390/su12239918 

Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

The Urban Freight Lab (UFL) received $1.5 million in funding from the U.S. Department of Energy to help goods delivery drivers find a place to park without driving around the block in crowded cities for hours, wasting time and fuel and adding to congestion. The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery drivers know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving.

The UFL will also pilot test common carrier locker systems in public and private load/unload spaces near transit stops. Transit riders, downtown workers, and residents will be able to pick up packages they ordered online from any retailer in a convenient and secure locker in a public plaza or outside their office. The benefits don’t stop there. Common carrier lockers create delivery density that increases the productivity of parking spaces and provides significant commercial efficiencies. They do this by reducing the amount of time it takes delivery people to complete their work. The driver parks next to the locker system, loads packages into it, and returns to the truck. When delivery people spend less time going door-to-door, it decreases the time their truck needs to be parked, increasing turnover and adding parking capacity in crowded cities.

This is a timely project as cities are looking for new strategies to accommodate the rapid growth of e-commerce. Online shopping has grown by 15% annually for the past 11 years, and is now 9% of total retail sales in the U.S., with $453.5 billion in revenue in 2017. Many online shoppers want the goods delivery system to bring them whatever they want, where they want it, in one to two hours. At the same time, many cities are replacing goods delivery load/unload spaces with transit and bike lanes. Cities need new load/unload space concepts supported by technology to make the leap to autonomous cars and trucks in the street, and autonomous freight vehicles in the Final 50 Feet of the goods delivery system. The Final 50 feet segment starts when a truck parks in a load/unload space, and includes delivery persons’ activities as they maneuver goods along sidewalks and into urban towers to make their deliveries.

The goals of this project are to:

  • Reduce parking seeking behavior by 20% in the pilot test area by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform to inform real-time parking decisions.
  • Reduce parcel truck dwell time in pilot test area locations by 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems.
  • Increase network and commercial firms’ efficiency by increasing curb and alley space occupancy rates, and underutilized private loading bay occupancy in the p.m. peak, in the pilot test area.

Cost-share partnering organizations are:

  • Seattle Department of Transportation
  • Bellevue Department of Transportation
  • CBRE Seattle
  • King County Metro Transit
  • Kroger Company
  • Puget Sound Clean Air Agency
  • Sound Transit

Members of the UFL are also participating in the project. Pacific National National Laboratory (PNNL) is a partner, completing several of the project tasks.