Skip to content

Measuring the Sustainability Impact of Misloaded Packages

The Urban Freight Lab and RFID device manufacturer Impinj are joining forces to create a conceptual framework aimed at assessing the repercussions of misloaded packages on Vehicle Miles Traveled (VMT) and emissions. Misloaded packages (packages placed on an incorrect delivery vehicle) can cause drivers to deviate from their intended routes miles to rectify the error, increasing both VMT and emissions. This collaborative effort will analyze the consequences of such incidents in order to optimize delivery efficiency, minimize environmental impacts, and contribute to more efficient and environmentally sustainable urban freight practices.

Background
Impinj, a leader in the manufacturing of radio frequency identification (RFID) devices, has developed a Misloaded Packages Carbon Calculator, a model that quantifies the environmental impact of misloaded packages. The Urban Freight Lab (UFL) is an internationally recognized laboratory with research experience in measuring behaviors and impacts of last-mile delivery systems.

Objective
The current project proposes a collaboration between Impinj and the UFL to:

  • Explore the operational and sustainability impacts of misloaded packages across different industry segments and communicate findings through a blog post.
  • Introduce a novel conceptual model framework based on the IMPINJ carbon calculator that could be implemented in a future project to estimate the marginal change in Vehicle Miles Traveled (VMT) and emissions from changes in the misload rate.

Project Outputs
The UFL team will output the following deliverables:

  • A presentation at the 2023 Impinj Executive Forum to introduce the Impinj-UFL collaboration and the model framework for the misload package carbon calculator
  • A blog post reporting on the operational impact of misloaded packages across different industry sectors, and reflection on the sustainability implications of changing the misload rate (percent of misload packages experienced in a typical day)
  • A conceptual model framework based on Impinj misload packages carbon calculator that take into account different behavioral responses to handle misload packages and different industry sectors

Tasks
The UFL team will complete the following tasks:

  1. The UFL research team will meet with Impinj executives and visit the facilities to learn how RFID technology can be leveraged to reduce misload rates and draft a preliminary list of Impinj customers UFL can interview.
  2. The UFL will present at the 2023 Impinj Executive Forum.
  3. Through Impinj introduction, the UFL team will reach out and schedule at least four interviews with practitioners to document the operational, behavioral and sustainability impacts of misload packages. Interviews will be conducted to cover different sectors, including urban, suburban, and long-haul deliveries.
  4. The UFL will write a draft blog post documenting the results from the interviews, discuss the potential environmental impact of reducing misload rates across different industry sectors, proposed a conceptual model framework on how companies can estimate the marginal change in Vehicle Miles Traveled (VMT) and emissions from changes in the misload rate.
Blog

EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part I)

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2022
Summary:

How can charging infrastructure spark urban freight electrification?

With billions of federal dollars to be invested in building out the country’s charging network, EVs (Electric Vehicles) will soon be getting more places to juice up than ever before. The colossal infrastructure undertaking is meant to keep up with surging EV demand, projected to make up a quarter of all new car sales by 2025. For instance, meeting Seattle’s target of putting 174,000 passenger EVs on the road by 2030 will require 2,900 public Level 2 chargers and 860 DC fast chargers. That number is over five times more than the total chargers installed since 2019.

But estimates for charging stations often overlook the diverse plug-in needs of large commercial semi-trucks, box trucks, service and construction vehicles as well as smaller delivery vans and even electric cargo bicycles. Ramping up commercial fleet electrification will likely require cities, businesses, developers, and utility providers to reshape charging strategies.

So when it came to this month’s member meeting, UFL researchers wanted to know: how can charging infrastructure spark urban freight electrification? This blog discusses what the team had to say.

Authors: Travis Fried
Recommended Citation:
"EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part I)" Goods Movement 2030 (blog). Urban Freight Lab, August 13, 2022. https://www.goodsmovement2030.com/post/charging-infrastructure-urban-freight
Blog

EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part II)

Publication: Goods Movement 2030: an Urban Freight Blog
Publication Date: 2022
Summary:

Is public charging a realistic option for urban freight?

In Part 1, we focused our discussion on electrifying urban freight on grid capacity and installing the correct charger for the job. In this post, we continue the discussion by exploring an avenue for charging infrastructure: publicly available chargers.

Asked about their plans for electrifying urban freight fleets during August’s meeting, Urban Freight Lab (UFL) members stated they would rely primarily on depot charging: Trucks and vans would charge overnight in private facilities. These members agreed that public charging (i.e., curbside charging) was not key to electrifying the last-mile delivery sector. Policy research groups seem to support this take on charging needs. The International Council on Clean Transportation (ICCT) in 2021 estimated that more than 2 million depot-based chargers will be needed in the U.S. by 2050 to meet charging demand. When it comes to public chargers, they estimate that need will be fewer than 300,000. That same year, Atlas Public Policy estimated that 75-90% of freight-related charging will occur at depots.

Both reports suggest, however, that investment is still needed in public charging infrastructure. Why? Because more than 90% of trucking companies in the U.S. are owner-operators or small fleets of 6 trucks or fewer. These small companies represent only 18-20% of trucks on the road, but they may lack the financial resources to install a truck or van charger and/or access to depot-based overnight charging.

With that in mind we address the question: Is public charging a realistic option for urban freight?

Authors: Thomas Maxner
Recommended Citation:
"EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part II)" Goods Movement 2030 (blog). Urban Freight Lab, December 10, 2022. https://www.goodsmovement2030.com/post/charging-infrastructure-urban-freight-p2
Blog

What is Microfreight? Downsizing Delivery for a Multimodal and Sustainable Future

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

“Why deliver two-pound burritos in two-ton cars?”

That’s the question posed by sidewalk delivery robot company Serve, which is delivering food in places like Los Angeles. Sure, using something other than a car for items like a burrito makes sense. But what about a sofa? Urban delivery is all about right-sizing, context, and connecting logically and efficiently to the broader delivery network.

At the Urban Freight Lab (UFL), we talk about things like sidewalk delivery robots and e-bikes as microfreight. Microfreight is about moving goods using smaller, more sustainable modes where possible. Think micromobility, but for moving goods, not people, in the last mile of delivery.

Microfreight was one of the four topics UFL members voted to explore as part of the Urban Freight in 2030 Project. In the right city context, using microfreight can be both economical for freight businesses and more sustainable in terms of decarbonization and city dweller quality of life. We intentionally chose to hold the UFL spring meeting on microfreight in New York City, a city on the leading edge of the multimodal goods movement. The city’s perch on that leading edge makes sense, as the densest city in the U.S.; a city with sky-high delivery demand coming from people living in sky-high towers; and a city government working to proactively manage that reality. To be sure, NYC is one of a kind when it comes to dense, vertical living. Because of this density and intense interaction between modes, the Big Apple is an important place to watch — and a great place for us to share learning, expertise, and ideas.

And when we watched the Midtown Manhattan streets during that UFL meeting, we saw throngs of people on e-bikes and cargo bikes making food and ecommerce deliveries. But microfreight is about much more than just bikes. It includes personal delivery devices (PDDs) and drones. It even includes walking, an element that permeates nearly every last-mile delivery segment, especially the final 50 feet of a trip. Yet walking is something normally talked about for moving people, much less so for moving goods. To be sure, we saw plenty of deliveries being made on foot while in NYC, too!

Here’s a rundown of what we consider to be microfreight.

Recommended Citation:
"What is Microfreight? Downsizing Delivery for a Multimodal and Sustainable Future." Goods Movement 2030 (blog). Urban Freight Lab, June 19, 2023. https://www.goodsmovement2030.com/post/microfreight-downsizing-delivery-for-a-multimodal-and-sustainable-future.
Blog

Goods Movement 2030: What Have We Done and What is Next?

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

A year and a half ago, our members decided to dig into four topics for the Goods Movement 2030 project (Electrification, Digital Transformation, Planning Streets for People and Goods, and Microfreight). They all — public and private sector alike — saw these areas as transformative. And they identified six priorities around which we hope to see improved outcomes for 2030 (Reducing CO2 Emissions, Reducing Congestion, Reducing Roadway Fatalities, Increasing and Improving Protected Spaces for Vulnerable Users, Making Transparent the Cost of Delivery, and Improving Equity).

From myriad lively discussions, debates, and expert-led learning over the last 18 months, this much is clear: Each of the four topics we’ve explored together cries out for deep and broad collaboration between the public and private sectors if we’re going to move the needle on our consensus priorities.

And the good news? Our members have already shown that they’re willing and able to approach that needed collaboration with curious minds and radical transparency (not to mention their demonstrated commitment to innovating and having tough conversations.) All of this bodes well for both the present — and the future we’ve all been working to imagine and shape.

While all six priorities surfaced throughout this project, it’s decarbonization that came up in virtually every discussion on every topic. On equity, we had to grapple early on with what that even means in urban freight.

This blog presents a Cliffs Notes recap of big-picture project takeaways.

Recommended Citation:
“Goods Movement 2030: What Have We Done and What Is Next?” Goods Movement 2030 (blog). Urban Freight Lab, October 24, 2023. https://www.goodsmovement2030.com/post/goods-movement-2030-so-what-have-we-done-here-and-whats-next.
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.
Chapter

Overview on Stakeholder Engagement

Publication: Handbook on City Logistics and Urban Freight
Publication Date: 2023
Summary:

Until recently, urban transport authorities often overlooked freight, concentrating their attention on the movement of people. Even when motivated to tackle urban freight, many city authorities find it difficult to mobilize their own resources, and address the complex set of differing views of a large variety of stakeholders.

Historically, the role of city authorities, or local authorities within cities, has been confined largely to one of regulation as opposed to collaborative planning. Correspondingly, until recently there has been limited engagement of private companies in the local-authority transport-planning process.

Engaging stakeholders is very important as without their involvement it is very difficult to motivate changes in the urban freight and logistics system or design policies that might be mutually beneficial; successful implementation of effective urban logistics initiatives demands a solid understanding of both freight activity and the supply chains serving the urban area.

This chapter examines these issues and addresses how cities can more effectively engage with stakeholders. There is a strong need to identify obstacles, propose solutions and define implementation paths that consider the concerns of all stakeholders involved. This sounds rather straightforward but in practice there are many conflicts among and within public and private-interest groups and these often result in obstacles to success.

This chapter will address the range of complex issues involved and establish a framework for understanding the options related to stakeholder engagement to improve urban freight sustainability.

Authors: Dr. Anne Goodchild, Michael Browne (University of Gothenburg)
Recommended Citation:
Michael Browne & Anne Goodchild, 2023. "Overview on stakeholder engagement," Chapter in: Edoardo Marcucci & Valerio Gatta & Michela Le Pira (ed.), Handbook on City Logistics and Urban Freight, chapter 15, pages 311-326, Edward Elgar Publishing.
Report

Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (7.07 MB)
Publication Date: 2022
Summary:

This three-year project supported by the U.S. Department of Energy Vehicle Technologies Office has the potential to radically improve the urban freight system in ways that help both the public and private sectors. Working from 2018-2021, project researchers at the University of Washington’s Urban Freight Lab and collaborators at the Pacific Northwest National Laboratory have produced key data, tested technologies in complex urban settings, developed a prototype parking availability app, and helped close major knowledge gaps.

All the fruits of this project can be harnessed to help cities better understand, support and actively manage truck load/unload operations and their urban freight transport infrastructure. Project learnings and tools can be used to help make goods delivery firms more efficient by reducing miles traveled and the time it takes to complete deliveries, benefitting businesses and residents who rely on the urban freight system for supplies of goods. And, ultimately, these project learnings and tools can be used to make cities more livable by minimizing wasted travel, which, in turn, contributes to reductions in fuel consumption and emissions.

Cities today are challenged to effectively and efficiently manage their infrastructure to absorb the impacts of ever-increasing e-commerce-fueled delivery demand. All delivery trucks need to park somewhere to unload and load. Yet today’s delivery drivers have no visibility on available parking until they arrive at a site, which may be full. That means they can wind up cruising for parking, which wastes time and fuel and contributes to congestion. Once drivers do find parking, the faster they can unload at the spot, the faster they free up space for other drivers, helping others avoid circling for parking. This makes the parking space—and thus the greater load/unload network—more productive.

To this end, the research team successfully met the project’s three goals, developing and piloting strategies and technologies to:

  • Reduce parking-seeking behavior in the study area by 20%
  • Reduce parcel truck dwell time (the time a truck spends in a spot to load/unload) in the study area by 30%
  • Increase curb space, alley space, and private loading bay occupancy rates in the study area

The research team met these goals by creating and piloting on Seattle streets OpenPark, a first-of-its-kind real-time and forecasting curb parking app customized for commercial delivery drivers—giving drivers the “missing link” in their commonly used routing tools that tell them how best to get to delivery locations, but not what parking is available to use when they get there. Installing in-ground sensors on commercial vehicle load zones (CVLZs) and passenger load zones (PLZs) in the 10-block study area in Seattle’s downtown neighborhood of Belltown let researchers glean real-time curb parking data. The research team also met project goals by piloting three parcel lockers in public and private spaces open to any delivery carrier, creating a consolidated delivery hub that lets drivers complete deliveries faster and spend less time parked. Researchers collected and analyzed data to produce the first empirical, robust, statistically significant results as to the impact of the lockers, and app, on on-the-ground operations. In addition to collecting and analyzing sensor and other real-time and historical data, researchers rode along with delivery drivers to confirm real-world routing and parking behavior. Researchers also surveyed building managers on their private loading bay operations to understand how to boost usage.

Key findings that provide needed context for piloting promising urban delivery solutions:

  • After developing a novel model using GPS data to measure parking-seeking behavior, researchers were able to quantify that, on average, a delivery driver spends 28% of travel time searching for parking, totaling on average one hour per day for a parcel delivery driver. This project offers the first empirical proof of delivery drivers’ cruising for parking.
  • While many working models to date have assumed that urban delivery drivers always choose to double-park (unauthorized parking in the travel lane), this study found that behavior is rare: Double parking happened less than 5% of the times drivers parked.
  • That said, drivers do not always park where they are supposed to. The research team found that CVLZ parking took place approximately 50% of the time. The remaining 50% included mostly parking in “unauthorized” curb spaces, including no-parking zones, bus zones, entrances/exits of parking garages, etc.
  • Researcher ride-alongs with delivery drivers revealed parking behaviors other than unauthorized parking that waste valuable time and fuel: re-routing (after failing to find a desired space, giving up and doubling back to the delivery destination later in the day) and queuing (temporarily parking in an alternate location and waiting until the desired space becomes available).
  • Some 13% of all parking events in CVLZ spaces were estimated as overstays; the figure was 80% of all parking events in PLZ spaces. So, the curb is not being used efficiently or as the city intended as many parking events exceed the posted time limit.
  • Meantime, there is unused off-street capacity that could be tapped in Seattle’s Central Business District. Estimates show private loading bays could increase area parking capacity for commercial vehicles by at least 50%. But surveys show reported use of loading bays is low and property managers have little incentive to maximize it. Property managers find curb loading zones more convenient; it seems delivery drivers do, too, as they choose to park at the curb even when loading bay space is available.

Key findings from the technology and strategies employed:

Carriers give commercial drivers routing tools that optimize delivery routes by considering travel distance and (often) traffic patterns—but not details on parking availability. Limited parking availability can lead to significant driver delays through cruising for parking or rerouting, and today’s drivers are largely left on their own to assess and manage their parking situation as they pull up to deliver.

The project team worked closely with the City of Seattle to obtain permission to install parking sensors in the roadway and communications equipment to relay sensor data to project servers. The team also developed a fully functional and open application that offers both real-time parking availability and near-time prediction of parking availability, letting drivers pick forecasts 5, 15, or 30 minutes into the future depending on when the driver expects to arrive at the delivery destination. Drivers can also enter their vehicle length to customize availability information.

After developing, modeling, and piloting the real-time and forecasting parking app, researchers conducted an experiment to determine how use of the app impacted driver behavior and transportation outcomes. They found that:

  • Having access to parking availability via the app resulted in a 28% decrease in the time drivers spent cruising for parking. Exceeding our initial goal of reducing parking seeking behavior by 20%. In the study experiment, all drivers had the same 20-foot delivery van and the same number of randomly sampled delivery addresses in the study area. But some drivers had access to the app; others did not.
  • Preliminary results based on historic routing data show that the use of such a real-time curb parking information and prediction app can reduce route time by approximately 1.5%. An analysis collected historic parking occupancy and cruising information and integrated it into a model that was then used to revise scheduling and routing. This model optimally routed vehicles to minimize total driving and cruising time. However, since the urban environment is complex and consists of many random elements, results based on historic data underly a high amount of randomness. Analysis on synthetic routes suggests including parking availability in routing systems is especially promising for routes with high delivery density and with stops where the cruising time delays vary a lot along the planned time horizon; here, route time savings can reach approximately 20.4% — conditions outlined in the report.
  • The central tradeoff among four approaches to parking app architecture going forward is cost and accuracy. The research team found that it is possible to train machine learning models using only data from curb occupancy sensors and reach a higher than 90% accuracy. Training of state-space models (those using inputs such as time of day, day of the week, and location to predict future parking availability) is computationally inexpensive, but these models offer limited accuracy. In contrast, deep-learning models are highly accurate but computationally expensive and difficult to use on streaming data.

Common carrier lockers create delivery density, helping delivery people complete their work faster. The driver parks next to the locker system, loads packages into it, and returns to the truck. When delivery people spend less time going door-to-door (or floor-to-floor inside a building), it cuts the time their truck needs to be parked, increasing turnover and adding parking capacity in crowded cities. This project piloted and collected data on common carrier lockers in three study area buildings.

From piloting the common carrier parcel lockers, researchers found that:

  • The implementation of the parcel locker allowed delivery drivers to increase productivity: 40%-60% reduction in time spent in the building and 33% reduction in vehicle dwell time at the curb.
Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraFiete KruteinDr. Andisheh RanjbariDr. Ed McCormackElizabeth Guzy, Dr. Vinay Amatya (PNNL), Ms. Amelia Bleeker (PNNL), Dr. Milan Jain (PNNL)
Recommended Citation:
Urban Freight Lab (2022). Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.