Skip to content

Open Mobility Foundation: SMART Grant Curb Collaborative

The Open Mobility Foundation’s SMART Curb Collaborative is a group of cities united in tackling challenges in curb management, reducing congestion, enhancing livability, and improving safety and equity on city streets. Each of these public agencies is a recipient of USDOT’s Strengthening Mobility and Revolutionizing Transportation (SMART) grant program, which provides funding to build data and technology capacity across the US.

In close coordination with the Open Mobility Foundation (OMF) Collaborative Program Manager, the UFL will support the nine cities of the SMART Grant collaborative as a component of joint services provided through enhanced membership with the OMF. The UFL will lead research initiatives within the Collaborative, contribute academic content and presentations to the group, and work closely with Cityfi and the OMF Collaborative team to support joint deliverables. The UFL will focus on three main thematic areas of inquiry to inform comparative learnings and insights across the Collaborative. The three themes are: curb infrastructure, curb policy, and curb demand.

Objectives

The Urban Freight Lab will:

  • Lead comparative analysis of the Collaborative across various indices (infrastructure, policy, and demand) and connect to questions around the digitization of curbspace
  • Support Cityfi and the OMF Program Manager by contributing expert academic and industry expertise to the Collaborative
  • Support the development of joint deliverables such as case studies.

Task 1. Project Management/Coordination with Collaborative and Support Team

Task 2. Organize and create a comparative rubric of Collaborative projects
The UFL, in collaboration with CityFi and OMF, will help to capture and document an overview of projects, catalog of research objectives and learnings, metrics and data to be collected by cities, and goals of projects. This will help to inform further comparative studies and learnings across the Collaborative.

Task 3. Curb Infrastructure
The UFL will document and compare the supply of curb infrastructure being studied by the nine Collaborative cities and gather publicly available data sources to be used for comparative analysis. The UFL will incorporate information collected in Task 2 such as information about the study area, curb inventory, and if data allows compare curb allocation between study areas.

Task 4. Curb Policy
The UFL will document and compare curb policies among cities. Once documented, researchers will create a typology of curb-related regulations, strategies and technologies adopted in the past and proposed in the SMART Cohort. Researchers will incorporate data collected from cities in Task 2 and undertake additional research and policy scan as needed.

Task 5. Curb Demand
The UFL team will use data collected in Task 2 to assess if any of the Cohort cities are capturing curb-use data. For cities where this data is available, the UFL team will estimate curb use for selected study areas within the cohort of cities and perform a comparative analysis. The accuracy of the analysis will depend on the availability of data provided by the selected cities.

Balancing Freight and Goods Delivery Needs in Designing Complete Streets

The Infrastructure and Investment Jobs Act (IIJA) introduced provisions that are important for both freight movement and implementation of Complete Streets policies. Per the IIJA, Complete Streets standards and policies “ensure the safe and adequate accommodation of all users of transportation systems, including pedestrians, bicyclists, public transportation users, children, individuals who are aging, individuals with disabilities, motorists, and freight vehicles” (Pub. L. 117-58, Section 11206(a). Complete Streets can be considered synonymous with active transportation, which refers to human-powered activities such as walking, biking, or rolling. However, freight is explicitly referenced in the Federal Highway Administration’s Complete Streets description; state departments of transportation (DOTs) are required to allocate resources for activities related to Complete Streets, and freight must be considered concurrently.

With the rise of e-commerce and smaller delivery vehicles, curbside goods delivery, bicycle and pedestrian needs, advancing technologies, and other factors, research is needed to identify knowledge gaps and explore how to integrate the needs of freight movement with the active transportation approaches of Complete Streets to create more efficient, comprehensive, resilient, and cohesive networks.

Objective

The objective of this research is to develop a guide to incorporate design and operational considerations for freight into Complete Streets strategies across land use topologies.

In developing the research approach, considerations should include:

  • For the purpose of defining scope parameters, freight movement is related to surface transportation and includes trucks, cargo bikes, autonomous delivery robots, rail, and drones, as applicable;
  • Local, state, and federal transportation needs and economic development funding mechanisms;
  • Innovative solutions that prioritize the use of existing rights-of-way;
  • Applicable local, state, and federal codes and regulations;
  • Advanced technologies including autonomous delivery (e.g., autonomous trucks, drones, and personal delivery devices); and
  • Equitable outcomes for varying types of communities, businesses, and freight operators.
  • Accomplishment of the project objective will require at least the following tasks.

Tasks

PHASE I

Task 1. Analyze, describe, and critique pertinent domestic and international research on the bases of applicability, conclusiveness of findings, and usefulness for the integration of freight in Complete Streets processes. Include completed research and research currently underway.

Task 2. Identify effective and successful practices for integrating freight in Complete Streets processes. This information may include performance data, metrics, research findings, and other information assembled from technical literature and from a survey of practitioners.

Task 3. Prepare a detailed outline of the proposed guide intended to aid in incorporating the design and operational considerations of freight with Complete Streets.

Task 4. Prepare an interim report that documents the work completed in Tasks 1 through 3. Include a detailed work plan for the work anticipated in Phase II. Following a review of the interim report by the NCHRP, the research team will be required to make a presentation to the project panel.

PHASE II

Task 5. Building on the findings of Phase I, use partnership engagement to identify and summarize common challenges and conflicts related to policy, equity, funding, planning, design, prioritization and reporting, personnel, and the use and interpretation of Complete Streets policies as they relate to freight transportation. Interested parties shall include local municipalities, metropolitan planning organizations, DOTs, and freight providers and generators.

Task 6. Develop case studies that represent a broad range of land use topologies using the findings from Tasks 1 through 5. The case studies should highlight challenges and opportunities.

Task 7. Prepare Interim Report 2 summarizing the findings from Tasks 1 through 6.

PHASE III

Task 8. Develop a freight and Complete Streets integration tool kit that includes a checklist, visual library, and primers on the following areas: equity, policy, design, funding mechanisms, community engagement strategies, partnership opportunities, operations, and maintenance.

Task 9. Prepare a guide that describes how practitioners may consider all modes of surface transportation while balancing the needs of transportation systems users with the demands of freight.

Task 10. Prepare final deliverables, which shall include, at a minimum: (1) a final research report documenting the entire research effort, findings, and lessons learned; (2) a guide to integrating freight and Complete Streets; (3) a freight and Complete Streets integration tool kit; (4) prioritized recommendations for future research; (5) a PowerPoint presentation describing the background, objectives, research approach, findings, and conclusions; (6) a stand-alone technical memorandum titled “Implementation of Research Findings and Products”; and (7) a presentation, as possible, of findings to two American Association of State Highway and Transportation Officials (AASHTO) councils or committees concerned with the integration of freight and Complete Streets.

Paper

Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS

 
Download PDF  (1.35 MB)
Publication: International Journal of Environmental Research and Public Health
Volume: 16 (19)
Pages: 3565
Publication Date: 2019
Summary:

Intersection and non-intersection locations are commonly used as spatial units of analysis for modeling pedestrian crashes. While both location types have been previously studied, comparing results is difficult given the different data and methods used to identify crash-risk locations. In this study, a systematic and replicable protocol was developed in GIS (Geographic Information System) to create a consistent spatial unit of analysis for use in pedestrian crash modeling. Four publicly accessible datasets were used to identify unique intersection and non-intersection locations: Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess the protocol reliability. The algorithms, which were designed to identify crash-risk locations at intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m). Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0% for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest performance in the analyses. The present protocol offered an efficient and reliable method to create spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method to identify unique intersection and non-intersection locations. Additional search radii should be tested in future studies to refine the capture of crash-risk locations.

Authors: Haena Kim, Mingyu Kang, Anne Moudon, Linda Ng Boyle,
Recommended Citation:
Kang, Mingyu, Anne Vernez Moudon, Haena Kim, and Linda Ng Boyle. 2019. Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS. International Journal of Environmental Research and Public Health 16, no. 19: 3565. https://doi.org/10.3390/ijerph16193565

Freight and Bus Lane (FAB) Data Collection and Evaluation Plan (Route 40)

The Urban Freight Lab (UFL) was approached by the Seattle Department of Transportation (SDOT) to complete a review of proposed evaluation criteria and propose a data collection plan in preparation for the implementation of a Freight and Bus Lane (FAB) Lane in Fall 2024 for King County Metro’s Bus Route 40.

This project would effectively produce the follow-on scope of work for the UFL to complete during the actual implementation (pre/post/post phase). UFL will build on the findings from the Urban Freight Lab’s Freight and Transit Lane Case Study completed in 2019. With the completion of the Route 40 TPMC project in Fall 2024, FAB lanes will be tested as a pilot in select locations and evaluated before permanent installation.

Objectives

  • Refresh literature review on freight and transit lane studies
  • Meet with key stakeholders from SDOT and Metro to understand data collection tools and methodologies
  • Propose a technical evaluation plan for this pilot that includes data collection and metrics and communication strategies

Revenue-Related Strategies for New Mobility Options

The Urban Freight Lab (UFL) is partnering with ECONorthwest and Cityfi to develop a research product for the National Cooperative Highway Research Program (NCHRP) on the topic of revenue strategies for new mobility options. The team will analyze the public sector’s potential role in using revenue-related strategies to encourage or discourage new mobility options in personal mobility and goods delivery.

Transportation services often operate in publicly owned and publicly managed spaces, make use of public rights-of-way, and produce mobility benefits for a broad array of users. The public sector is responsible for managing and pricing those rights-of-way and delivering services in an equitable way. Recovering the public costs of management and provisioning from private transportation services and their users is essential for maintaining public benefit. And sometimes the public sector needs to help private services to thrive.

The research methodology for this project is designed to be iterative: activities and research will build on previous research and activities. We will begin with the development of a revenue framework informed by a broad review of the literature, a policy scan, and workshop sessions with transportation and other public agency representatives that regulate and collect revenue from new mobility services. The framework will include revenue-related strategies based on:

    • (a) identifiable need
    • (b) nexus to cost responsibility
    • (c) policy outcome
    • (d) other factors such as access to technology and ease of administration.

We will then take a deeper dive into each personal mobility mode and goods delivery market segment to apply the framework. We will also provide examples to illustrate the opportunities and challenges of a variety of revenue strategies. We will also conduct additional workshops with public agency representatives, industry representatives, and other transportation stakeholders. Finally, we will create a spreadsheet-based Revenue Calculator that allows interested individuals to estimate how much revenue could be generated using different assumptions and strategies. The work will culminate with the development of a Toolkit that will be submitted to NCHRP and made available for wider distribution.

Objectives

The objective of this research is to develop a toolkit for transportation agencies that addresses how revenue-related strategies (e.g., taxes, fees, and subsidies) support policy objectives and shape the deployment of new mobility options. The toolkit will assist agencies to develop, evaluate, implement, and administer revenue-related strategies for new mobility options that transport people and goods.

The research will include:

  1. New and evolving transportation options for people and goods that interact with the existing built environment and travel throughout an area
  2. Incentives and disincentives that result from revenue-related strategies
  3. Policy implications of revenue-related strategies for new mobility options including revenue potential, mobility, travel demand, safety, equity, environment, economic development, infrastructure design, operations, and maintenance
  4. Mechanisms for revenue collection and distribution for different mobility options in different scenarios
  5. The ease and difficulty of implementing and enforcing different revenue-related strategies for new mobility options
  6. Potential roles and responsibilities of governmental organizations and private entities

Managing Increasing Demand for Curb Space in the City of the Future

This research aims to develop innovative methods for managing curb lane function and curb access. The rapid rise of autonomous vehicles (AV), on-demand transportation, and e-commerce goods deliveries, as well as increased cycling rates and transit use, is increasing demand for curb space resulting in competition between modes, failed goods deliveries, roadway and curbside congestion, and illegal parking.

The research findings will improve mobility by increasing the understanding of existing curb usage and provide new solutions to city officials, planners, and engineers responsible for managing this scarce resource in the future.

The research team will work closely with several cities in the PacTrans region to ensure the study’s relevance to their needs, and that the results will be broadly applicable for other cities.

This research will allow for the development of innovative curb space designs and ensure that our urban street system may operate more efficiently, safely, and reliably for both goods and people.

Technical Report

Analyzing the Long-Term Impacts of COVID-19 Disruption on Travel Patterns

 
Download PDF  (7.51 MB)
Publication Date: 2020
Summary:

The rapid spread of COVID-19 pandemic in the U.S. spurred many state governments to take extensive actions for social distancing and issue stay-at-home orders to reduce the spread of the virus. Washington State and all other States in the PacTrans region have issued stay-at-home orders that include school closures, telecommuting, bars/restaurants closures, and group gathering bans, among others. These actions create significant changes to daily life and while some travel patterns will gradually restore by the end of outbreak, some may remain changed for a much longer period.

Behaviors that may see a lasting response include commuting, grocery shopping, business meetings, and even social interactions. Working from home for 2-3 months may change people’s attitudes toward telecommuting, and some may continue to do so a few days a week once the stay-at-home orders are lifted. Some employers may also shift their telecommute policies and provide/encourage working from home. In recent years, with the growth of e-commerce, many grocery stores had started to offer home deliveries; however, online grocery shopping experienced a fast and sudden boom during the pandemic. This has resulted in quick service adoption, and therefore some people may continue to do online grocery shopping once things go back to normal. Moreover, as people shift to online grocery shopping, they may proactively make a list and place orders less frequently compared to them going to store, resulting in fewer shopping trips. Some business meetings and even personal gatherings may also move online as people learn about and try alternate ways of communicating during the outbreak. Some may also consider enrolling in distant learning programs instead of attending in-person educational programs. There may also be significant changes in modes of travel. Some transit commuters may choose other modes of transportation for a while, and people may choose to drive or bike instead of taking a ride-hailing trip.

The goal of this research is to understand how COVID-19 disruption has affected people’s activity and travel patterns during the pandemic, and how these changes may persist in a post-pandemic era.

Authors: Dr. Andisheh Ranjbari, Parastoo Jabbari, Don MacKenzie
Recommended Citation:
Mackenzie D., Jabbari P., Ranjbari A. Analyzing the Long-Term Impacts of COVID-19 Disruption on Travel Patterns. Pacific Northwest Transportation Consortium (PacTrans). 2020. http://hdl.handle.net/1773/46655.
Paper

The Automated Driver as a New Road User

 
Download PDF  (2.40 MB)
Publication: Transport Reviews
Pages: 23-Jan
Publication Date: 2020
Summary:

Although road infrastructure has been designed to accommodate human drivers’ physiology and psychology for over a century, human error has always been the main cause of traffic accidents. Consequently, Advanced Driver Assistance Systems (ADAS) have been developed to mitigate human shortcomings. These automated functions are becoming more sophisticated allowing for Automated Driving Systems (ADS) to drive under an increasing number of road conditions. Due to this evolution, a new automated road user has become increasingly relevant for both road owners and the vehicle industry alike. While this automated driver is currently operating on roads designed for human drivers, in the future, infrastructure policies may be designed specifically to accommodate automated drivers. However, the current literature on ADSs does not cover all driving processes. A unified framework for human and automated driver, covering all driving processes, is therefore presented. The unified driving framework, based on theoretical models of human driving and robotics, highlights the importance of sensory input in all driving processes. How human and automated drivers sense their environment is therefore compared to uncover differences between the two road users relevant to adapt road design and maintenance to include the automated driver. The main differences identified between human and automated drivers are that (1) the automated driver has a much greater range of electromagnetic sensitivity and larger field of view, and (2) that the two road users interpret sensory input in different ways. Based on these findings, future research directions for road design and maintenance are suggested.

Authors: Dr. Ed McCormack, Ane Dalsnes Storsaeter, Kelly Pitera
Recommended Citation:
Storsæter, A. D., Pitera, K., & McCormack, E. D. (2020). The automated driver as a new road user. Transport Reviews, 1–23. https://doi.org/10.1080/01441647.2020.1861124
Paper

Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint

 
Download PDF  (2.13 MB)
Publication: Cities
Volume: 105
Publication Date: 2020
Summary:

There is growing pressure in cities to unlock the potential of every public infrastructure element as density and demand for urban resources increase. Despite their historical role as providing access to land uses for freight and servicing, alleys have not been studied as a resource in modern freight access planning.

The authors developed a replicable data collection method to build and maintain an alley inventory and operations study focused on commercial vehicles. A Seattle Case study showed that 40% of the urban center city blocks have an alley. 90% of those alleys are wide enough to accommodate only a single lane for commercial vehicles. 437 parking operations were recorded in seven alleys during business hours and found that all alleys were vacant 50% of the time.

This confirms that, in its alleys, Seattle has a valuable resource as both space for freight load/unload; and direct access to parking facilities and business entrances for commercial, private, and emergency response vehicles.

However, alley design features and the prevalence of parking facilities accessed through the alley may restrict the freight load/unload space in the alley. Future efforts should investigate how to better manage these infrastructures.

Recommended Citation:
Machado-León, Girón-Valderrama, G. del C., & Goodchild, A. (2020). Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint. Cities, 105. https://doi.org/10.1016/j.cities.2020.102847 

Freight and Transit Lane Study (Task Order 7)

The City of Seattle Department of Transportation (SDOT) engaged the Urban Freight Lab to conduct research on the impacts of a Freight and Transit-Only (FAT) Lane in place in January 2019. The research findings will be used to understand the FAT Lane’s performance towards achieving city goals and to guide the development of future FAT Lane projects.

The Seattle Freight Master Plan includes a FAT Lane strategy to reach the city’s economic goals:

  • (2) Economy – Provide a freight network that supports a thriving and diverse economy for Seattle and the region.
  • (2.4) Maintain and improve truck freight mobility and access between and within the city’s MICs and to the regional highway system
  • (2.4.2) Explore and test the use of truck-only lanes to improve freight mobility on city streets with high truck volumes

SDOT’s key research interests in this project are to:

  1. Document whether the FAT Lane’s benefits to truck drivers were strong enough to attract heavy freight vehicles from using other downtown streets. This will be measured by comparing truck volume on the Lane during implementation to volume after it was closed.
  2. Determine whether passenger cars followed the posted FAT Lane restrictions. This will be measured by documenting the number of cars violating the rule.
  3. Document transit use during the implementation period.

Background:

The Alaskan Way Viaduct, a major freight thoroughfare in Seattle, was closed on January 11, 2019 significantly reducing capacity in the already congested road network in Greater Downtown Seattle. To improve freight and transit access to commercial and industrial areas in the city, the City of Seattle Department of Transportation, in partnership with the WSDOT, temporarily installed two blocks of a Freight and Transit Lane on Alaskan Way.

The FAT Lane was in the curb lane only, on southbound Alaskan Way (at street level, not on the Viaduct). The 2-block segment is north of Little H on Alaskan Way, which provides access to Colorado and Alaskan Way. The FAT Lane supported Port of Seattle operations.

Research Tasks:

The following tasks will be completed by the Urban Freight Lab:

Task 1 – Research Scan

Subtasks:

  1. Conduct a short research scan of published reports that provide data-based evidence of the results of FAT Lane projects.
  2. Write a 2-3 page summary of the results of other FAT Lane projects

Task 2 – Analysis of video data

Subtasks:

  1. SDOT will provide video of the FAT Lane segment taken when the Lane was open and after it closed, to the UFL. The UFL will categorize and count vehicles in the lane as follows:
    • Transit/bus
    • Passenger/car
    • Truck/freight:
      1. Drayage with container
      2. Drayage without container
      3. All other trucks/freight vehicles. This category includes: delivery vans/trucks, construction and waste vehicles, and if readily apparent service commercial vehicles.
    • Other vehicles, e.g. those lacking differentiating features to categorize.
  2. UFL will analyze the count data and include key findings in the final report. The analysis will include:
    1. A comparison of truck volume on the Lane during implementation to the volume after it was closed. This may include time of day, day of week, or other factors.
    2. The number of passenger cars in the Lane during implementation. e.g. the number of violators.
    3. The UFL researchers will also explore whether comparing data collected in the Greater Downtown Cordon study to data collected in this study yields valid findings.