Skip to content

Open Mobility Foundation: SMART Grant Curb Collaborative

The Open Mobility Foundation’s SMART Curb Collaborative is a group of cities united in tackling challenges in curb management, reducing congestion, enhancing livability, and improving safety and equity on city streets. Each of these public agencies is a recipient of USDOT’s Strengthening Mobility and Revolutionizing Transportation (SMART) grant program, which provides funding to build data and technology capacity across the US.

In close coordination with the Open Mobility Foundation (OMF) Collaborative Program Manager, the UFL will support the nine cities of the SMART Grant collaborative as a component of joint services provided through enhanced membership with the OMF. The UFL will lead research initiatives within the Collaborative, contribute academic content and presentations to the group, and work closely with Cityfi and the OMF Collaborative team to support joint deliverables. The UFL will focus on three main thematic areas of inquiry to inform comparative learnings and insights across the Collaborative. The three themes are: curb infrastructure, curb policy, and curb demand.

Objectives

The Urban Freight Lab will:

  • Lead comparative analysis of the Collaborative across various indices (infrastructure, policy, and demand) and connect to questions around the digitization of curbspace
  • Support Cityfi and the OMF Program Manager by contributing expert academic and industry expertise to the Collaborative
  • Support the development of joint deliverables such as case studies.

Task 1. Project Management/Coordination with Collaborative and Support Team

Task 2. Organize and create a comparative rubric of Collaborative projects
The UFL, in collaboration with CityFi and OMF, will help to capture and document an overview of projects, catalog of research objectives and learnings, metrics and data to be collected by cities, and goals of projects. This will help to inform further comparative studies and learnings across the Collaborative.

Task 3. Curb Infrastructure
The UFL will document and compare the supply of curb infrastructure being studied by the nine Collaborative cities and gather publicly available data sources to be used for comparative analysis. The UFL will incorporate information collected in Task 2 such as information about the study area, curb inventory, and if data allows compare curb allocation between study areas.

Task 4. Curb Policy
The UFL will document and compare curb policies among cities. Once documented, researchers will create a typology of curb-related regulations, strategies and technologies adopted in the past and proposed in the SMART Cohort. Researchers will incorporate data collected from cities in Task 2 and undertake additional research and policy scan as needed.

Task 5. Curb Demand
The UFL team will use data collected in Task 2 to assess if any of the Cohort cities are capturing curb-use data. For cities where this data is available, the UFL team will estimate curb use for selected study areas within the cohort of cities and perform a comparative analysis. The accuracy of the analysis will depend on the availability of data provided by the selected cities.

Balancing Freight and Goods Delivery Needs in Designing Complete Streets

The Infrastructure and Investment Jobs Act (IIJA) introduced provisions that are important for both freight movement and implementation of Complete Streets policies. Per the IIJA, Complete Streets standards and policies “ensure the safe and adequate accommodation of all users of transportation systems, including pedestrians, bicyclists, public transportation users, children, individuals who are aging, individuals with disabilities, motorists, and freight vehicles” (Pub. L. 117-58, Section 11206(a). Complete Streets can be considered synonymous with active transportation, which refers to human-powered activities such as walking, biking, or rolling. However, freight is explicitly referenced in the Federal Highway Administration’s Complete Streets description; state departments of transportation (DOTs) are required to allocate resources for activities related to Complete Streets, and freight must be considered concurrently.

With the rise of e-commerce and smaller delivery vehicles, curbside goods delivery, bicycle and pedestrian needs, advancing technologies, and other factors, research is needed to identify knowledge gaps and explore how to integrate the needs of freight movement with the active transportation approaches of Complete Streets to create more efficient, comprehensive, resilient, and cohesive networks.

Objective

The objective of this research is to develop a guide to incorporate design and operational considerations for freight into Complete Streets strategies across land use topologies.

In developing the research approach, considerations should include:

  • For the purpose of defining scope parameters, freight movement is related to surface transportation and includes trucks, cargo bikes, autonomous delivery robots, rail, and drones, as applicable;
  • Local, state, and federal transportation needs and economic development funding mechanisms;
  • Innovative solutions that prioritize the use of existing rights-of-way;
  • Applicable local, state, and federal codes and regulations;
  • Advanced technologies including autonomous delivery (e.g., autonomous trucks, drones, and personal delivery devices); and
  • Equitable outcomes for varying types of communities, businesses, and freight operators.
  • Accomplishment of the project objective will require at least the following tasks.

Tasks

PHASE I

Task 1. Analyze, describe, and critique pertinent domestic and international research on the bases of applicability, conclusiveness of findings, and usefulness for the integration of freight in Complete Streets processes. Include completed research and research currently underway.

Task 2. Identify effective and successful practices for integrating freight in Complete Streets processes. This information may include performance data, metrics, research findings, and other information assembled from technical literature and from a survey of practitioners.

Task 3. Prepare a detailed outline of the proposed guide intended to aid in incorporating the design and operational considerations of freight with Complete Streets.

Task 4. Prepare an interim report that documents the work completed in Tasks 1 through 3. Include a detailed work plan for the work anticipated in Phase II. Following a review of the interim report by the NCHRP, the research team will be required to make a presentation to the project panel.

PHASE II

Task 5. Building on the findings of Phase I, use partnership engagement to identify and summarize common challenges and conflicts related to policy, equity, funding, planning, design, prioritization and reporting, personnel, and the use and interpretation of Complete Streets policies as they relate to freight transportation. Interested parties shall include local municipalities, metropolitan planning organizations, DOTs, and freight providers and generators.

Task 6. Develop case studies that represent a broad range of land use topologies using the findings from Tasks 1 through 5. The case studies should highlight challenges and opportunities.

Task 7. Prepare Interim Report 2 summarizing the findings from Tasks 1 through 6.

PHASE III

Task 8. Develop a freight and Complete Streets integration tool kit that includes a checklist, visual library, and primers on the following areas: equity, policy, design, funding mechanisms, community engagement strategies, partnership opportunities, operations, and maintenance.

Task 9. Prepare a guide that describes how practitioners may consider all modes of surface transportation while balancing the needs of transportation systems users with the demands of freight.

Task 10. Prepare final deliverables, which shall include, at a minimum: (1) a final research report documenting the entire research effort, findings, and lessons learned; (2) a guide to integrating freight and Complete Streets; (3) a freight and Complete Streets integration tool kit; (4) prioritized recommendations for future research; (5) a PowerPoint presentation describing the background, objectives, research approach, findings, and conclusions; (6) a stand-alone technical memorandum titled “Implementation of Research Findings and Products”; and (7) a presentation, as possible, of findings to two American Association of State Highway and Transportation Officials (AASHTO) councils or committees concerned with the integration of freight and Complete Streets.

Paper

Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS

 
Download PDF  (1.35 MB)
Publication: International Journal of Environmental Research and Public Health
Volume: 16 (19)
Pages: 3565
Publication Date: 2019
Summary:

Intersection and non-intersection locations are commonly used as spatial units of analysis for modeling pedestrian crashes. While both location types have been previously studied, comparing results is difficult given the different data and methods used to identify crash-risk locations. In this study, a systematic and replicable protocol was developed in GIS (Geographic Information System) to create a consistent spatial unit of analysis for use in pedestrian crash modeling. Four publicly accessible datasets were used to identify unique intersection and non-intersection locations: Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess the protocol reliability. The algorithms, which were designed to identify crash-risk locations at intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m). Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0% for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest performance in the analyses. The present protocol offered an efficient and reliable method to create spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method to identify unique intersection and non-intersection locations. Additional search radii should be tested in future studies to refine the capture of crash-risk locations.

Authors: Haena Kim, Mingyu Kang, Anne Moudon, Linda Ng Boyle,
Recommended Citation:
Kang, Mingyu, Anne Vernez Moudon, Haena Kim, and Linda Ng Boyle. 2019. Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS. International Journal of Environmental Research and Public Health 16, no. 19: 3565. https://doi.org/10.3390/ijerph16193565

Freight and Bus Lane (FAB) Data Collection and Evaluation Plan (Route 40)

The Urban Freight Lab (UFL) was approached by the Seattle Department of Transportation (SDOT) to complete a review of proposed evaluation criteria and propose a data collection plan in preparation for the implementation of a Freight and Bus Lane (FAB) Lane in Fall 2024 for King County Metro’s Bus Route 40.

This project would effectively produce the follow-on scope of work for the UFL to complete during the actual implementation (pre/post/post phase). UFL will build on the findings from the Urban Freight Lab’s Freight and Transit Lane Case Study completed in 2019. With the completion of the Route 40 TPMC project in Fall 2024, FAB lanes will be tested as a pilot in select locations and evaluated before permanent installation.

Objectives

  • Refresh literature review on freight and transit lane studies
  • Meet with key stakeholders from SDOT and Metro to understand data collection tools and methodologies
  • Propose a technical evaluation plan for this pilot that includes data collection and metrics and communication strategies

Revenue-Related Strategies for New Mobility Options

The Urban Freight Lab (UFL) is partnering with ECONorthwest and Cityfi to develop a research product for the National Cooperative Highway Research Program (NCHRP) on the topic of revenue strategies for new mobility options. The team will analyze the public sector’s potential role in using revenue-related strategies to encourage or discourage new mobility options in personal mobility and goods delivery.

Transportation services often operate in publicly owned and publicly managed spaces, make use of public rights-of-way, and produce mobility benefits for a broad array of users. The public sector is responsible for managing and pricing those rights-of-way and delivering services in an equitable way. Recovering the public costs of management and provisioning from private transportation services and their users is essential for maintaining public benefit. And sometimes the public sector needs to help private services to thrive.

The research methodology for this project is designed to be iterative: activities and research will build on previous research and activities. We will begin with the development of a revenue framework informed by a broad review of the literature, a policy scan, and workshop sessions with transportation and other public agency representatives that regulate and collect revenue from new mobility services. The framework will include revenue-related strategies based on:

    • (a) identifiable need
    • (b) nexus to cost responsibility
    • (c) policy outcome
    • (d) other factors such as access to technology and ease of administration.

We will then take a deeper dive into each personal mobility mode and goods delivery market segment to apply the framework. We will also provide examples to illustrate the opportunities and challenges of a variety of revenue strategies. We will also conduct additional workshops with public agency representatives, industry representatives, and other transportation stakeholders. Finally, we will create a spreadsheet-based Revenue Calculator that allows interested individuals to estimate how much revenue could be generated using different assumptions and strategies. The work will culminate with the development of a Toolkit that will be submitted to NCHRP and made available for wider distribution.

Objectives

The objective of this research is to develop a toolkit for transportation agencies that addresses how revenue-related strategies (e.g., taxes, fees, and subsidies) support policy objectives and shape the deployment of new mobility options. The toolkit will assist agencies to develop, evaluate, implement, and administer revenue-related strategies for new mobility options that transport people and goods.

The research will include:

  1. New and evolving transportation options for people and goods that interact with the existing built environment and travel throughout an area
  2. Incentives and disincentives that result from revenue-related strategies
  3. Policy implications of revenue-related strategies for new mobility options including revenue potential, mobility, travel demand, safety, equity, environment, economic development, infrastructure design, operations, and maintenance
  4. Mechanisms for revenue collection and distribution for different mobility options in different scenarios
  5. The ease and difficulty of implementing and enforcing different revenue-related strategies for new mobility options
  6. Potential roles and responsibilities of governmental organizations and private entities
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Paper

The Isolated Community Evacuation Problem with Mixed Integer Programming

 
Download PDF  (0.78 MB)
Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 161
Pages: 102710
Publication Date: 2022
Summary:

As awareness of the vulnerability of isolated regions to natural disasters grows, the demand for efficient evacuation plans is increasing. However, isolated areas, such as islands, often have characteristics that make conventional methods, such as evacuation by private vehicle, impractical to infeasible. Mathematical models are conventional tools for evacuation planning. Most previous models have focused on densely populated areas, and are inapplicable to isolated communities that are dependent on marine vessels or aircraft to evacuate. This paper introduces the Isolated Community Evacuation Problem (ICEP) and a corresponding mixed integer programming formulation that aims to minimize the evacuation time of an isolated community through optimally routing a coordinated fleet of heterogeneous recovery resources. ICEP differs from previous models on resource-based evacuation in that it is highly asymmetric and incorporates compatibility issues between resources and access points. The formulation is expanded to a two-stage stochastic problem that allows scenario-based optimal resource planning while also ensuring minimal evacuation time. In addition, objective functions with a varying degree of risk are provided, and the sensitivity of the model to different objective functions and problem sizes is presented through numerical experiments. To increase efficiency, structure-based heuristics to solve the deterministic and stochastic problems are introduced and evaluated through computational experiments. The results give researchers and emergency planners in remote areas a tool to build optimal evacuation plans given the heterogeneous resource fleets available, which is something they have not been previously able to do and to take actions to improve the resilience of their communities accordingly.

Recommended Citation:
Krutein, K. F., & Goodchild, A. (2022). The isolated community evacuation problem with mixed integer programming. In Transportation Research Part E: Logistics and Transportation Review (Vol. 161, p. 102710). Elsevier BV. https://doi.org/10.1016/j.tre.2022.10271
Paper

Testing Curbside Management Strategies to Mitigate the Impacts of Ridesourcing Services on Traffic

 
Download PDF  (2.01 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2020
Summary:

Increased use of ridehailing leads to increased pick-up and drop-off activity. This may slow traffic or cause delays as vehicles increase curb use, conduct pick-up and drop-off activity directly in the travel lane, or slow to find and connect with passengers. How should cities respond to this change in an effort to keep travel lanes operating smoothly and efficiently? This research evaluates two strategies in Seattle, WA, in an area where large numbers of workers commute using ridesourcing services: (i) a change of curb allocation from paid parking to passenger load zone (PLZ), and (ii) a geofencing approach by transportation network companies (TNCs) which directs their drivers and passengers to designated pick-up and drop-off locations on a block. An array of data on street and curb activity along three study blockfaces was collected, using video and sensor technology as well as in-person observations. Data were collected in three phases: (i) the baseline, (ii) after the new PLZs were added, expanding total PLZ curb length from 20 ft to 274 ft, and (iii) after geofencing was added to the expanded PLZs. The added PLZs were open to any passenger vehicle (not just TNC vehicles), weekdays 7:00–10:00 a.m. and 2:00–7:00 p.m. The results showed that the increased PLZ allocation and geofencing strategy reduced the number of pick-ups/drop-offs in the travel lane, reduced dwell times, increased curb use compliance, and increased TNC passenger satisfaction. The two strategies, however, had no observable effect on travel speeds or traffic safety in the selected study area.

Recommended Citation:
Ranjbari, Andisheh, Jose Luis Machado-León, Giacomo Dalla Chiara, Don MacKenzie, and Anne Goodchild. “Testing Curbside Management Strategies to Mitigate the Impacts of Ridesourcing Services on Traffic.” Transportation Research Record, (October 2020). https://doi.org/10.1177/0361198120957314.
Paper

Estimating Intermodal Transfer Barriers to Light Rail using Smartcard Data in Seattle, WA

 
Download PDF  (2.90 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2022
Summary:

Transit transfers are a necessary inconvenience to riders. They support strong hierarchical networks by connecting various local, regional, and express lines through a variety of modes. This is true in Seattle, where many lines were redrawn to feed into the Link Light Rail network. Previous transfer studies, using surveys, found that perceived safety, distance, and personal health were significant predictors of transfers. This study aims to use smartcard data and generalized linear modeling to estimate which elements of transfers are commonly overcome—and which are not—among riders boarding the Link Light Rail in Seattle and its suburbs. The aims of this research are twofold: (1) critical analysis of attributes of transfer barriers so that the future station area could serve improved riders’ accessibility; (2) equity of transfer barriers among the users by analyzing the user breakdown of the origin lines and the destination. We use Seattle’s One Regional Card for All smartcard data among the Link Light Rail riders in the Seattle metropolitan area in 2019, and applied a negative binomial generalized linear model. The model suggests that walking distance and walking grade have significant effects on transfers. For the users’ equity analysis, the disabled population tends to transfer less, while the low-income and youth riders populations tend to transfer more often. Future research could incorporate a more mixed-methods approach to confirm some of these findings or include station amenities, such as live schedule updates for common transfer lines.

Authors: Dr. Ed McCormack, James Eager (University of Washington Department of Urban Design and Planning), Chang-Hee Christine Bae (University of Washington Department of Urban Design and Planning)
Recommended Citation:
Eager, J., Bae, C.-H. C., & McCormack, E. D. (2022). Estimating Intermodal Transfer Barriers to Light Rail using Smartcard Data in Seattle, WA. Transportation Research Record. https://doi.org/10.1177/03611981221119190.
Paper

Urban Delivery Company Needs and Preferences for Green Loading Zones Implementation: A Case Study of NYC

 
Download PDF  (0.42 MB)
Publication: Proceedings of American Society of Civil Engineers (ASCE) Transportation and Development Conference 2022: Transportation Planning and Workforce Development
Publication Date: 2022
Summary:

(This project is part of the Urban Freight Lab’s Technical Assistance Program, where UFL contributes to the project by providing 1:1 match funds in terms of staff and/or research assistants to complete project tasks.)

Green Loading Zones (GLZs) are curb spaces dedicated to the use of electric or alternative fuel (“green”) delivery vehicles. Some U.S. cities have begun piloting GLZs to incentivize companies to purchase and operate more green vehicles. However, there are several questions to be answered prior to a GLZ implementation, including siting, potential users and their willingness to pay. We reviewed best practices for GLZs around the world, and surveyed goods delivery companies operating in New York City to collect such information for a future GLZ pilot. The findings suggest the best candidate locations are areas where companies are currently subject to the most parking fines and double parking. Companies expressed willingness to pay for GLZs, as long as deploying green vehicles in the city can offset other cost exposures. Respondents also selected several single-space GLZs spread throughout a neighborhood as the preferred layout.

Recommended Citation:
Maxner, T., Goulianou, P., Ranjbari, A., and Goodchild, A. (2022). "Studying Urban Delivery Company Needs and Preferences for Green Loading Zones Implementation: A Case Study of NYC", In Proceedings of ASCE Transportation and Development Conference (Forthcoming), Seattle, WA.