Skip to content

Zero-Emission Zones: Turning Ideas into Action

C40 Cities, a consortium of cities worldwide with the collective goal of reducing greenhouse gas emissions, introduced an initiative in 2017 to create “Zero Emission Areas.” These areas, or zones, would be closed off to fossil fuel-burning vehicles and serve as a testbed for scaling up zero-emission regulation. Seattle, along with U.S. counterparts Austin, Texas and Los Angeles, CA, is a signatory to the Zero Emission Area Programme and as such, is obligated to create such an area by 2030.

Zero Emission Zones (ZEZ) can introduce obstacles to the urban freight and logistics industry. Though large delivery companies like Amazon, UPS, and FedEx are introducing electric vehicles (EVs), parcel and package delivery are not the only service included in the complex sector of urban freight. EVs are not yet widely available on the market and the high capital costs of introducing EVs into a company’s fleet can act as a barrier. However, there are strategies being tested and explored to reduce emissions including but not limited to zero emission curb zones, parcel lockers, e-cargo bikes, pricing strategies at the curb and at the point of sale (e.g. taxes and fees), consolidation centers, and other strategies. Additionally, many of these zones are being envisioned in areas with a focus on improving equity outcomes and across neighborhoods of different characteristics. However, no guidance exists for cities about how to approach the selection of these areas or tactics co-developed with the private sector.

Research Objectives

  • Develop a framework for evaluating geographic locations, existing policy tools, and key learning objectives or measures of success based on two different neighborhood typologies
  • Incorporate private sector stakeholders into the design process

Tasks

  • Task 1: Define the characteristics and goals of a zero-emission delivery zone
  • Task 2: Perform literature and policy scan on existing tools to push deliveries towards zero emission (industry and consumer-side)
  • Task 3: Identify 2 different neighborhood typologies in Seattle for analysis and define the study area boundaries
    • One neighborhood should meet existing definitions of a Justice 40 or equity focus area community as defined by City of Seattle (e.g. Georgetown)
    • One neighborhood should represent high-density demand for e-commerce and congestion (define?) (e.g. Capital Hill, South Lake Union)
  • Task 4: Collect publicly-available baseline data on neighborhood characteristics collect data (land use, types of businesses, demographics of residents)
  • Task 5: Develop potential scenarios, tactics, and metrics that reflect the unique characteristics of the chosen neighborhoods/typologies
    • The team will leverage existing relationships to perform private sector outreach, based on interviews: understand their priorities, reactions to scenarios under development.
  • Task 6: Recommendations and framework
    • How do you choose the site / site selection criteria and methodology
    • Tactics based on neighborhood typology characteristics- using policies available right now or with limited policy effort
    • Equity-Community metrics- How does the makeup of the zone/neighborhood impact tactics + metrics?
    • Key metrics- What are you trying to test and how will you measure?
    • Tools to accelerate the implementation of zero-emission deliveries.

Deliverable

Create a framework for zero emission zone design and case study of two different neighborhoods in Seattle.

Dataset

Developing Better Curb Management Strategies through Understanding Commercial Vehicle Driver Parking Behavior in a Simulated Environment

Publication: Harvard Dataverse
Publication Date: 2023
Summary:

Three different data types were obtained from Oregon State Driving and Bicycling Simulator Laboratory for purpose of this report and they are as follow:

  1. Speed data consists of subject number, average speed, minimum speed, and all the independent variables. Speed data were collected based on the truck’s speed while driving through a certain scenario (out of 24). For each scenario, the average and minimum speed (mph) of 12 drivers were recorded along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals).
  2. Eye tracking data consists of subject number, total fixation duration (TFD) in milliseconds, area of interest (AOI), and all the independent variables. TFD data were collected while the truck driver maneuvers through a certain scenario (out of 24). For each scenario, the TFD for each AOI was recorded for 11 subjects along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals). AOI represent the area of interest that a driver fixates for a certain of time to generate the total fixation duration.
  3. Eye tracking data consists of subject number, GSR in peaks per minute, and all the independent variables. GSR data were collected while the truck driver maneuvers through a certain scenario (1 out of 24). For each scenario, the peaks per minute data was recorded for 11 subjects along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals). Peaks per minute represents the emotional arousal (i.e., something is scary, threating, joyful, etc.) that a driver generates when reacting to a particular event. Fourteen participants were recruited, two of them had a simulator sickness so they were excluded from the data and the analysis. While there are no quality or consistency issues with this data set, it should be noted that the sample is on the smaller side and that should be considered when interpreting derived results. The average values were calculated to apply robust statistical analysis for such data (speed and lateral position). As the experiment consists of 2x2x2x3 factorial design, each participant had to driver through 24 scenarios; therefore, 288 scenario observations were obtained and recorded in the excel file.
Recommended Citation:
Goodchild, Anne; McCormack, Ed; Ranjbari, Andisheh; Hurwitz, David, 2023, "Developing Better Curb Management Strategies through Understanding Commercial Vehicle Driver Parking Behavior in a Simulated Environment", Harvard Dataverse. https://doi.org/10.7910/DVN/HVAUT3.
Paper

Simulation-Based Analysis of Different Curb Space Type Allocations on Curb Performance

 
Download PDF  (3.49 MB)
Publication: Transportmetrica B: Transport Dynamics
Volume: 11 (1)
Pages: 1384-1405
Publication Date: 2023
Summary:

Curbspace is a limited resource in urban areas. Delivery, ridehailing and passenger vehicles must compete for spaces at the curb. Cities are increasingly adjusting curb rules and allocating curb spaces for uses other than short-term paid parking, yet they lack the tools or data needed to make informed decisions. In this research, we analyze and quantify the impacts of different curb use allocations on curb performance through simulation. Three metrics are developed to evaluate the performance of the curb, covering productivity and accessibility of passengers and goods, and CO2 emissions. The metrics are calculated for each scenario across a range of input parameters (traffic volume, parking rate, vehicle dwell time, and street design speed) and compared to a baseline scenario. This work can inform policy decisions by providing municipalities tools to analyze various curb management strategies and choose the ones that produce results more in line with their policy goals.

Authors: Thomas MaxnerDr. Andisheh RanjbariŞeyma Güneş, Chase Dowling (Pacific Northwest National Laboratory)
Recommended Citation:
Thomas Maxner, Andisheh Ranjbari, Chase P. Dowling & Şeyma Güneş (2023) Simulation-based analysis of different curb space type allocations on curb performance, Transportmetrica B: Transport Dynamics, 11:1, 1384-1405, DOI: 10.1080/21680566.2023.2212324

Revenue-Related Strategies for New Mobility Options

The Urban Freight Lab (UFL) is partnering with ECONorthwest and Cityfi to develop a research product for the National Cooperative Highway Research Program (NCHRP) on the topic of revenue strategies for new mobility options. The team will analyze the public sector’s potential role in using revenue-related strategies to encourage or discourage new mobility options in personal mobility and goods delivery.

Transportation services often operate in publicly owned and publicly managed spaces, make use of public rights-of-way, and produce mobility benefits for a broad array of users. The public sector is responsible for managing and pricing those rights-of-way and delivering services in an equitable way. Recovering the public costs of management and provisioning from private transportation services and their users is essential for maintaining public benefit. And sometimes the public sector needs to help private services to thrive.

The research methodology for this project is designed to be iterative: activities and research will build on previous research and activities. We will begin with the development of a revenue framework informed by a broad review of the literature, a policy scan, and workshop sessions with transportation and other public agency representatives that regulate and collect revenue from new mobility services. The framework will include revenue-related strategies based on:

    • (a) identifiable need
    • (b) nexus to cost responsibility
    • (c) policy outcome
    • (d) other factors such as access to technology and ease of administration.

We will then take a deeper dive into each personal mobility mode and goods delivery market segment to apply the framework. We will also provide examples to illustrate the opportunities and challenges of a variety of revenue strategies. We will also conduct additional workshops with public agency representatives, industry representatives, and other transportation stakeholders. Finally, we will create a spreadsheet-based Revenue Calculator that allows interested individuals to estimate how much revenue could be generated using different assumptions and strategies. The work will culminate with the development of a Toolkit that will be submitted to NCHRP and made available for wider distribution.

Objectives

The objective of this research is to develop a toolkit for transportation agencies that addresses how revenue-related strategies (e.g., taxes, fees, and subsidies) support policy objectives and shape the deployment of new mobility options. The toolkit will assist agencies to develop, evaluate, implement, and administer revenue-related strategies for new mobility options that transport people and goods.

The research will include:

  1. New and evolving transportation options for people and goods that interact with the existing built environment and travel throughout an area
  2. Incentives and disincentives that result from revenue-related strategies
  3. Policy implications of revenue-related strategies for new mobility options including revenue potential, mobility, travel demand, safety, equity, environment, economic development, infrastructure design, operations, and maintenance
  4. Mechanisms for revenue collection and distribution for different mobility options in different scenarios
  5. The ease and difficulty of implementing and enforcing different revenue-related strategies for new mobility options
  6. Potential roles and responsibilities of governmental organizations and private entities

Last-Mile Freight Curb Access: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Use

The U.S. Department of Transportation (USDOT) awarded a $2 million grant under its SMART (Strengthening Mobility and Revolutionizing Transportation) grant program to support the development of the Last-Mile Freight Curb Access Program: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Utilization, a collaboration between the Urban Freight Lab, Seattle Department of Transportation, and Open Mobility Foundation. This project will develop sensor-based technology solutions that address to transportation problems, enabling commercial vehicles to make faster, safer, and more efficient deliveries with reduced vehicle emissions.

The Last Mile Freight Curb Access Program focuses on providing commercial vehicle drivers with real-time information to park legally and expedite deliveries. Research from a 2019 Urban Freight Lab study showed that more than 40% of commercial vehicles in downtown Seattle park in unauthorized locations. Another study showed that equipping commercial vehicles with real-time parking availability and load zone information could reduce their “cruising” time by nearly 30%. The project aims to make information about curbside regulations digitized and more accessible to commercial drivers, and leverage this data to improve regulations.

Other cities including Portland, San Francisco, San Jose, Los Angeles, Minneapolis, Philadelphia, and Miami-Dade County have also received SMART grants to implement similar technology-based solutions for improving curb access.

Background

Since 2010, the Seattle Department of Transportation (SDOT) has been a national leader in data-driven curbside management by using parking occupancy data to set on-street parking rates. We proposed to extend our data-driven pricing and curb literacy to a new use: designated commercial vehicle load zones (CVLZ) and the commercial vehicle permit (CVP). Our plan is to establish new CVP policies in close collaboration with urban freight companies, adjacent businesses, and other critical stakeholders; implement a digital CVP built on the Curb Data Specification (CDS) that enables capture of curb utilization measurements and communicates demand management policies; and transform our legacy digital curb inventory to the national CDS standard.

Strategies

To address these challenges, SDOT proposes a SMART project that will use a combination of digital technologies coupled with targeted outreach. This approach will be implemented through three key strategies:

  1. Engage with local businesses and urban freight companies to understand challenges and build a foundation of trust SDOT will engage with a variety of stakeholders including local neighborhood businesses, commercial vehicle users from large carriers, and commercial vehicle permit (CVP) holders from small and local businesses. The goal is to build trust and work collaboratively with our users to modernize and improve our existing CVP to create a system that works for urban freight companies, local businesses, and benefits the community at large.
  2. Prototype a digital CVP and use findings to modernize and scale the system SDOT will conduct a vendor procurement to prototype and assess a wireless vehicle-to-curb infrastructure (V2I) communication system, built on top of the Curb Data Specification (CDS) standard as a new way to manage our CVP. Data collected through this prototype will be leveraged by the UFL to conduct research to develop standardized data collection efforts for commercial curb use and create new data-driven policy and permit recommendations.
  3. Collaborate with a national cohort of cities implementing the Curb Data Specification SDOT will partner with the Open Mobility Foundation (OMF) and collaborate with a national cohort of OMF member cities to support the shared objectives in how CDS can help cities and companies pilot and scale dynamic curb use. SDOT will share lessons from Stage 1 prototyping with OMF cohort cities to strengthen all CDS-related SMART grant projects and better position proven technologies to be implemented at scale for a Stage 2 project. SDOT is uniquely positioned to deliver a successful Stage 1 project focusing on commercial vehicle curb access and utilization given our existing CVP and leadership in data driven curbside management. Specifically, this project will directly address the SMART goals of equity and access, partnerships, and integration and build the foundation for dramatic improvements in safety, reliability, and climate in Stage 2. Our goal is that the Stage 1 learnings will allow us to scale a digital CVP for citywide adoption in Stage 2, thus promoting interoperability of technology solutions to improve curb access for commercial curb users citywide. Our approach centers on stakeholder and community partnerships, data-driven assessment, and technical capacity-building. Potential outcomes for testing and implementation in Stage 2 include updated policies or curb allocations that might address inequities through deeper understanding of the variety of commercial users of the curb, reduced carbon emissions by creating or incenting CV zero emission zones, and decreased impacts to vulnerable road users through optimized curb allocation.

Objectives

The expected benefits of Stage 1 will be threefold:

    1. Rigorously assess the piloted technology system to understand its scaling potential: The project will develop a technology assessment methodology that will look critically at accuracy and data use model development. This assessment will be transparent and developed in collaboration with OMF cohort cities to ensure solutions are scalable while meeting the core needs of Seattle’s digital CVP.
    2. Create a CDS framework for standardizing data collection efforts of commercial curb space: SDOT will share lessons learned from Stage 1 prototyping and policy recommendations with OMF cohort cities to collectively strengthen all CDS-related SMART grant projects and better position proven technologies to be implemented at scale.
    3. Create new data-driven commercial vehicle policy and permit recommendations to be enacted during Stage 2 of this grant

The recommendations will be informed by data models created by the UFL using utilization data from the project overlayed with characteristics of adjacent urban form and land use. These models will help SDOT identify areas for adjustments to existing curb allocation as well as establish a deeper understanding of the variety of commercial vehicle user behavior at the curb to meet climate goals. We anticipate these policies will benefit both curb users and local community members by reducing congestion and creating safer streets.

Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.

Managing Increasing Demand for Curb Space in the City of the Future

This research aims to develop innovative methods for managing curb lane function and curb access. The rapid rise of autonomous vehicles (AV), on-demand transportation, and e-commerce goods deliveries, as well as increased cycling rates and transit use, is increasing demand for curb space resulting in competition between modes, failed goods deliveries, roadway and curbside congestion, and illegal parking.

The research findings will improve mobility by increasing the understanding of existing curb usage and provide new solutions to city officials, planners, and engineers responsible for managing this scarce resource in the future.

The research team will work closely with several cities in the PacTrans region to ensure the study’s relevance to their needs, and that the results will be broadly applicable for other cities.

This research will allow for the development of innovative curb space designs and ensure that our urban street system may operate more efficiently, safely, and reliably for both goods and people.

Presentation

Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency?

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affects such behavior.

In this study, we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in downtown Seattle. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Giacomo Dalla Chiara, Klaas Fiete Krutein, and Anne Goodchild (2022). Can Real-Time Curb Availability Information Improve Urban Delivery Efficiency? 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Technical Report

An Evaluation of Bicycle Safety Impacts of Seattle’s Commercial Vehicle Load Zones

 
Download PDF  (1.30 MB)
Publication Date: 2015
Summary:

The Seattle Department of Transportation (SDOT) partnered with the University of Washington to explore how commercial vehicle parking in Seattle’s downtown area affects the safety of bicyclists. The hypothesis was that increased truck access to SDOT’s commercial vehicle loading zones (CVLZs) can positively contribute to bicycle safety. Because CVLZs provide truck drivers with more access to legal parking, their presence could reduce incidences of trucks parking illegally in the street or blocking bicycle lanes, thus reducing the necessity for bicyclists to maneuver around them. This research explored this hypothesis by using four methods, an analysis of bike-trucks accident data, interviews with bicyclists and truck drivers who frequently travel in downtown Seattle, analysis of video recordings of cyclists riding downtown, and observations of truck loading/unloading operations downtown.

The research determined that from bicyclists’ perspectives, illegally parked trucks were a more serious problem than the locations of CVLZs. Therefore, increasing the availability of legal truck parking should have a positive effect on bicyclist safety and level of stress. When trucks park in the bike lane, cyclists are required to maneuver into the stream of traffic, increasing level of exposure and accident risk. Similarly, both the cyclist interviews and video data indicated that construction sites are problematic locations for illegally parked trucks blocking cyclist travel lanes. Better enforcement of parking regulations near construction sites and better site planning would help alleviate a significant amount of conflict between cyclists and parked trucks.

Loading zones on higher speed or busy streets or in areas where cyclists travel downhill increase the danger of those areas. In some areas, it may be possible to relocate loading zones around the corner, onto less busy side streets, to eliminate the need for cyclists to choose between merging into a busy lane to pass a truck or passing close enough to the truck that the delivery operations may put obstacles in the bicyclist’s path. If loading zones are moved, the zones should be situated at the beginning of the block and should allow drivers to still reach the businesses they are serving quickly and without having to maneuver or cross a street. This will encourage the use of the loading zone as opposed to illegal parking.

Recommended Citation:
Butrina, Polina, Edward McCormack, Anne Goodchild, and Jerome Drescher. "An Evaluation of Bicycle Safety Impacts of Seattle’s Commercial Vehicle Load Zones." (2016).

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

Background

We are living at the convergence of the rise of e-commerce and fast growing cities. Surging growth in U.S. online sales has averaged more than 15% year-over-year since 2010. Total e-commerce sales for 2016 were estimated at $394.9 billion, an increase of 15.1 percent from 2015. This is a huge gain when compared to total retail sales in 2016, which only increased 2.9 percent from 2015. E-commerce sales in 2016 accounted for 8.1 percent of total sales, while accounting for 7.3 percent of total sales in 2015.

This is causing tremendous pressure on local governments to rethink the way they manage street curb parking and alley operations for trucks and other delivery vehicles, and on building operators to plan for the influx of online goods. City managers and policy makers are grappling with high demand for scarce road, curb and sidewalk space, and multiple competing uses. But rapidly growing cities lack data-based evidence for the strategies they are considering to support e-commerce and business vitality, while managing limited parking in street space that is also needed for transit, pedestrians, cars, bikes and trucks.

The Final 50 Feet is the project’s shorthand designation for the last leg of the delivery process, which:

  • Begins when a truck stops at a city-owned Commercial Vehicle Load Zone or alley, or in a privately-owned freight bay or loading dock in a building;
  • May extend along sidewalks or through traffic lanes; and
  • Ends where the end customer takes receipt of delivery.

Research Project

The purpose of the research project is to pilot test a promising strategy to reduce the number of failed first delivery attempts in urban buildings. The test will take place in the Seattle Municipal Tower. It will serve as a case study for transportation and urban planning professionals seeking to reduce truck trips to urban buildings. Urban Freight Lab identified two promising strategies for the pilot test:

  • Locker system: smaller to medium sized deliveries can be placed into a locker which will be temporarily installed during our pilot test
  • Grouped-tenant-floor-drop-off-points for medium sized items if locker is too small or full (4-6 floor groups to be set up by SDOT and Seattle City Light)
  • People will come and pick up the goods at the designated drop off points
  • Flyers with information of drop-off-points will be given to the carriers

UFL will evaluate the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by:

  • Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and
  • Comparing them to the pilot test goals.