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ABSTRACT
Curbspace is a limited resource in urban areas. Delivery, ridehailing andpas-
senger vehiclesmust compete for spaces at the curb. Cities are increasingly
adjusting curb rules and allocating curb spaces for uses other than short-
term paid parking, yet they lack the tools or data needed tomake informed
decisions. In this research, we analyse and quantify the impacts of differ-
ent curb use allocations on curb performance through simulation. Three
metrics are developed to evaluate the performance of the curb, covering
productivity and accessibility of passengers and goods, and CO2 emissions.
The metrics are calculated for each scenario across a range of input param-
eters (traffic volume, parking rate, vehicle dwell time, and street design
speed) and compared to a baseline scenario. This work can inform policy
decisions byprovidingmunicipalities tools to analyse various curbmanage-
ment strategies and choose the ones that produce results more in line with
their policy goals.
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Introduction

There are many uses of curb space: paid parking, load/unload zones, and transit stops are regularly
encountered, while new technologies and economic pressures are creating even more competition
for curb spaces, from increased ridehailing pick-up/drop-off and on-demand deliveries to businesses
leveraging outdoor curbspace as a result of pandemic response efforts (Girón-Valderrama, Machado-
León, and Goodchild 2019; Honey-Rosés et al. 2021). With such increased pressure has come more
complex consequences of policy decisions, with unclear downstream impacts on congestion, emis-
sions, city revenue, and so on. Thus, with so many different use cases, municipalities are in need of
a means to analyse different curb allocation scenarios (Butrina et al. 2020). Comparing various curb
configurations and their prospective performance (congestion, emissions, etc.) in simulation is faster
and much more cost effective than physical pilot testing of existing curb real estate (Fellendorf and
Vortisch 2010).

In this paper we use an agent-based microsimulation platform, VISSIM, to simulate a wide range
of curb allocation scenarios on a given blockface. Simulation inputs are based on field data collected
in a downtown Seattle neighbourhood, and simulations are performed over a synthetic grid network
derived from the typical layout of a network in the business core of Seattle. Then, building on thework
of Butrina et al. (2020) and Young and Henao (2020), we develop various curb metrics to measure
impacts of each scenario as observed in simulation. These include the number of passengers loaded
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and unloaded or goods delivered per space per hour (Curb Productivity Index), the share of vehicles
that successfully park in the study area (Curb Accessibility) and CO2 emissions within the study area.
Simulations are run across a range of parameters and a series of scenarios where curb allocation and
parking rules are changed from a baseline of all paid parking spaces. We then calculate the curb per-
formance metrics for each scenario and evaluate the passenger- and goods-related improvements or
reductions that can occur by changing curb allocations and rules, in addition to estimating the impact
of curb allocation on carbon emissions.

Thiswork contributes to the literature by (a) developingnewcurbmetrics for parking emissions and
goods accessibility and productivity (on top of existing passenger-relatedmetrics) and (b) quantifying
the trade-offs across a wide range of curb space allocations and parking rules by simulating various
potential scenarios and measuring the curb performance through the state-of-the-art curb metrics.
Hundreds of potential combinations are simulated, covering awide range of traffic inputs (e.g. vehicle
volume, street design speed, parking demand rate, and vehicle dwell times), curb space allocations
(e.g. paid parking, passenger pick-up/drop-off zones, commercial vehicle load zones, bus stops), and
parking rules (e.g. restricted space access, illegal parking). This holistic approach to curb performance
is the first of its kind in the scientific literature related to parking and curb management. Much atten-
tion has been paid to how to better manage curb spaces for traditional uses such as paid parking, or
how curb space can be allocated to for-hire transportation services, but not how that allocation then
impacts other road uses and eventually the performance of the curb. This study seeks to fill in this
research gap.

The remainder of the paper is organized as follows. The next section, Literature Review, describes
the body of work in assessing curb performance and simulating curbspace parking. Next, the data
and simulation inputs are described in the Simulation Overview and Data section. The methodologi-
cal approach is then explained, followed by Results and Discussion sections. Concluding remarks are
included in the final section.

Literature review

Curbspace allocation for competing curb users

Recent work focuses on allocating curb space for varying uses (e.g. long-term parking, passenger pick-
up/drop-off, goods delivery, etc.) and formulates it as an optimization problem. Jaller et al. (2021) and
Nazir et al. (2022) suggest optimal curb layouts for case study neighbourhoods in San Francisco and
Seattle, respectively. Much of the curb allocation optimization work theorizes adjacent land use as
the primary driver for the type of curb access demand. Young and Henao (2020) takes this further by
integrating the Bid-Rent theory into curbspace allocation.

Other work centers around particular curb users, such as passenger pick-up/drop-off or goods
delivery. Several studies have explored the use of passenger loading zones (PLZs) to accommodate
passenger pick-up/drop-off demandon a single or series of blockfaces (Fehr & Peers 2018; Fehr & Peers
2019; Ranjbari et al. 2021; Lu 2019). A few others focus on the need for spaces dedicated to commer-
cial use (Girón-Valderrama, Machado-León, and Goodchild 2019; Schmid, Wang, and Conway 2018;
Zou et al. 2016); however, these studies focus on the difficulties commercial vehicles have in finding
legal parking, rather than how commercial vehicle loading zones (CVLZs) can improve accessibility.
The passenger-based research often overlooks the role of public transit stops in curb performance, or
focuses on case studies without transit access at the curb.

Curbspace simulationmodels

As a cost-saving alternative to pilots, simulation has been exploited to study the impacts of potential
curb allocations. Martens and Benenson (2008) uses a curb user’s walking time from the best available
parking space to their end destination as a measure of the accessibility drivers have to destinations
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in a fixed vicinity. The study demonstrates simulation’s suitability in applying parking decisions, avail-
ability of suitable curbspace, and local traffic conditions as controlling variables. Microsimulation has
also been used to understand the impacts of double parking, parking outside the designated spaces,
and poor parking manoeuvring on congestion and roadway throughput (Portilla et al. 2009). Cao
and Menendez (2015) similarly use microsimulation of short duration bottlenecks caused by parking
manoeuvres on the performance of nearby intersections measured by delay. With the desire to better
manage the curb itself, as opposed to the adjacent transportation network, there is a gap in the simu-
lation body of work that may help cities understand the benefits of curb allocation in terms of people
served and goods delivered.

There are recent examples of macroscopic simulation studies that model drivers’ parking seeking
behaviour. Using simulation Arnott and Williams (2017) find that cruising-for-parking times may be
underestimated in previous, non-simulation-based studies when real-world parking occupancy rates
are approach or exceed 85%. Dowling, Ratliff, and Zhang (2019) and Liu, Ma, and Qian (2022) use
queuing simulators that model parking behaviour to predict driver time lost to seeking for parking.
These studies demonstrate the value of simulation tools in understanding how improved access to
the curb can improve productivity for road users. In this study we build upon previous studies and
utilize microsimulation to study curb performance in terms of productivity for both passengers and
goods, as well as emissions.

Curb performance evaluation

Empirical analysis of parking activity can assist city officials in making parking allocation decisions.
Their reasons for seeking curbmanagement strategies cited by cities in visionary planning documents
include congestion reduction (City of Chicago 2019; San Francisco Planning Department 2017; PBOT
2019), providing shared spaceor improving accessibility (PBOT2019, AustinDOT2019, AtlantaMayor’s
Office 2019), reducing emissions (NYCDOT 2021; DDOT 2021; Maxner, Dalla Chiara, and Goodchild
2022), or improving economic output of the city (City of Chicago 2019; Saint Paul PED 2009). Butrina
et al. (2020) conducts structured interviews with US cities to catalogue the curb performance metrics
used by these cities. The findings suggest both curb performance (in terms of passengers loaded or
unloaded per hour) and emissions related to parking activities are increasingly important for Depart-
ments of Transportation to calculate and understand. There is not a universal metric or set of metrics
thathavebeenused toassess theoutcomesof curb-relatedpolicy changes, nordocities have the capa-
bility of collecting all required data (Butrina et al. 2020; Young and Henao 2020). Young and Henao
(2020) outlines a framework where the curb performance metrics – illegal parking, parking-related
collisions, parking revenue, and curb occupancy – developed in Butrina et al. (2020) can be applied to
cities based on their street network organization.

Curb productivity has been evaluated in many studies and is useful in recommending the number
of long-term parking spaces that may be replaced by passenger loading zones (Fehr & Peers 2018;
Fehr & Peers 2019; Lu 2019). A study in Seattle uses curb productivity in conjunction with space occu-
pancy to show that a pilot curb allocationhad anoversupply of passenger loading zones (Ranjbari et al.
2021). However, these studies all focus on productivity from the perspective of passengers served by
the curb, leaving a research gap for goods-related curb productivity. Prior studies also exclude transit
passengers, so the total passenger productivity of a blockface is unknown.

Occupancy, impacts on congestion, safety, and dwell time are also used in previous studies to
support space allocation recommendations (Fehr & Peers 2018; Ranjbari et al. 2021). Impacts on con-
gestion, measured in the number of vehicles double parked or the delay caused by parking activities,
can also be used as safety metrics. Another example of a safety metric is the number of traffic conflicts
in a study area (Ranjbari et al. 2021).

Parking revenue appears to be a metric declining in importance. Though included in the Curbside
Management Practitioners Guide produced by the Institute of Transportation Engineers (ITE 2018) as a
performancemetric, Butrina et al. (2020) found cities havenot experienceddeclines in revenuedespite
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re-allocating curb space for PLZs and other uses. Separate from parking revenue, yet still a source of
income for cities are traffic citations. A few studies, including Dalla Chiara et al. (2021), Wenneman,
Habib, and Roorda (2015), and Kawamura et al. (2014) investigate parking citations to understand
commercial parking behaviour, but those types of studies do not necessarily address lack of access
to the curb.

Finally, studies that estimate emissions related to parking often focus on emissions related to cruis-
ing for parking (Kilbert 2011), and do not account for other parking related emissions, such as idling to
pick up/drop off passengers, queuing or acceleration/deceleration for entering/exiting a curb space.

This study uses a set of metrics to better assess the performance of the curb that are derived from
the goals of cities – improving access to the curb, increasing productivity and economic activity, and
reducing emissions.

Simulation and data overview

Simulation overview

Microsimulation provides the means to test a wide variety of curb space allocations and related curb
management policies without the time and financial commitments of field testing. These policies
can be simulated across a range of parameters to represent any given link in a network as well as
incorporating hard-to-measure variables like parking behaviour and choice. This study utilizes the
microsimulation software VISSIM, which is capable of obtaining driving and parking state data at
minute time increments, making it ideal for this use of microsimulation. Previous researchers have
used VISSIM to model on-street curb lane parking based on a number of built-in features including
PLZs, CVLZs, public transit stops, and flexibility inmodelling a range of driver behaviours (Maciejewski
2010;GettmanandHead2003). Curbperformancemetrics canbe calculatedusingvehicle recordsdata
extracted as a direct output of the VISSIM software. These metrics and the data used will be described
in subsequent sections.

Data and inputs

Simulations for each scenario are generated across a fixed set of parameters: traffic volume enter-
ing the network, parking rate, roadway design speed, and commercial vehicle mean dwell time. The
parameters and their ranges are presented in Table 1.

Table 1. Simulation parameters.

Parameter Description Range Unit

Volume The number of vehicles entering the
network at each entry point (14
total)

[50:300], 50 vph
increments

Vehicles per hour (vph)

Parking rate The proportion of all vehicles in the
network that decide to attempt to
park in the study area curb lane.

[0:25%], 5% increments Proportion of veh.
choosing to park

Speed distribution The design speed of the network
(through lanes) independent of
congestion and signal queuing.

20 or 30 miles per hour (mph)

Mean commercial vehicle
dwell time

Mean dwell time of parked commercial
vehicles. Dwell times are normally
distributed around the values
identified. Mean dwell time remains
the same in each simulation but
standard deviation varies according
to the number of vehicles of the
associated vehicle class within
vehicle composition

300 or 850 seconds (s)
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The range of traffic volumes are selected based on typical evening peak hour flow rates on minor
arterials in Seattle (SDOT 2020). Major downtown arterials can experience traffic volumes more than
double the simulated max value. However, during test simulations it was determined that maximum
parking occupancy was achieved between 200 and 300 vehicles per hour (vph). The volume was
restricted to 300 vph and further discretized to measure the impact of volume changes on the curb
performance metrics. Parking rate – the percentage of drivers in the network seeking to park – and
commercial vehicle dwell times, as well as inputs that were kept static across all simulations (vehicle
type composition, dwell time distributions, and passenger distributions) are based on data collected
in the South Lake Union area of Seattle (Ranjbari et al. 2021).

Five vehicle types are defined for the simulation study: PUDO (passenger pick-up and drop-off)
vehicles, personal vehicles, buses, heavy-duty commercial vehicles, and medium-duty commercial
vehicles. The PUDO vehicle category includes any ridehailing vehicle (e.g. Uber or Lyft) in the South
Lake Union data aswell as all personal vehicles observed loading or unloading passengerswithout the
driver leaving the vehicle. Personal vehicles included in the PUDO category outputs also stopped for
five minutes or less. The personal vehicle category therefore includes any passenger vehicle parking
for greater than five minutes and often includes a driver that exits the vehicle in addition to a pas-
senger. Passenger distributions are assigned by vehicle type as simulation inputs. Each is normally
distributed around the means of 2, 1, and 10 for personal vehicles, PUDO vehicles, and buses, respec-
tively. The commercial vehicle subtypes (heavy- and medium-duty) will henceforth be referred to as
a single type: commercial vehicles. Two subtypes are defined in the simulation model to capture the
range in sizes of goods delivery vehicles. Heavy-duty vehicles include Class 6–8 trucks while medium-
duty vehicles include vans and box trucks up to Class 5 (FHWA 2014). Regarding the quantity of goods
delivered, Allen et al. (2018) and Jaller, Holguín-Veras, andHodge (2013) each state that the dwell time
and quantity of goods delivered is dependent on the size of vehicle and the type(s) of goods delivered.
To acknowledge these findings and to simplify comparisonsbetween scenarios, all simulated commer-
cial vehicles are assumed to deliver goods at the curb and are assigned one of twoparcel counts linked
to ‘short’ or ‘long’ dwell times of ≤ 30min (5 parcels) or > 30min (10 parcels).

Study area emissions are calculated based on emissions rates for a variety of driving states. Each
vehicle type is assigned an emissions profile derived from the findings of Frey, Rouphail, and Zhai
(2008), Qu et al. (2021), and Liu and Frey (2015). Acceleration and speed, both aspects of driver
behaviour, are key elements to determining emissions (Qu et al. 2021; Bishop et al. 2016; Wang et al.
2008). VISSIM outputs include instantaneous acceleration and speed for every trajectory, which allows
us to develop emissions profiles based on those states and parking state. These driving states are
shown in Table 2 along with the emissions factors. To calculate emission factors for each vehicle type
category in the simulation model, first, synthetic representations of the fleet compositions for each
vehicle type are defined based on national vehicle sales (BTS 2019) and projected future sales assum-
ing vehiclemanufacturers follow emissions standards set byNHTSA (2022). The basis of PUDOvehicles
is a compact vehicle and includes a share of mid-sized sedans, cross-over SUVs, and SUVs based on a
truck platform. Hybrids, plug-in hybrids and electric vehicleswere included in the PUDO fleet based on
Uber’s self-reported trip-miles from these vehicles (Uber 2022). Although these figures cannot be con-
firmed in the scientific literature, they do serve as an acceptable baseline for the purpose of this study.
The personal vehicle category is based on national sales and therefore have a higher share of SUVs
and other large vehicles, thus leading to higher average emission factors. Using national sales figures
is another limitation of the study as sales and registration data are not available for the Seattle-area
specifically. Synthetic buses and commercial vehicles are similarly generated. The basis for medium-
duty commercial vehicles is the Seattle data from Ranjbari et al. (2021) where roughly 80 percent of
delivers arrived in medium-duty or step-side box trucks and 20 percent in light-duty vans. Emissions
profiles for transit buses were not available in the literature, but the profile is based on an unloaded
heavy-duty truck, the weight of which is equivalent to a partially loaded transit bus. Next, emission
rates for each model included in the vehicle type composition are gathered from the US DOE’s (2022)
vehicle fuel economy database. These are then extrapolated into gram per second emissions from the
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Table 2. Vehicle type CO2 emissions factors for each driving or parking state (g/s).

Vehicle Type

Driving state Speed (mph) PUDO vehicles Personal vehicles
Light- and medium-duty
commercial vehicles

Heavy-duty commercial
vehicles Buses

Parked, engine off 0 0 0 0 0 0
Ignition after parking [EffIg] 0 6.179 7.133 28.220 53.514 43.383
Idling (parked or stopped in through lane) [EffI] 0 1.504 1.737 6.870 13.029 10.562
Fast acceleration 0–10 3.008 3.473 13.741 26.057 21.124

10–20 3.761 4.342 17.176 32.571 26.405
20–30 4.513 5.210 20.611 39.086 31.686
30+ 5.265 6.078 24.046 45.600 36.967

Moderate acceleration 0–10 2.256 2.605 10.306 19.543 15.843
10–20 3.008 3.473 13.741 26.057 21.124
20–30 3.008 3.473 13.741 26.057 21.124
30+ 3.761 4.342 17.176 32.571 26.405

Slow acceleration 0–10 2.256 2.605 10.306 19.543 15.843
10–20 2.256 2.605 10.306 19.543 15.843
20–30 2.256 2.605 10.306 19.543 15.843
30+ 3.008 3.473 13.741 26.057 21.124

Free flow at design speed 20–30 2.256 2.605 10.306 19.543 15.843
Deceleration/braking all 1.504 1.737 6.870 13.029 10.562
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profiles developed by Frey, Rouphail, and Zhai (2008), Qu et al. (2021), and Liu and Frey (2015). Total
emissions in the model are calculated by multiplying the driving-state-based emissions factor by the
amount of time each vehicle remains in that state.

Methodology

The data and inputs described in previous section are used to simulate traffic and parking activity
in a downtown neighbourhood of Seattle, Washington, USA. The parking area within the simulated
network contains a set number of parking spaces, which can be allocated to specific uses (i.e. goods
delivery, long-term parking, etc.), and the users of each curbspace allocation can be controlled in the
simulated environment. By changing allocations and calculating the same metrics across each allo-
cation, we aim to measure the impact of these changes on passenger and goods movement and
emissions. This sectiondescribes the simulatednetwork, curbspaceuses included inallocations, details
of changesmade to allocations andparking ruleswithin each simulated scenario, andmetrics bywhich
we measure curbspace performance.

Network and study area

The simulated network represents a series of typical blocks in the downtown core of Seattle, Wash-
ington, USA and is shown in Figure 1. Each block in the downtown area is roughly 400 feet by 300
feet (Dowling, Maxner, and Ranjbari 2022). The study area blockface is located on the North side of
the street and includes two travel lanes and a parking or curb lane. The curb lane includes ten park-
ing spaces, each measuring 20 feet in length plus one bus stop measuring 65 feet in length (SDCI
2015). The larger network is simulated to prevent artifacts due to vehicle generation and removal at
the simulation boundaries from influencing the results of the study area in the centre.

Curbspace allocations

The allocation of curbspace chosen for simulation is based on the findings fromDowling, Maxner, and
Ranjbari (2022). In this study k-means clustering is used to determine typical curb configurations in
Seattle. About 22% of the study area blockface is dedicated to no-parking uses (crosswalks, driveways,
etc.), leaving adequate space for one bus stop and ten standard parking spaces. Seattle is one ofmany
US cities that has dedicated curbspace to passenger or commercial vehicle load/unload zones, yet
seven of the top ten blockface configurations described in Dowling, Maxner, and Ranjbari (2022) show
paid parking remains the majority share of parking area in a typical Seattle curb lane. This finding is
the basis for the curb allocation of the baseline scenario – described in the following section – upon
which additional curbspace allocations are developed for simulation scenarios.

Curb performancemetrics

Fivemetrics are used tomeasure the impact of different curb allocations on curb performance: (a) Pas-
senger curb productivity index (CPIp), (b) goods curb productivity index (CPIg), (c) passenger vehicle
curb accessibility (CAp), (d) goods vehicle curb accessibility (CAg), and (e) CO2 emissions. In addition to
calculating thesemetrics for passenger and goods,metrics are also calculated by vehicle type – PUDO,
personal vehicles, heavy goods vehicles, delivery vans, and transit buses – to illuminate the underly-
ing causes of metric value increases and decreases based on curb allocation changes. This would be
of use to cities seeking to understand certain vehicle type behaviour such as by Transport Network
Companies (TNC) including Uber and Lyft.

The curb productivity indices are defined as the number of passengers or parcels serviced per hour
per parking space (roughly 25-foot length of curb) (SDCI 2015). The metric is adapted from Fehr &
Peers (2018), Fehr & Peers (2019), Ranjbari et al. (2021), and Lu (2019) and uses the SDOT standard for
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Figure 1. The synthetic Seattle downtown grid network (top) used in VISSIM parking simulations. The inset shows the Study Area
in the baseline scenario (bottom), which includes 10 parking spaces, one bus stop, and adequate space to represent alleyways,
crosswalks, etc.

space length. Equations (1) and (2) are used to calculate these metrics, where vi represents vehicles
that successfully park, pi is the number of passengers loading or unloading from vehicle vi, gi is the
number of parcels delivered by vehicle vi, t is the simulation time in seconds divided by the simulation
period (2.5 h), and sp is the total number of spaces at the curb excluding the bus stop:

CPIp = (
∑

vi ∗ pi)/t/sp (1)

CPIg = (
∑

vi ∗ gi)/t/sp (2)

Curb accessibility is definedas the ratioof successful parkingattempts to total parkingattempts. It is
calculated for passenger or goodsdelivery vehicles using equations (3) and (4), whereCApandCAgare
the accessibility measures of passenger traffic and goods movement, respectively. spp is the number
of successful parking attempts made by passenger vehicles (personal, PUDO, and transit buses) and
tpp is the total number of parking attempts made by these passenger vehicle types. Similarly, spg is
the number of successful parking attempts made by goods-carrying vehicles (heavy goods vehicles
and delivery vans), and tpg is the total number of parking attempts made by goods vehicles:

CAp =
∑

spp/
∑

tpp (3)

CAg =
∑

spg/
∑

tpg (4)

VISSIM records the parking status (‘Parking state’) of each vehicle at defined time intervals, which
include ‘driving to parking space’, ‘parked’, ‘back to route, ‘parking request declined’, etc.We use these
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statuses to define parking attempts. A parking attempt is determined when the status for a unique
vehicle changes from ‘none’ to ‘driving to parking space’. When that status changes to ‘Parked’, it is
counted as a successful parking attempt. Failed parking attempts are defined by the status ‘Parking
request rejected’, which can occur when all spaces are occupied or if an open space is blocked by a
double-parked vehicle for more than one minute. After one minute of waiting, the vehicle will exit
the study area unless a space further along its trajectory during the vehicle’s transit of the study area
becomes available (i.e. a parked vehicle exits the curb lane in front of the transiting vehicle).

The emissions index is measured in pounds of CO2 per hour (lb CO2/hr) for all vehicles that travel
along the study blockface within the study area. This metric is called the emissions index because we
cannot be sure of the exact compositionof each vehicle type fleet,model years, or various other factors
that can impact emissions. It is intended as a baseline tool for cities to understand how emissionsmay
increase or decrease based on curb allocations. Vehicle trajectories are assigned an emission state
based on acceleration, speed, parking or dwell time, and parking state (see Table 2). It is assumed
that some vehicles that park remain idling (buses and PUDO vehicles). Vehicles that park and do not
idle (turn the vehicle off) also include an ignition factor assigned to the vehicle type. For that reason,
emissions for parking and driving are calculated separately then added together as shown in equation
(5), where Effds is the emissions rate for each driving state (Table 2), DS is the acceleration- and speed-
based driving state, tds is the time in that driving state, EffI is the emissions rate for each vehicle type
while idling, tI is the time spent idling, EffIg is themeasure of emissions releasedduring engine ignition,
and Ig is a binary variable describing the ignition of the vehicle before it leaves its parking space. Ig
equals 1 when a vehicle parks for greater than 5min and turns the engine off, and equals 0 if the
vehicle idles while parked.

Emissions Index =
∑

(Ef fds × (DS × tds)) +
∑

(Ef fI × tI) +
∑

(Ef fIg × Ig) (5)

Simulation scenarios

Curb performance is analysed across nine scenarios, described in Table 3, representing changes to
curb use allocations, parking rules, and driver compliance to those rules. These scenarios are based on
pilot curbspace allocations conceived and tested by US cities (Butrina et al. 2020) as well as existing
curb configurations in the case study city of Seattle (Dowling, Maxner, and Ranjbari 2022). Scenarios
where a portion of drivers ignored parking rules and time limits or double parked were developed to
capture known parking behaviour in many US cities (Butrina et al. 2020; Ranjbari et al. 2021; Cao and
Menendez 2015).

Scenario 1 acts as the baseline towhich all other scenarios are compared. In this scenario all parking
is designatedaspaidparking (PP)with a2-hour time limit. Eachof the four vehicle types (see simulation
input section) are allowed to park in any available space and it is assumed that all vehicles complywith
the paid parking time limit. Additionally, the study area includes one bus stop in which only transit
vehiclesmaypark. All vehicles adhere to thepaidparking time restriction andnovehicles exhibit illegal
parking behaviour such as double parking or attempting to park in the bus stop.

Scenarios 2, 2a, 3, and 3a modify parking allocation, add a single parking rule each, and preserve
100% driver compliance with the parking rules. Scenarios 2 and 2a replace paid parking spaces with
Passenger Load Zones (PLZ). These spaces are restricted to PUDO vehicles and personal vehicles park-
ing for less than5min. Scenarios 3 and3a replacepaidparkingwithCommercial Vehicle LoadingZones
(CVLZ). These spaces are restricted to commercial vans and heavy goods vehicles. In all four scenarios
any vehicle type can park in an unoccupied paid parking space.

Scenarios 4, 4a, and 5 introduce multiple new parking uses as well as varying parking rules and
driver compliance. In each scenario paid parking is replaced by one PLZ and one CVLZ. Scenario 4
allows all vehicle types to park in unoccupied paid parking spaces. Scenario 4a places a restriction on
this rule: only passenger vehicles dwelling for greater than 5min may park in a paid space. 100% of
drivers comply with parking rules in Scenarios 4 and 4a. Scenario 5 introduces noncompliance. Shares
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Table 3. Simulation scenarios and descriptive information.

Scenario: name Description Curb allocation (PP/PLZ/CVLZ/BS) Driver compliance

1: Baseline Curbspace defaults to paid parking 9 PP, 1 bus stop
2: 1 PLZ 1 PP space replaced by 1 PLZ. Any vehicle can use PP. Only

PUDOs and personal vehicles with dwell time < 5min
can use PLZ.

8 PP, 1 PLZ, 1 bus stop All drivers comply with 5-minute PLZ time
restrictions. All drivers comply with space type
assignment.

2a: 3 PLZs 3 PP space replaced by 3 PLZ. Any vehicle can use PP. Only
PUDOs and personal vehicles with dwell time < 5min
can use PLZ.

6 PP, 3 PLZ, 1 bus stop All drivers comply with 5-minute PLZ time
restrictions. All drivers comply with space type
assignment.

3: 1 CVLZ 1 PP space replaced by 1 CVLZ. Any vehicle can use PP. Only
commercial vehicles can use CVLZ.

8 PP, 1 CVLZ, 1 bus stop All drivers comply with 30-minute CVLZ time
restrictions. All drivers comply with space type
assignment.

3a: 3 CVLZs 3 PP space replaced by 3 CVLZ. Any vehicle can use PP. Only
commercial vehicles can use CVLZ.

6 PP, 3 CVLZ, 1 bus stop All drivers comply with 30-minute CVLZ time
restrictions. All drivers comply with space type
assignment.

4: Utopia / PP Open 2 PP replaced by 1 PLZ and 1 CVLZ. Any vehicle can
use PP. Only PUDOs and personal vehicles with dwell
time < 5min can use PLZ. Only commercial vehicles
can use CVLZ.

7 PP, 1 PLZ, 1 CVLZ, 1 bus stop All drivers comply with 5-minute PLZ and 30-
minute CVLZ time restrictions. All drivers comply
with space type assignment.

4a: Utopia / PP Restricted 2 PP replaced by 1 PLZ and 1 CVLZ. Only personal vehicles
can use PP. Only PUDOs and personal vehicles with dwell
time < 5min can use PLZ. Only commercial vehicles
can use CVLZ.

7 PP, 1 PLZ, 1 CVLZ, 1 bus stop All drivers comply with 5-minute PLZ and 30-
minute CVLZ time restrictions. All drivers comply
with space type assignment.

5: Fury Road 2 PP replaced by 1 PLZ and 1 CVLZ. Any vehicle can
use PP. Only PUDOs and personal vehicles with dwell
time < 5min can use PLZ. Only commercial vehicles
can use CVLZ. Introduces illegal parking behavior.

7 PP, 1 PLZ, 1 CVLZ, 1 bus stop 90% of drivers comply with 5-minute PLZ and
30-minute CVLZ time restrictions. 10% PUDO
and personal vehicles park in CVLZ or bus stops
or double park in travel lanes.

6: Replace Bus Stop 1 PP replaced by 1 CVLZ and the bus stop replaced by 1 PP
and 1 CVLZ. Any vehicle can use PP. Only commercial
vehicles can use CVLZ.

9 PP, 2 CVLZ All drivers comply with 30-minute CVLZ time
restrictions. All drivers comply with space type
assignment.

Nomenclature used in the above table: PP = paid parking; PUDO = passenger pick-up/drop-off; PLZ = passenger loading zone(s); CVLZ = commercial vehicle loading zone(s).
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of personal vehicles and PUDO vehicles park in any unoccupied space regardless of designation, park
beyond the time restrictions, block the bus stop and double park in the travel lane. To simulate double
parking in the travel lane, we create a series of artificial parking spaces in the travel lane adjacent to the
parking lane. Blocking the bus stop is similarly achieved by overlaying a parking space on the defined
bus stop area. The spaces are associatedwith aparkingdecision element separate from theoriginal ten
spaces that initiate a parking attempt from a share (10%) of the PUDO and personal vehicles attempt-
ing to park on the blockface. This percentage is reflective of the share of PUDO and personal vehicles
that parked in through lanes or in transit-designated curb space (9-11% per blockface) in the data col-
lected by Ranjbari et al. (2021). Though less explicit in their definition of ‘affecting the flow of traffic’,
Fehr and Peers (2018) report 4-14% of passenger parking events inhibit through traffic from passing
parked vehicles. Reflecting the behaviour of vehicles that parked in the through lane during data col-
lection by Ranjbari et al. (2021), the dwell time of double-parked cars in normally distributed around
three minutes.

Scenario 6 replaces the bus stop with two CVLZs restricted to commercial vehicle parking only.
All drivers comply with parking rules and time restrictions. This scenario is intended to measure the
impact of removing public transit from a blockface.

Results

Curbperformancemetrics are calculated for every combinationof the simulationparameters as shown
in Table 1. These values are then averaged for each scenario to generate an aggregate metric value,
and the results are presented in Table 4. Additionally, two-tailed t-tests are performed on performance
metrics to compare each scenario with the baseline. A p-value of < 0.05 is considered as statistically
significant. CPI, CA, and the emission index were calculated for each vehicle type and for the overall
study area. Thenull hypothesis is that themeanof a given scenario’smetric is not significantly different
from that of the baseline scenario. If the null hypothesis is accepted, additional t-tests are performed
on the vehicle type-level metrics in order to determine if metrics for different vehicle types change
significantly.

Passenger-based curb performancemetrics

Passenger Curb Productivity Index (CPIp) and Passenger Curb Accessibility (CAp) improve from base-
line in two of the eight scenarios (2 and 2a). In these scenarios, at least one PLZ is added to the
curb space allocation. Vehicle type-level metric calculations show that the increases in CPIp and CAp
are driven by increases in PUDO parking activity. In Scenario 2 the CPIp and CAp for PUDO vehicles
increase by 42% (equivalent to an additional 8.4 PUDO vehicles loading or unloading passengers
per hour) and 29% (equivalent to 9.5 fewer failed parking attempts per hour), respectively. In Sce-
nario 2a PUDO CPIp and CAp increase by 71% (15.0 vph) and 48% (15.9 parking attempts per hour),
respectively.

Offsetting the gains in performance attributed to PUDO vehicles are decreases in personal vehi-
cle CPIp and CAp. Because these vehicles do not have access to the PLZs, taking out paid parking
spaces (and turning them into PLZs) reduces their parking access. The same number of personal vehi-
cles are now competing for fewer paid parking spaces and continuing to compete for those spaces
with commercial vehicles and even some PUDO vehicles that continue to park in unoccupied paid
parking spaces. In Scenario 2, personal vehicle CPIp decreases by 5.5% (2.3 vph) and CAp by 6% (2.7
attempts per hour). These figures are significant because the average personal vehicle contributes
twice as many passengers to CPIp as a PUDO vehicle. The impact on personal vehicles is more dras-
tic in Scenario 2a where personal vehicle accessibility decreases by 21% and the curb loses 25% of
passengers serviced by personal vehicles (almost 50% of the potential curb users).

Unsurprisingly, replacing paid parking with a single or multiple CVLZs results in lower passen-
ger performance metrics. CPIp and CAp decrease for both PUDO and personal vehicles at about the



TRA
N
SPO

RTM
ETRIC

A
B:TRA

N
SPO

RT
D
YN

A
M
IC
S

1395

Table 4. Aggregated results across all simulations: passenger & goods performance metrics.

Passenger curb productivity index (CPIp) Passenger curb accessibility (CAp)

Scenario: name CPIp (pax/hr/sp) %
�

from baseline t-test p-value
CAp (parking
success rate) %

�
from baseline t-test p-value

1: Baseline 11.654 – – 0.696 – –
2: 1 PLZ 12.318 5.7% p < 0.001 0.741 6.5% p < 0.001
2a: 3 PLZs 12.290 5.5% p < 0.001 0.724 4.0% p < 0.001
3: 1 CVLZ 11.300 −3.0% p < 0.001 0.656 −5.7% p < 0.001
3a: 3 CVLZs 10.107 −13.3% p < 0.001 0.553 −20.5% p < 0.001
4: Utopia / PP Open 11.141 −4.4% p < 0.001 0.663 −4.7% p < 0.001
4a: Utopia / PP Restricted 11.574 −0.7% 0.3915 0.702 0.9% 0.1743
5: Fury Road 11.278 −3.2% p < 0.001 0.680 −2.3% 0.0013
6: Replace Bus Stop 7.404 −36.5% p < 0.001 0.726 4.3% p < 0.001

Goods Curb Productivity Index (CPIg) Goods Curb Accessibility (CAg)

Scenario: Name CPIg (parcels/hr/sp) %
�

from baseline t-test p-value
CAg (parking
success rate) %

�
from baseline t-test p-value

1: Baseline 1.830 – – 0.507 – –
2: 1 PLZ 1.667 −8.9% 0.0121 0.464 −8.5% 0.0014
2a: 3 PLZs 1.299 −29.0% p < 0.001 0.387 −23.7% p < 0.001
3: 1 CVLZ 2.269 24.0% p < 0.001 0.612 20.7% p < 0.001
3a: 3 CVLZs 3.000 63.9% p < 0.001 0.709 39.8% p < 0.001
4: Utopia / PP Open 1.418 −22.5% p < 0.001 0.395 −22.1% p < 0.001
4a: Utopia / PP Restricted 2.319 26.7% p < 0.001 0.583 15.0% p < 0.001
5: Fury Road 1.335 −27.0% p < 0.001 0.319 −37.1% p < 0.001
6: Replace Bus Stop 2.731 49.2% p < 0.001 0.678 33.7% p < 0.001

Bold p-values represent metrics that fail to reject the t-test null hypothesis, that the metric value does not statistically significantly differ from the baseline value (p-value > 0.05).
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same rate in Scenarios 3 and 3a. Scenario 6 is similar to Scenarios 3 and 3a in that multiple CVLZs
exist at the curb. However, in Scenario 6 a paid parking space is also added in place of the bus stop,
resulting in 11 total parking spaces compared to 10 in all other scenarios. We can isolate the impacts
of each change by considering the CPI from each vehicle class. If the bus stop was removed in Sce-
nario 3 (where a single paid parking space was replaced by a single CVLZ), the resultant CPIp would
be 6.2 passengers per hour per space. In Scenario 6, a paid parking is added, increasing the CPIp from
6.2–7.4. However, this increase in CPI is also attributed to a reduction in competition for paid park-
ing spaces from goods vehicles, which now have two dedicated CVLZs. In Scenario 3, goods vehicles
park in paid parking spaces 58% of the time versus 54% in Scenario 6. Based on the total success-
ful parking attempts by goods vehicles in each scenario, and controlling for the number of spaces
this equates to about 1 fewer successful parking attempts per hour. Given an average dwell time for
goods vehicles of 9.6min across all simulation experiments, and the arrival rate of each passenger
vehicle type, this successful parking event could be replaced by 1 personal vehicle parking event or
up to 6 PUDO events. This equates to an increase in CPIp of between 0.08 and 0.24. The real impact
of adding the paid parking space is therefore 0.96–1.12 passengers per space per hour. Scenario 6 is
the only scenario in which an increase in passenger curb accessibility does not result in a correspond-
ing increase in CPIp compared to the baseline scenario because the bus stop contributes about 5.1
passengers per hour per space to the CPI metric. The increase in PUDO CPIp (10% or 2.1 vph) and per-
sonal vehicle CPIp (15.5%or 5.0 vph) does not overcome the lost passengers attributed to the bus stop
removal.

Scenarios where both a PLZ and a CVLZ are included on a blockface (Scenarios 4, 4a, and 5) show
a similar pattern as Scenarios 2 and 2a, where CPIp and CAp related to PUDO vehicles increase as a
result of adding PLZs and personal vehicle metrics decrease. However, the implementation of parking
restrictions in Scenario 4a creates a difference. In this scenario each vehicle type is assigned to a single
space type. When PUDO vehicles are forced to park only in PLZs, CPIp attributed to this vehicle type
increases by 38%, three times the rate of increase in Scenarios 4 and 5 where multiple vehicle types
compete for paid parking. Correspondingly, personal vehicle CPIp in Scenario 4a decreases by 13%
or 2.5 times the decrease rate in Scenario 4. When passenger vehicles illegally park (double park in
the through lane or park in the CVLZ and bus stop), passenger vehicle CPIp only marginally (1.6%)
decreases. However, vehicles illegally parking in front of the bus stop, results in a significant decrease
(12%) in bus CPIp, blocking about one bus per hour.

Goods-based performancemetrics

Half the simulated scenarios presented in Table 4 result in higher goods curb performance metrics
compared to the baseline. Those scenarios include one or more CVLZ on the blockface with a dedi-
cated use for commercial vehicles. In the baseline scenario, commercial vehicles compete with other
vehicles for paid parking spaces.When the number of spaces available to commercial traffic is reduced
(Scenarios 2 and 2a), there is a drop in goods productivity that is roughly proportional to the num-
ber of spaces to which their access is being restricted (9-10% per space). When curb space is instead
allocated to commercial uses (CVLZ), there is a proportional increase in goods productivity (almost
20-25%). In Scenario 3, where a single CVLZ is added, CPIg increases by 24%, or about five parcels per
hour.

In the scenarios where both PLZs and CVLZs are added (4, 4a, and 5), goods productivity is depen-
dent on the activity of other vehicles. When commercial vehicles compete with PUDO and personal
vehicles for paidparking spaces (Scenario 4), CPIg andCAgdecrease. However,wheneach vehicle type
has a dedicated space and only uses that space (Scenario 4a), performance across both passenger and
goods productivitymetrics improves. However, CAg remains relatively low (58%), because some com-
mercial vehicles arrive at the CVLZ when it is already occupied by another commercial vehicle. Finally,
in Scenario 5, where illegal parking occurs in the CVLZs, the goods performance is the lowest of any
scenario, even though only about 2.5% of passenger and PUDO vehicles park illegally in the CVLZs. In
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Figure 2. Passenger and goods metrics versus parking rate (%).

this scenario, more than two thirds of commercial vehicles are unable to park, and CPIg decreases by
about 5 parcels per hour.

Sensitivity analysis of passenger and goodsmetrics

As previously noted, the results presented thus far are averaged across all simulations and parameter
distributions. To understandhoweachparameter impacts the four performancemetric values, we also
perform a sensitivity analysis.

Each of the fourmetrics (CPIp, CAp, CPIg, andCAg) are plotted against twoof the simulation param-
eters, parking rate and volume (Figures 2 and 3). There is no noticeable trend between metrics and
changes in parking rate, but there is substantial correlation between the metrics and changes in vol-
ume. This means the averagemetric values between scenarios change independently of parking rate.
To better understand the relationship between themetric values and the volume parameter, the park-
ing rate histograms are binned by volume, and the trends are still clear (Figures 4 and 5). As volume
increases, curb productivity increases until the parking in the study area reaches saturation –between
300 and 400 vehicles per hour. The saturation level for commercial vehicles is even lower (150–250
vehicles per hour) due to the longer average dwell time of these vehicles. Curb accessibility conversely
declines as volume increases, because there is higher demand for each parking space, and this trend
continues for higher volumes.

The remaining twoparameters: design speedandcommercial vehicle dwell timearenot discretized
at a level similar as volume and parking rate and therefore plots are not provided. Roadway design
speed has limited impact on passenger and goods metrics. The difference between the average CPIp
and CAp values at 20mph and 30mph is just 0.4%. This equates to less than one vehicle per hour
attempting to park in the study area. Regarding commercial vehicles and goods delivery, the differ-
ences in goodsmetrics as a result of changes in design speeds is even less pronounced. The difference
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Figure 3. Passenger and goods metrics versus study area volume (veh/hr).

Figure 4. Passenger metrics versus parking rate (%) by volume (veh/hr).

in average CPIg for simulations run at design speeds of 30mph and 20mph is only 1.8%. Average CAg is
by 0.9% greater at 30mph. However, these figures bely the small overall share of commercial vehicles
in the simulated fleet. The difference in CAg at the two speeds represents a single additional van or
truck parking every 5 simulations (out of 640 total simulations at each speed).
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Figure 5. Goods metrics versus parking rate (%) by volume (veh/hr).

The impacts of changing the average commercial vehicle dwell timeon theperformance and acces-
sibilitymetricswere larger than the impactsof changing roadwaydesign speed. Increasingcommercial
vehicle dwell time led to decreases in the number of passenger and commercial vehicles able to park
in the study area. Commercial vehicle dwell times are distributed around means of 5min or 14.2min,
corresponding to small and large deliveries. When a commercial vehicle occupies a parking space for
a longer period, we can expect lower vehicle accessibility rates for other commercial vehicles or any
vehicle type competingwith commercial vehicles for parking. On average five fewer PUDOor personal
vehicles and 2.5 fewer commercial vehicles were able to park in the study area when the commercial
vehicle dwell time parameter increases from 5 to 14.2min.

Emissions index

Study area emissions from each scenario are summarized in Table 5. Emissions are reduced from the
baseline scenario in two of the eight scenarios: 4 and 6. The emissions reduction in Scenario 6 can be
easily explained. With the absence of a bus stop, emissions from buses idling while passenger board
and alight are eliminated. While buses still pass through the study area and idle while stopped at
the traffic light in Scenario 6, the elimination of idling emissions tied to the bus stop outweigh the
increased emissions from personal vehicles (3.8%), PUDO vehicles (2.7%), and commercial vehicles
(15.5%) by more than three to one. The changes to emissions from the other three vehicle types are
also statistically significant and can be explained by the increased accessibility rate of all three. Vehicle
types emit more local CO2 when more vehicles are able to park in the study area.

Scenario 4 results in lower emissions for different reasons. Only the changes in emissions from per-
sonal and commercial vehicles are statistically significant. Personal vehicle emissions are reduced by
3.6%and commercial vehicle emissions are reducedby 9.2%. Althoughwemay expect CO2 reductions
from these vehicle types when they are able to find parking at higher rates because neither type idles
while parked and exhibits longer dwell times, the real reason emissions are reduced is because this
scenario results in some of the lowest accessibility rates. The act of being turned away from the study
area block face because spaces are already occupied is the driver for emissions reductions.

The only scenario that results in significantly higher emissions in Scenario 2. This change rests solely
with PUDO vehicles that experience a significantly higher accessibility rate and idle while parked,
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Table 5. Aggregated CO2 emission index results across all simulation parameters.

Scenario: name Emissions (kg CO2/hr) %
�

from baseline t-test p-value

1: Baseline 25.7 – –
2: 1 PLZ 26.1 1.5% 0.049
2a: 3 PLZ 25.6 −0.2% 0.804
3: 1 CVLZ 25.6 −0.2% 0.794
3a: 3 CVLZ 26.1 1.5% 0.147
4: Utopia / PP open 24.6 −4.3% p < 0.001
4a: Utopia / PP restricted 25.7 0.0% 0.962
5: Fury road 25.4 −1.2% 0.102
6: Replace bus stop 22.8 −11.4% p < 0.001

resulting in 18.2%more CO2 emitted in the study area by this vehicle type. This pattern is confirmedby
Scenarios 2a (30.3% increase) and Scenarios 3 and 3a (6.4% and 13.7% decrease, respectively). When
PUDO vehicles are able to park at a high rate (Scenarios 2 and 2a), PUDO emissions increase, andwhen
they are unable to park at a high rate (Scenarios 3 and 3a), PUDO emissions decrease. That being said,
the overall changes in emissions from Scenarios 2a, 3 and 3a are not statistically significantly different.
In those cases, the change in PUDO emissions is offset by changes in personal and commercial vehi-
cle emissions. In Scenario 2a, a combination of failed parking attempts by personal and commercial
vehicles offsets the PUDO emissions increase. In Scenarios 3 and 3a, the high rate of parking success
by commercial vehicles results in significant increases in truck or van emissions.

The emissions results from Scenarios 4a and 5 are similar to the above. PUDO emissions increase
in both cases. In Scenario 4a, more personal vehicles are unable to find parking, resulting in lower
emissions from the class. Commercial vehicle emissions changes are insignificant. And in Scenario
5, the opposite is true. Commercial vehicle emissions decrease significantly as a result of parking
being blocked by illegally parked cars in the CVLZ or by double parked vehicles, and personal vehicle
emissions are not statistically significantly impacted by the curb assignment.

Discussion

The developed curb performance metrics in this study and the results presented are intended to aid
cities in better managing their curbs, whether their goals are increasing accessibility (Butrina et al.
2020; PBOT 2019; Austin DOT 2019; Atlanta Mayor’s Office 2019), maintaining or enhancing economic
output (City of Chicago 2019; Saint Paul PED 2009), and/or reducing emissions (NYCDOT 2021; DDOT
2021). The results of this study corroborate findings of Fehr & Peers (2018) and Ranjbari et al. (2021)
that PLZs can improve passenger accessibility at the curb, and those of Ranjbari et al. (2021) that curbs
can be underutilized if PLZs are placed solely based on the total passenger demand. Rather than lead-
ing to a specific recommendation about the number and location of PLZs though, this study quantifies
the performance gains/losses of passenger and commercial vehicles as a result of changed PUDO curb
access. In the same vein, we measure the passenger and PUDO performance losses as a result of allo-
cating a curb space to commercial vehicles. A key finding, then, is that the importance of each user has
to be weighed when allocating spaces at each blockface or series of blockface.

Butrinaet al. (2020) andYoungandHenao (2020) imply that curb spaces shouldbeallocatedaccord-
ing to the most frequent user. Likewise, the planning document Denver Blueprint (2018) states that
curb allocation, ‘shouldbebasedon thehighest andbest use that services themost number of people’.
But those studies imply thatmultiple users should be given access to the same curb if, for example, the
block contains anofficebuildinggeneratingpassengerdemandandahotel that generatesdemand for
goods delivery. Thiswork shows that neither groupof curb users – passenger or commercial – benefits
when separate spaces are allocated to each use along the sameblock. Instead, itmaybemore effective
to place PLZs and CVLZs on different but adjacent/nearby streets tomaximize access and productivity
while minimizing walking distance.
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Importantly, study area emissions are only reduced in two scenarios – where a bus stop is replaced
by paid parking and a CVLZ (Scenario 6), andwhere one PLZ and oneCVLZ replace paid parking spaces
(Scenario 4). This lendsminimal credence to city transportation plans that intend to use curbmanage-
ment as ameans to reduce emissions, such as those developed by New York City andWashington, DC
(NYCDOT 2021; DDOT 2021). However, reporting that removing a bus stop reduces emissions ignores
the fact that the bus stopwould likely be placed somewhere else. The low accessibility rates that cause
CO2 emission reductions in Scenario 4 likewise to do not account for the emissions transported some-
where else while vehicles cruise for parking. Despite not accounting for cruising emissions, we have
shown that when space is allocated for either goods delivery (CVLZ) or passenger loading/unloading
(PLZ) accessibility for the corresponding vehicles types increases. Those configurations result in the
highest accessibility rates, implying fewer vehicles needed to cruise for parking, and henceforth lower
parking-related emissions.

Curb allocation changes are context specific, meaning each city has their own goals to achieve
whenmaking allocationdecisions. A citymight have a vested interest in improving curb access for only
PUDO or goods vehicles, or a city may seek to improve curb access for both user groups. Our results
show that only three scenarios: 3, 4a and 6 resulted in improvements acrossmultiplemetric categories
(passenger, goods, and emissions). In Scenario 3, goods metrics and emissions improved, although
the change in emissions was not statistically significant. In Scenario 4a goods metrics improved and
more passenger vehicles were able to park, but this did not result in more passengers accessing the
curb. In Scenario 6, both goods metrics, emissions, and passenger accessibility were increased, yet
the emissions reductions were attributed mainly to the lack of idling buses because the bus stop
was removed. The relationship between emissions and other metrics is closely linked with vehicles
that idle. When more PUDO vehicles park, emissions likely increase. However, this link, and the link
between emissions reductions and curb allocations in tenuous. Only three scenarios produced emis-
sions results statistically significantly different from the baseline suggesting that if a city is seeking to
reduce transportation emissions, perhaps curb allocation is not the best way to achieve this goal.

Conclusion

This work provides quantitative performance trade-offs for different space allocations at the curb,
taking into account for the first time both passenger and goods metrics, as well as incorporating
parking-related emissions. A major contribution of this work is to provide cities with a framework to
assess these trade-offs between different curb allocation outcomes and choose the allocation that
meets the overarching goals of the city. For example, if their goal is to reduce CO2 above all other per-
formance factors, Scenario 4 (replace paid parking with 1 CVLZ and 1 PLZ) should be implemented.
Or, if addressing inadequate commercial vehicle parking is the only goal, Scenarios 3 or 3a (replace
paid parking with CVLZ) should be implemented. However, rather than addressing a single curbman-
agement problem such as inadequate commercial vehicle parking, cities can use these methods and
findings to justify curb allocation changes, or use the empirical results to determine if a trade-off –
such as increasing passenger metric values while decreasing goods-related metric values – is worth
the investment. Ourmethodology can be reproduced by cities and the framework used prior to imple-
menting curb changes. Scenarios provided in this study are sample scenarios, and the methodology
would yielddifferent results curb allocations indifferent cities. Utilizingmicrosimulationprior to imple-
menting changes to the physical infrastructure can save cities temporal and financial resources. The
findings can aid cities in making better curb management decisions, especially in mixed-use urban
areas, that enhance their overarching goals, whether it is increasing accessibility and recurring park-
ing congestion, enhancingproductivity andeconomicoutput, or reducing carbonemissions. Themain
contribution of this paper is the development of new curb metrics for parking emissions and goods
accessibility and productivity and also quantifying the trade-offs across a wide range of curb space
allocations and parking rules.
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The results confirm findings of Fehr & Peers (2018) and Ranjbari et al. (2021) that PLZs improve the
curb productivity in terms of the number of passengers served by the blockface. Simulations demon-
strate an increase of almost 6% in passenger productivity by adding just one PLZ in the study area.
The single PLZ scenario also improved PUDO accessibility to the curb while decreasing accessibility of
personal vehicles. We quantify the loss in goods delivery production as a result of a dedicated space to
passenger pickup/drop-off to be roughly 9%. Conversely, goods productivity (24-64%) and commer-
cial vehicle accessibility (21–40%) improves by adding CVLZs, confirming the results of Dalla Chiara
et al. (2021) with quantitative evidence. When both PLZ and CVLZ spaces are allocated on the same
blockface, however, passenger productivity and accessibility show decreases as a result of increased
competition for paid parking amongst personal vehicles. Goods delivery metrics only improve in an
idealized scenario – where all drivers adhere to parking rules and park in their designated spaces.

A key contribution to the field of parking research is the incorporation of emissions as a metric
of curb performance by accounting for various vehicle states associated with curb parking, such as
queuing, entering/exiting a space, and idling when loading/unloading passengers. Such a metric can
help cities justify implementing curb management strategies that improve parking efficiency with-
out increasing emissions, and in some limited cases, with lower emissions. Maxner, Dalla Chiara, and
Goodchild (2022) determined that more than half of cities with commercial vehicle-related emissions
goals are considering changing curb space allocations to providemore parking to these vehicles. This
work presents an argument that CVLZs have an insignificant impact on emissions and PLZs should not
be created if emissions is the deciding factor, but the metric can also be enhanced by considering the
wider neighbourhood.

A limitation to this study is rooted in the analysis of a single blockface. Vehicles that fail to park in
the study areawould not simply exit the network, rather the driverswould search, or cruise, for parking
on nearby blocks. Future work will extend the study area to several blockfaces at the neighbourhood
scale. This would enable taking cruising for parking into account, which can increase emissions (Kil-
bert 2011). Scenarios with low curb accessibility metrics for any vehicle type, could underestimate
produced emissions because of this matter. Extending the simulated network to several blockfaces
would also allow us tomeasure the impacts of increased or reduced demand on neighbouring streets.
These streets would already have their own parking demand. The CPI and CA metrics do not reflect
vehicles that findparkingelsewhere in thenetwork. Passengers thatwalk andgoods that are otherwise
transported from nearby streets to the study area will be counted in modified productivity and acces-
sibility metrics. Additional factors including driving times during the search for parking, and walking
distance to the intendeddestinationwill be accounted for.Modelling several blockfaces further allows
for exploring the outcomes of prioritizingpassenger and commercial vehicle access on separate block-
faces rather than including both on the same blockface. Moreover, future studies could use the devel-
oped framework andmetrics in this study to simulate additional curb use types (such as electric vehicle
charging or flex delivery spaces) and/or other curb policies (such as pricing or maximum dwell time).
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