Skip to content
Presentation

Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Micro-consolidation implementations and pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools.

Recommended Citation:
Şeyma Güneş and Anne Goodchild (2022). Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Student Thesis and Dissertations

Micro-Consolidation Practices in Urban Delivery Systems: Comparative Evaluation of Last Mile Deliveries Using e-Cargo Bikes and Microhubs

 
Download PDF  (1.79 MB)
Publication Date: 2021
Summary:

The demand for home deliveries has seen a drastic increase, especially in cities, putting urban freight systems under pressure. As more people move to urban areas and change consumer behaviors to shop online, busy delivery operations cause externalities such as congestion and air pollution.

Micro-consolidation implementations and their possible pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro-consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools. Three different delivery scenarios were tested that represents 1) the baseline scenario, where only vans and cars make deliveries; 2) the mixed scenario, where in addition to vans and cars, a portion of packages are delivered by e-bikes; and 3) the e-bike only scenario, where all package demand is satisfied using microhubs and e-bikes.

The results showed that e-bike delivery operations perform the best in service areas with high customer density. At the highest customer demand level, e-bikes traveled 7.7% less to deliver a package and emitted 91% less tailpipe CO2 with no significant cost benefits or losses when compared with the baseline scenario where only traditional delivery vehicles were used. Cargo logistics, when implemented in areas where the demand is densified, can reduce emissions and congestion without significant cost implications.

Authors: Şeyma Güneş
Recommended Citation:
Gunes, S. (2021). Micro-Consolidation Practices in Urban Delivery Systems: Comparative Evaluation of Last Mile Deliveries Using e-Cargo Bikes and Microhubs, University of Washington Master's Thesis.
Paper

The Impact of Commercial Parking Utilization on Cyclist Behavior in Urban Environments

 
Download PDF  (2.75 MB)
Publication: Transportation Research Part F: Traffic Psychology and Behaviour
Volume: 74
Pages: 67-80
Publication Date: 2020
Summary:

With growing freight operations within the United States, there continues to be a push for urban streets to accommodate trucks during loading and unloading operations. Currently, many urban locations do not provide loading and unloading zones, which results in trucks parking in places that can obstruct roadway infrastructure designated to vulnerable road users (e.g., pedestrians and cyclists). In an effort to understand the implications of these truck operations, a bicycle simulation experiment was designed to evaluate the impact of commercial vehicle loading and unloading activities on safe and efficient bicycle operations in a shared urban roadway environment. A counter-balanced, factorial design was chosen to explore three independent variables: commercial vehicle loading zone (CVLZ) sizes with three levels (no CVLZ, Min CVLZ, and Max CVLZ), courier position with also three levels (No courier, behind the truck, beside the truck), and loading accessories (Acc) with two levels (no Acc, and with Acc). Cyclist’s velocity and lateral position were used as performance measures. Data were obtained from 48 participants (24 women) resulting in 864 observations in 18 experimental scenarios. Linear Mixed-Effects Models (LMM) were developed to examine the effect of each independent variable level on bicyclist performance.

Results from LMM model suggest that loading zone size had the greatest effect on cyclist’s divergence. Additionally, when the courier was walking beside the truck, cyclist’s velocity significantly dropped to almost one m/sec in compared when the courier located behind the truck. The presence of accessories had the lowest influence on both velocity and lateral positions of cyclists. In the no CVLZ scenarios, the delivery vehicle was parked at the bike lane, therefore; cyclists had to choose between using the travel lane or the sidewalk. About one-third of participants decided to use the sidewalk. These findings could support better roadway and CVLZ design guidelines, which will allow our urban street system to operate more efficiently, safely, and reliably for all users.

Authors: Dr. Anne GoodchildManali ShethDr. Ed McCormack, Hisham Jashami, Douglas Cobb, David S. Hurtwitz
Report

Cargo E-Bike Delivery Pilot Test in Seattle

 
Download PDF  (2.98 MB)
Publication Date: 2020
Summary:

This study performed an empirical analysis to evaluate the implementation of a cargo e-bike delivery system pilot tested by the United Parcel Service, Inc. (UPS) in Seattle, Washington. During the pilot, a cargo e-bike with a removable cargo container was used to perform last-mile deliveries in downtown Seattle. Cargo containers were pre-loaded daily at the UPS Seattle depot and loaded onto a trailer, which was then carried to a parking lot in downtown.

Data were obtained for two study phases. In the “before-pilot” phase, data were obtained from truck routes that operated in the same areas where the cargo e-bike was proposed to operate. In the “pilot” phase, data were obtained from the cargo e-bike route and from the truck routes that simultaneously delivered in the same neighborhoods. Data were subsequently analyzed to assess the performance of the cargo e-bike system versus the traditional truck-only delivery system.

The study first analyzed data from the before-pilot phase to characterize truck delivery activity. Analysis focused on three metrics: time spent cruising for parking, delivery distance, and dwell time. The following findings were reported:

  • On average, a truck driver spent about 2 minutes cruising for parking for each delivery trip, which represented 28 percent of total trip time. On average, a driver spent about 50 minutes a day cruising for parking.
  • Most of the deliveries performed were about 30 meters (98 feet) from the vehicle stop location, which is less than the length of an average blockface in downtown Seattle (100 meters, 328 feet). Only 10 percent of deliveries were more 100 meters away from the vehicle stop location.
  • Most truck dwell times were around 5 minutes. However, the dwell time distribution was right-skewed, with a median dwell time of 17.5 minutes.

Three other metrics were evaluated for both the before-pilot and the pilot study phases: delivery area, number of delivery locations, and number of packages delivered and failed first delivery rate. The following results were obtained:

  • A comparison of the delivery areas of the trucks and the cargo e-bike before and after the pilot showed that the trucks and cargo e-bike delivered approximately in the same geographic areas, with no significant changes in the trucks’ delivery areas before and during the pilot.
  • The number of establishments the cargo e-bike delivered to in a single tour during the pilot phase was found to be 31 percent of the number of delivery locations visited, on average, by a truck in a single tour during the before-pilot phase, and 28 percent during the pilot phase.
  • During the pilot, the cargo e-bike delivered on average to five establishments per hour, representing 30 percent of the establishments visited per hour by a truck in the before-pilot phase and 25 percent during the pilot.
  • During the pilot, the number of establishments the cargo e-bike delivered to increased over time, suggesting a potential for improvement in the efficiency of the cargo e-bike.
  • The cargo e-bike delivered 24 percent of the number of packages delivered by a truck during a single tour, on average, before the pilot and 20 percent during the pilot.
  • Both before and during the pilot the delivery failed rate (percentage of packages that were not delivered throughout the day) was approximately 0.8 percent. The cargo e-bike experienced a statistically significantly lower failed rate of 0.5 percent with respect to the truck fail rate, with most tours experiencing no failed first deliveries.

The above reported empirical results should be interpreted only in the light of the data obtained. Moreover, some of the results are affected by the fact that the pilot coincided with the holiday season, in which above average demand was experienced. Moreover, because the pilot lasted only one month, not enough time was given for the system to run at “full-speed.”

Recommended Citation:
Urban Freight Lab (2020). Cargo E-Bike Delivery Pilot Test in Seattle.
Paper

Exploring Benefits of Cargo-Cycles Versus Trucks for Urban Parcel Delivery Under Different Demand Scenarios

 
Download PDF  (1.46 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2020
Summary:

Urban deliveries are traditionally carried out with vans or trucks. These vehicles tend to face parking difficulties in dense urban areas, leading to traffic congestion. Smaller and nimbler vehicles by design, such as cargo-cycles, struggle to compete in distance range and carrying capacity. However, a system of cargo-cycles complemented with strategically located cargo-storing hubs can overcome some limitations of the cargo-cycles. Past research provides a limited perspective on how demand characteristics and parking conditions in urban areas are related to potential benefits of this system. To fill this gap, we propose a model to simulate the performance of different operational scenarios—a truck-only scenario and a cargo-cycle with mobile hubs scenario—under different delivery demand and parking conditions. We apply the model to a case study using data synthesized from observed freight-carrier demand in Singapore. The exploration of alternative demand scenarios informs how demand characteristics influence the viability of the solution. Furthermore, a sensitivity analysis clarifies the contributing factors to the demonstrated results. The combination of cargo-cycles and hubs can achieve progressive reductions in kilometers-traveled and hours-traveled up to around densities of 150 deliveries/km ² , beyond which savings taper off. Whereas the reduction in kilometers-traveled is influenced by the the carrying capacity of the cargo-cycle, the reduction in hours-traveled is related to to the cargo-cycle ability to effectively decrease the parking dwell time by reducing, for instance, the time spent searching for parking and the time spent walking to a delivery destination.

Authors: Dr. Giacomo Dalla Chiara, André Romano Alho, Cheng Cheng, Moshe Ben-Akiva, Lynette Cheah
Recommended Citation:
Dalla Chiara, Giacomo and Alho, André Romano and Cheng Cheng, Moshe Ben-Akiva and Cheah, Lynette. “Exploring Benefits of Cargo-Cycles versus Trucks for Urban Parcel Delivery under Different Demand Scenarios.” Transportation Research Record, (May 2020). doi:10.1177/0361198120917162.
Student Thesis and Dissertations

Seattle Bicycle Share Feasibility Study

 
Download PDF  (2.55 MB)
Publication: University of Washington, College of Built Environment, Department of Urban Planning and Design
Publication Date: 2011
Summary:

This report assesses the feasibility of a public use bike-share system for Seattle, Washington. Colloquially referred to as “bike-share” or “bike-sharing,” such systems are considered a form of public transportation. Bike-share bicycles are intended for short-term use and are accessible via automated check-out systems. An important benefit of bike-share systems is the flexibility to return rented bicycles to any station within the system, thereby encouraging use for one-way travel and the “final mile” of a trip.

The four major chapters of this report represent the organization of our research and analysis. The topic areas are:

  • Introduction: Bike-share history and the structure of our study
  • Demand Analysis: Our analytic and forecast methodologies along with results of their application
  • Policy Framework: Consideration of governance institutions and their effects on system implementation
  • Bike-Share Program Recommendations: Summation of our findings and recommendations for how Seattle should proceed

During our analysis, we looked at demand for bike-share in Seattle. We have concluded that demand is sufficient to support a program. Our final recommendation includes three implementation phases, beginning with the downtown and surrounding neighborhoods.

However, despite anticipation of program demand, there are institutional policy challenges that must be addressed before successful implementation. Prominent among these are:

  • The King County helmet law
  • City of Seattle sign codes
  • Policies that affect station design and use of curbspace

In the case of the latter two, individual neighborhoods and districts may each have their own, unique impacts. Fortunately, Seattle has the flexibility to address these issues, and there are systems in place to overcome these challenges. Once addressed, we recommend the City move forward with implementing a bikeshare program.

Authors: Dr. Ed McCormack, Jennifer Gregerson, Max Hepp-Buchanan, Daniel Rowe, John Vander Sluis, Erica Wygonik, Michael Xenakis
Recommended Citation:
Gregerson, J., Hepp-Buchanan, M., Rowe, D., Vander Sluis, J., Wygonik, E., Xenakis, M., & McCormack, E. (2011). Seattle bicycle share feasibility study. University of Washington, College of Built Environment, Department of Urban Planning and Design.
Paper

Bike-Share Planning in Cities with Varied Terrain

 
Download PDF  (7.65 MB)
Publication: Institute of Transportation Engineers (ITE) Journal
Volume: 84:07:00
Pages: 31-35
Publication Date: 2014
Summary:
Decisions to install public bike-share programs are increasingly based on ridership estimations, but the topography’s influence on ridership is rarely quantified. This research evaluated a geographic information system-based approach for estimating ridership that accounted for hills. Double-weighting a slope relative to other measures produces a realistic representation of the bicycling experience. Because of their benefits, bike-share programs are increasingly of interest in cities and universities across the country. A bike-share program provides short-term use bicycles to the public through a system of unattended stations for their checkout and return. This research enhanced methodology developed in Philadelphia by developing and evaluating an additional indicator that accounts for hills. Several scenarios were tested, using Seattle as a case study, to find the best method to account for the notable impact of hills on bike riders’ choices and to evaluate the addition of slope to the calculation of bike-share demand.
Authors: Dr. Ed McCormack, Erica Wygonik, Daniel H. Rowe
Recommended Citation:
McCormack, E., & Rowe, D. H. (2014). Bike-share planning in cities with varied terrain. Institute of Transportation Engineers. ITE Journal, 84(7), 31.
Technical Report

An Examination of the Impact of Commercial Parking Utilization on Cyclist Behavior in Urban Environments

 
Download PDF  (2.70 MB)
Publication Date: 2016
Summary:

There is little research on the behavioral interaction between bicycle lanes and commercial vehicle loading zones (CVLZ) in the United States. These interactions are important to understand, to preempt increasing conflicts between truckers and bicyclists. In this study, a bicycling simulator experiment examined bicycle and truck interactions. The experiment was successfully completed by 48 participants. The bicycling simulator collected data regarding a participant’s velocity and lateral position. Three independent variables reflecting common engineering approaches were included in this experiment: pavement marking (L1: white lane markings with no supplemental pavement color, termed white lane markings, L2: white lane markings with solid green pavement applied on the conflict area, termed solid green, and L3: white lane markings with dashed green pavement applied on the conflict area, termed dashed green), signage (L1: No sign and L2: a truck warning sign), and truck maneuver (L1: no truck in CVLZ, L2: truck parked in CVLZ, and L3: truck pulling out of CVLZ).

The results showed that truck presence does have an effect on bicyclist’s performance, and this effect varies based on the engineering and design treatments employed. Of the three independent variables, truck maneuvering had the greatest impact by decreasing mean bicyclist velocity and increasing mean lateral position. It was also observed that when a truck was present in a CVLZ, bicyclists had a lower velocity and lower divergence from right-edge of bike lane on solid green pavement, and a higher divergence from the right-edge of bike lane was observed when a warning sign was present.

Authors: Dr. Anne GoodchildDr. Ed McCormackManali Sheth, David S. Hurwitz, Masoud Ghodrat Abadi
Recommended Citation:
Hurwitz, David S., Ed McCormack, Anne Goodchild, Masoud Ghodrat Abadi, and Manali Sheth. An Examination of the Impact of Commercial Parking Utilization on Cyclist Behavior in Urban Environments. 2018.

Dr. Giacomo Dalla Chiara

Dr. Giacomo Dalla Chiara
Dr. Giacomo Dalla Chiara
  • Research Associate, Urban Freight Lab
giacomod@uw.edu  |  206-685-0567  |  Wilson Ceramics Lab 111
  • Urban transportation
  • Urban logistics
  • Operations research
  • Effectiveness of ebikes for last-mile delivery
  • Ph.D., Engineering Systems and Design, Singapore University of Technology and Design (SUTD) (2018)
    Dissertation: Commercial Vehicles Parking in Congested Urban Areas
  • M.S., Statistics, Swiss Federal Institute of Technology (ETH) (2012)
    Thesis: Factor Approach to Forecasting with High-Dimensional Data
  • B.S., Economics and Business, Libera Università Internazionale degli Studi Sociali (LUISS) (2010)
    Thesis: A Monopolistic State in Competitive Markets

Dr. Giacomo Dalla Chiara is a Post-Doctoral Research Associate at the Urban Freight Lab. Before moving to Seattle, he was postdoctoral research fellow at the Singapore University of Technology and Design in 2018 and visiting scholar at the Massachusetts Institute of Technology in 2017. He holds a PhD in Engineering Systems from the Singapore University of Technology and Design (Singapore), a MSc in Statistics from ETH Zurich (Switzerland) and a BSc in Economics from LUISS University (Italy).

His research focuses on statistical methods applied to urban mobility problems. His work involves developing models and simulations to study and develop new sustainable urban logistics practices.

  • Guest Editor, Transportation Research Part A: Policy and Practice (Elsevier) (2021)
Presentation

Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas

 
Publication: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Urban freight deliveries are increasingly challenged in dense urban areas, particularly where delivery trucks are required to meet delivery time windows. Depending on the route characteristics, Electric Assist (EA) cargo bikes may serve as an economic and environmentally sustainable alternative to delivery trucks. In this paper, the cost trade-offs between a box delivery truck and an EA cargo bikes are compared. The independent and constant variables and assumptions used for a cost function comparison model are gathered through data collection, a literature review, and interviews. An observed route completed by a well-known courier company was used as a control and the same route was modeled with an EA cargo bike. It was found that a delivery truck was a more cost efficient vehicle type given the route and delivery characteristics present. Four separate delivery scenarios were modeled to explore how the distance between distribution center (DC) and neighborhood, a number of stops, distance between each stop, and a number of parcels per stop would impact the optimum vehicle type. The results from the models indicate that the route and delivery characteristics significantly influence whether a delivery truck or EA cargo bike is the best option.

Recommended Citation:
Butrina, Polina, Manali Sheth, Anne Goodchild, and Edward McCormack. Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas. No. 18-05401. 2018.