Skip to content
Paper

Evaluation of Bicyclist Physiological Response and Visual Attention in Commercial Vehicle Loading Zones

 
Download PDF  (8.04 MB)
Publication: Journal of Safety Research
Publication Date: 2023
Summary:

With growing freight operations throughout the world, there is a push for transportation systems to accommodate trucks during loading and unloading operations. Currently, many urban locations do not provide loading and unloading zones, which results in trucks parking in places that obstruct bicyclist’s roadway infrastructure (e.g., bicycle lanes).

Method
To understand the implications of these truck operations, a bicycle simulation experiment was designed to evaluate the impact of commercial vehicle loading and unloading activities on safe and efficient bicycle operations in a shared urban roadway environment. A fully counterbalanced, partially randomized, factorial design was chosen to explore three independent variables: commercial vehicle loading zone (CVLZ) sizes with three levels (i.e., no CVLZ, Min CVLZ, and Max CVLZ), courier position with three levels (i.e., no courier, behind the truck, beside the truck), and with and without loading accessories. Bicyclist’s physiological response and eye tracking were used as performance measures. Data were obtained from 48 participants, resulting in 864 observations in 18 experimental scenarios using linear mixed-effects models (LMM).

Results
Results from the LMMs suggest that loading zone size and courier position had the greatest effect on bicyclist’s physiological responses. Bicyclists had approximately two peaks-per-minute higher when riding in the condition that included no CVLZ and courier on the side compared to the base conditions (i.e., Max CVLZ and no courier). Additionally, when the courier was beside the truck, bicyclist’s eye fixation durations (sec) were one (s) greater than when the courier was located behind the truck, indicating that bicyclists were more alert as they passed by the courier. The presence of accessories had the lowest influence on both bicyclists’ physiological response and eye tracking measures.

Practical Applications
These findings could support better roadway and CVLZ design guidelines, which will allow our urban street system to operate more efficiently, safely, and reliable for all users.

Authors: Dr. Ed McCormackDr. Anne Goodchild, Hisham Jashami, Douglas Cobb, Ivan Sinkus, Yujun Liu, David Hurwitz
Recommended Citation:
Jashami, Hisham, Douglas Cobb, Ivan Sinkus, Yujun Liu, Edward McCormack, Anne Goodchild, and David Hurwitz. “Evaluation of Bicyclist Physiological Response and Visual Attention in Commercial Vehicle Loading Zones.” Journal of Safety Research. Elsevier BV, December 2023. https://doi.org/10.1016/j.jsr.2023.11.018
Paper

Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement

 
Download PDF  (2.87 MB)
Publication: Case Studies on Transport Policy
Publication Date: 2023
Summary:

Urban freight deliveries using microhubs and e-cargo cycles have been gaining attention in cities suffering from congestion and emissions. E-cargo cycle deliveries and microhubs used as transshipment points in urban cores can replace trucks to make cities more livable. This study describes and empirically evaluates an e-cargo tricycle pilot conducted with multi-sector stakeholders in Seattle to report the potential benefits and pitfalls of such practices. The pilot held stakeholder workshop sessions to collect inputs of interest and expectations from the project. Mobile devices used by drivers on e-cargo tricycle and cargo van routes collected delivery data to use for empirical assessment. Total vehicle miles traveled and tailpipe carbon emissions served as performance metrics when comparing e-cargo tricycle and cargo van deliveries. The results showed the net-benefit of the microhub and e-cargo tricycle routes depend on the upstream operations when replenishing packages.

The participatory approach to pilot design also provided insights into the factors of a successful pilot, with implications for scaling future e-cargo cycle delivery systems in North American cities. Namely, microhubs’ ability to host alternative revenue sources and value-added services is a boon for long-term financial competitiveness. However, lack of digital/physical infrastructure and work training/regulations specific to e-cargo cycle delivery operations present a barrier.

Recommended Citation:
Gunes, Seyma, Travis Fried, and Anne Goodchild. “Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement.” Case Studies on Transport Policy. Elsevier BV, November 2023. https://doi.org/10.1016/j.cstp.2023.101119.
Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.

UPS E-Bike Delivery Pilot Test in Seattle: Analysis of Public Benefits and Costs (Task Order 6)

The City of Seattle granted a permit to United Parcel Service, Inc. (UPS) in fall 2018 to pilot test a new e-bike parcel delivery system in the Pioneer Square/Belltown area for one year. The Seattle Department of Transportation (SDOT) commissioned the Urban Freight Lab (UFL) to quantify and document the public impacts of this multimodal delivery system change in the final 50 feet of supply chains, to provide data and evidence for development of future urban freight policies.

The UFL will conduct analyses into the following research questions:

  1. What are the total changes in VMT and emissions (PM and GHG) to all three affected cargo van routes due to the e-bike pilot test in the Pike Place Market and neighboring areas?
  2. What is the change in the delivery van’s dwell time, e.g. the amount of time the van is parked, before and after introducing the e-bike?
  3. How does the e-bike system affect UPS’ failed first delivery (FFD) attempt rate along the route?
  4. If UPS begins to stage drop boxes along the route for the e-bike (instead of having to replenish from the parked trailer) what are the impacts to total VMT and emissions?
  5. How do e-bike delivery operations impact pedestrian, other bike, and motor traffic?
Technical Report

Multimodal Intersections: Resolving Conflicts between Trains, Motor Vehicles, Bicyclists and Pedestrians

 
Download PDF  (9.16 MB)
Publication: Oregon State Department of Transportation
Publication Date: 2017
Summary:

This research report investigates the relationship between pedestrians and bicyclists on paths parallel to railroad tracks and with a road perpendicular to the path. The possible conflicts at intersections within these design parameters are of concern to ODOT, and therefore, has been recognized as an opportunity to conduct research that improves this type of intersection. The goal of this research project is to create a Guidebook that suggests appropriate path or road treatments for crossings, while also acknowledging and complimenting the unique site conditions present at the intersection. The report contains an extensive literature review, including existing railroad treatment options, and a description of the conducted field surveys and pedestrian, bicycle, vehicle, and train counts from the video. The report could help future work, such as developing more design solutions for paths parallel to tracks and the road perpendicular to the path. A preliminary guidebook is exemplified in the conducted case studies. It is intended to be a user friendly tool for city planners and engineers to assess a crossing and identify appropriate treatment options to improve the path and road user environment, and overall safety for all users.

Recommended Citation:
Goodchild, Anne V., Edward McCormack, Anna Bovbjerg, and Manali Sheth. Multimodal Intersections: Resolving Conflicts Between Trains, Motor Vehicles, Bicyclists and Pedestrians. No. FHWA-OR-18-04. Oregon. Dept. of Transportation, 2017.
Technical Report

Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions

 
Download PDF  (3.37 MB)
Publication Date: 2023
Summary:

Millions of people who live and work in cities purchase goods online. As ecommerce and urban deliveries spike, there is an increasing demand for curbside loading and unloading space. To better manage city curb spaces for urban freight, city planners and decision makers need to understand commercial vehicle driver behaviors and the factors they consider when parking at the curb.

Urban freight transportation is a diverse phenomenon. Commercial vehicle drivers must overcome several obstacles and adapt to various rules and policies to properly navigate the intricate metropolitan network and make deliveries and pick-ups. However, other road users and occasionally municipal planners generally view them as contributing considerably to urban congestio, responsible for unauthorized parking, double parking, and exceeding their legal parking time.

These realities reflect the need for a thorough comprehension of commercial vehicle operators’ core decision-making procedures and parking habits to inform and adjust curb management policies and procedures. However, more robust corroborated literature on the subject is needed. The information used in these studies is typically obtained from empirical field research, which, while valuable, is limited to certain situations and case scenarios. Therefore, to improve the operation of urban transportation networks, it is necessary to study commercial vehicle drivers’ parking behavior in a controlled environment.

This project used a heavy vehicle driving simulator to examine commercial vehicle drivers’ curbside parking behaviors in various environments in shared urban areas. Also observed were the interactions between commercial vehicle drivers and other road users.

The experiment was successfully completed by 12 participants. Five independent variables were included in this experiment: number of lanes (two-lane and four-lane roads), bike lane existence, passenger vehicle parking space availability, commercial vehicle loading zones (CVLZs) (no CVLZ, occupied CVLZs, and unoccupied CVLZs), and parking time (short-term parking: 3 to 5 minutes and long-term parking: 20 to 60 minutes). The heavy vehicle driving simulator also collected data regarding participants’ driving speed, eye movement, and stress level.

Results from the heavy vehicle driving simulator experiment indicated that the presence of a bike lane had significant effects on commercial vehicle drivers’ parking decisions., but only a slight effect on fixation duration times. The average fixation duration time, representing how long participants looked at a particular object, on the road with a bike lane was 4.81 seconds, whereas it was 5.25 seconds on roads without a bike lane. Results also showed that the frequency of illegal parking (not parking in the CVLZs) was greater during short-term parking activities, occurring 60 times (45 percent of parking maneuvers). Delivery times also had a slight effect on commercial vehicles’ speed while searching for parking (short-term parking was 17.7 mph; long term parking was 17.2 mph) and on drivers’ level of stress (short-term parking was 8.16 peaks/mins; long-term parking was 8.36 peaks/mins). Seven percent of participants chose to park in the travel lane, which suggested that commercial vehicle operators prioritize minimizing their walking distance to the destination over the violation of parking regulations.

The limited sample size demonstrated the value of our experimental approach but limited the strength of the recommendations that can be applied to practice. With that limitation acknowledged, our preliminary recommendations for city planners include infrastructure installation (i.e., convex mirrors installed at the curbside and CVLZ signs) to help drivers more easily identify legal parking spaces, and pavement markings (i.e., CVLZs, buffered bike lanes) to improve safety when parking. Parking time limits and buffers for bike lanes could improve efficient operation and safety for cyclists and other road users.

For future work, larger sample sizes should be collected. Additional factors could be considered, such as increased traffic flow, pedestrian traffic, conflicts among multiple delivery vehicles simultaneously, various curb use type allocations, and different curb policies and enforcement. Including a larger variety of commercial vehicle sizes and loading, zone sizes would also be of value. A combination of field observations and a driving simulator study could also help validate this investigation’s outcomes.

Authors: Dr. Andisheh RanjbariDr. Anne GoodchildDr. Ed McCormackRishi Verma, David S. Hurwitz (Oregon State University), Yujun Liu (Oregon State University), Hisham Jashami (Oregon State University)
Recommended Citation:
Goodchild, A., McCormack, E., Hurwitz, D., Ranjbari, A., Verma, R., Liu, Y., & Jashami, H. (2023). Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions. PacTrans. 
Paper

A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010

Publication: Transportation Research Board 95th Annual Meeting
Volume: 16-5911
Publication Date: 2016
Summary:

Bicycling is being encouraged across the US and the world as a low-impact, environmentally friendly mode of transportation. In the US, many states and cities, especially cities facing congestion issues, are encouraging cycling as an alternative to automobiles. However, as cities grow and consumption increases, freight traffic in cities will increase as well, leading to higher amounts of interactions between cyclists and trucks. This paper will describe where and how accidents between cyclists and trucks occur. From 2000 to 2010, 807 bicyclists were killed the United States in accidents involving trucks. In 2009, trucks accounted for 9.5% of fatal bicycle accidents, despite trucks only accounting for 4.5% of registered vehicles. The typical fatal bike-truck accident happens in an urban area on an arterial street with a speed limit of 35 or 45 mph. It is about equally likely to occur mid-block or at an intersection. Most accidents involved trucks going straight (56%), and right-turning trucks were involved in a much larger number of accidents (24%) than left turning trucks (7%). Methods such as providing bicycle lanes, or even physically separated bicycle tracks, will not be sufficient to address bicycle-truck collisions, as a significant number of accidents (49%) occur in intersections or are intersection related. Cities with a higher mode-share of bicycling had a lower rate of bicycle-truck fatality accidents.

Authors: Dr. Anne Goodchild, Jerome Drescher
Recommended Citation:
Drescher, Jerome and Anne Goodchild. (2016), "A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010," Accepted for presentation at the 95th Transportation Research Board Annual Meeting, Washington DC, January 10-14. [Paper # 16-5911]
Paper

How Cargo Cycle Drivers Use the Urban Transport Infrastructure

 
Download PDF  (10.47 MB)
Publication: Transportation Research Part A: Policy and Practice
Volume: 167
Publication Date: 2023
Summary:

Electric cargo cycles are often considered a viable alternative mode for delivering goods in an urban area. However, cities in the U.S. are struggling to regulate cargo cycles, with most authorities applying the same rules used for motorized vehicles or traditional bikes. One reason is the lack of understanding of the relationships between existing regulations, transport infrastructure, and cargo cycle parking and driving behaviors.

In this study, we analyzed a cargo cycle pilot test in Seattle and collected detailed data on the types of infrastructure used for driving and parking. GPS data were augmented by installing a video camera on the cargo cycle and recording the types of infrastructure used (distinguishing between the travel lane, bicycle lane, and sidewalk), the time spent on each type, and the activity performed.

The analysis created a first-of-its-kind, detailed profile of the parking and driving behaviors of a cargo cycle driver. We observed a strong preference for parking (80 percent of the time) and driving (37 percent of the time) on the sidewalk. We also observed that cargo cycle parking was generally short (about 4 min), and the driver parked very close to the delivery address (30 m on average) and made only one delivery. Using a random utility model, we identified the infrastructure design parameters that would incentivize drivers to not use the sidewalk and to drive more on travel and bicycle lanes.

The results from this study can be used to better plan for a future in which cargo cycles are used to make deliveries in urban areas.

Recommended Citation:
Dalla Chiara, G., Donnelly, G., Gunes, S., & Goodchild, A. (2023). How Cargo Cycle Drivers Use the Urban Transport Infrastructure. Transportation Research Part A: Policy and Practice, 167, 103562. https://doi.org/10.1016/j.tra.2022.103562
Student Thesis and Dissertations

Survey on the Bike Commute Environment among Seattle Area Bike Planners and Advocates

Publication Date: 2020
Summary:

Bike facilities like bike lanes, bike trails, and neighborhood greenways have been the backbone of Seattle’s bike planning policy with the goal of promoting active transportation, reducing car dependence, improving social equity, and eliminating bike accidents. While the equitable implementation of all of these facilities are still a priority for the Seattle’s Office of Planning and Community Development to increase viable commute mobility options, bike planning investments may not reflect the priorities shared by those in the bike community. Other factors in the bike commute environment were not present in Seattle’s Bike Master Plan, such as bike storage and shower facilities. There is also a lack of knowledge on whether there were priorities that people of color might have that are different. To better understand those priorities, this study sent out an online survey to 14 bike facility planning groups and bike community organizations around Seattle on the importance of nineteen different factors in the bike commute environment. For each factor, there were a range of values gauging the degree of importance of a bike commute factor to the bike commute environment, as well as a free response to allow respondents to elaborate on their answers. In total, 71 survey responses were received. The factor that placed the highest importance on the bike commute environment was bike racks and storage, higher than even bike facilities such as bike lanes. There were also not many differences in the priorities expressed by people of color, with the only significant difference being the weighting of sharrows, which had received significantly more support from people of color. Using the results of the survey, we recommend that the City of Seattle develop a bike commute environment index with a weighting scheme that is reflective of the priorities expressed in the survey, in addition to informing the City what are the community priorities in the bike commute environment.

Authors: Dr. Ed McCormack, Theodore Cheung, Katie Sheehy, Christine Bae
Recommended Citation:
Cheung, Theodore & Sheehy, Katie & Bae, Christine & McCormack, Edward. (2020). Survey on the Bike Commute Environment among Seattle Area Bike Planners and Advocates. 10.13140/RG.2.2.28619.31529.