Skip to content
Paper

Evaluation of Bicyclist Physiological Response and Visual Attention in Commercial Vehicle Loading Zones

 
Download PDF  (8.04 MB)
Publication: Journal of Safety Research
Publication Date: 2023
Summary:

With growing freight operations throughout the world, there is a push for transportation systems to accommodate trucks during loading and unloading operations. Currently, many urban locations do not provide loading and unloading zones, which results in trucks parking in places that obstruct bicyclist’s roadway infrastructure (e.g., bicycle lanes).

Method
To understand the implications of these truck operations, a bicycle simulation experiment was designed to evaluate the impact of commercial vehicle loading and unloading activities on safe and efficient bicycle operations in a shared urban roadway environment. A fully counterbalanced, partially randomized, factorial design was chosen to explore three independent variables: commercial vehicle loading zone (CVLZ) sizes with three levels (i.e., no CVLZ, Min CVLZ, and Max CVLZ), courier position with three levels (i.e., no courier, behind the truck, beside the truck), and with and without loading accessories. Bicyclist’s physiological response and eye tracking were used as performance measures. Data were obtained from 48 participants, resulting in 864 observations in 18 experimental scenarios using linear mixed-effects models (LMM).

Results
Results from the LMMs suggest that loading zone size and courier position had the greatest effect on bicyclist’s physiological responses. Bicyclists had approximately two peaks-per-minute higher when riding in the condition that included no CVLZ and courier on the side compared to the base conditions (i.e., Max CVLZ and no courier). Additionally, when the courier was beside the truck, bicyclist’s eye fixation durations (sec) were one (s) greater than when the courier was located behind the truck, indicating that bicyclists were more alert as they passed by the courier. The presence of accessories had the lowest influence on both bicyclists’ physiological response and eye tracking measures.

Practical Applications
These findings could support better roadway and CVLZ design guidelines, which will allow our urban street system to operate more efficiently, safely, and reliable for all users.

Authors: Dr. Ed McCormackDr. Anne Goodchild, Hisham Jashami, Douglas Cobb, Ivan Sinkus, Yujun Liu, David Hurwitz
Recommended Citation:
Jashami, Hisham, Douglas Cobb, Ivan Sinkus, Yujun Liu, Edward McCormack, Anne Goodchild, and David Hurwitz. “Evaluation of Bicyclist Physiological Response and Visual Attention in Commercial Vehicle Loading Zones.” Journal of Safety Research. Elsevier BV, December 2023. https://doi.org/10.1016/j.jsr.2023.11.018
Paper

Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement

 
Download PDF  (2.87 MB)
Publication: Case Studies on Transport Policy
Publication Date: 2023
Summary:

Urban freight deliveries using microhubs and e-cargo cycles have been gaining attention in cities suffering from congestion and emissions. E-cargo cycle deliveries and microhubs used as transshipment points in urban cores can replace trucks to make cities more livable. This study describes and empirically evaluates an e-cargo tricycle pilot conducted with multi-sector stakeholders in Seattle to report the potential benefits and pitfalls of such practices. The pilot held stakeholder workshop sessions to collect inputs of interest and expectations from the project. Mobile devices used by drivers on e-cargo tricycle and cargo van routes collected delivery data to use for empirical assessment. Total vehicle miles traveled and tailpipe carbon emissions served as performance metrics when comparing e-cargo tricycle and cargo van deliveries. The results showed the net-benefit of the microhub and e-cargo tricycle routes depend on the upstream operations when replenishing packages.

The participatory approach to pilot design also provided insights into the factors of a successful pilot, with implications for scaling future e-cargo cycle delivery systems in North American cities. Namely, microhubs’ ability to host alternative revenue sources and value-added services is a boon for long-term financial competitiveness. However, lack of digital/physical infrastructure and work training/regulations specific to e-cargo cycle delivery operations present a barrier.

Recommended Citation:
Gunes, Seyma, Travis Fried, and Anne Goodchild. “Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement.” Case Studies on Transport Policy. Elsevier BV, November 2023. https://doi.org/10.1016/j.cstp.2023.101119.
Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.
Paper

Exploring Benefits of Cargo-Cycles Versus Trucks for Urban Parcel Delivery Under Different Demand Scenarios

 
Download PDF  (1.46 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2020
Summary:

Urban deliveries are traditionally carried out with vans or trucks. These vehicles tend to face parking difficulties in dense urban areas, leading to traffic congestion. Smaller and nimbler vehicles by design, such as cargo-cycles, struggle to compete in distance range and carrying capacity. However, a system of cargo-cycles complemented with strategically located cargo-storing hubs can overcome some limitations of the cargo-cycles. Past research provides a limited perspective on how demand characteristics and parking conditions in urban areas are related to potential benefits of this system. To fill this gap, we propose a model to simulate the performance of different operational scenarios—a truck-only scenario and a cargo-cycle with mobile hubs scenario—under different delivery demand and parking conditions. We apply the model to a case study using data synthesized from observed freight-carrier demand in Singapore. The exploration of alternative demand scenarios informs how demand characteristics influence the viability of the solution. Furthermore, a sensitivity analysis clarifies the contributing factors to the demonstrated results. The combination of cargo-cycles and hubs can achieve progressive reductions in kilometers-traveled and hours-traveled up to around densities of 150 deliveries/km ² , beyond which savings taper off. Whereas the reduction in kilometers-traveled is influenced by the the carrying capacity of the cargo-cycle, the reduction in hours-traveled is related to to the cargo-cycle ability to effectively decrease the parking dwell time by reducing, for instance, the time spent searching for parking and the time spent walking to a delivery destination.

Authors: Dr. Giacomo Dalla Chiara, André Romano Alho, Cheng Cheng, Moshe Ben-Akiva, Lynette Cheah
Recommended Citation:
Dalla Chiara, Giacomo and Alho, André Romano and Cheng Cheng, Moshe Ben-Akiva and Cheah, Lynette. “Exploring Benefits of Cargo-Cycles versus Trucks for Urban Parcel Delivery under Different Demand Scenarios.” Transportation Research Record, (May 2020). doi:10.1177/0361198120917162.
Student Thesis and Dissertations

Seattle Bicycle Share Feasibility Study

 
Download PDF  (2.55 MB)
Publication: University of Washington, College of Built Environment, Department of Urban Planning and Design
Publication Date: 2011
Summary:

This report assesses the feasibility of a public use bike-share system for Seattle, Washington. Colloquially referred to as “bike-share” or “bike-sharing,” such systems are considered a form of public transportation. Bike-share bicycles are intended for short-term use and are accessible via automated check-out systems. An important benefit of bike-share systems is the flexibility to return rented bicycles to any station within the system, thereby encouraging use for one-way travel and the “final mile” of a trip.

The four major chapters of this report represent the organization of our research and analysis. The topic areas are:

  • Introduction: Bike-share history and the structure of our study
  • Demand Analysis: Our analytic and forecast methodologies along with results of their application
  • Policy Framework: Consideration of governance institutions and their effects on system implementation
  • Bike-Share Program Recommendations: Summation of our findings and recommendations for how Seattle should proceed

During our analysis, we looked at demand for bike-share in Seattle. We have concluded that demand is sufficient to support a program. Our final recommendation includes three implementation phases, beginning with the downtown and surrounding neighborhoods.

However, despite anticipation of program demand, there are institutional policy challenges that must be addressed before successful implementation. Prominent among these are:

  • The King County helmet law
  • City of Seattle sign codes
  • Policies that affect station design and use of curbspace

In the case of the latter two, individual neighborhoods and districts may each have their own, unique impacts. Fortunately, Seattle has the flexibility to address these issues, and there are systems in place to overcome these challenges. Once addressed, we recommend the City move forward with implementing a bikeshare program.

Authors: Dr. Ed McCormack, Jennifer Gregerson, Max Hepp-Buchanan, Daniel Rowe, John Vander Sluis, Erica Wygonik, Michael Xenakis
Recommended Citation:
Gregerson, J., Hepp-Buchanan, M., Rowe, D., Vander Sluis, J., Wygonik, E., Xenakis, M., & McCormack, E. (2011). Seattle bicycle share feasibility study. University of Washington, College of Built Environment, Department of Urban Planning and Design.
Paper

Bike-Share Planning in Cities with Varied Terrain

 
Download PDF  (7.65 MB)
Publication: Institute of Transportation Engineers (ITE) Journal
Volume: 84:07:00
Pages: 31-35
Publication Date: 2014
Summary:
Decisions to install public bike-share programs are increasingly based on ridership estimations, but the topography’s influence on ridership is rarely quantified. This research evaluated a geographic information system-based approach for estimating ridership that accounted for hills. Double-weighting a slope relative to other measures produces a realistic representation of the bicycling experience. Because of their benefits, bike-share programs are increasingly of interest in cities and universities across the country. A bike-share program provides short-term use bicycles to the public through a system of unattended stations for their checkout and return. This research enhanced methodology developed in Philadelphia by developing and evaluating an additional indicator that accounts for hills. Several scenarios were tested, using Seattle as a case study, to find the best method to account for the notable impact of hills on bike riders’ choices and to evaluate the addition of slope to the calculation of bike-share demand.
Authors: Dr. Ed McCormack, Erica Wygonik, Daniel H. Rowe
Recommended Citation:
McCormack, E., & Rowe, D. H. (2014). Bike-share planning in cities with varied terrain. Institute of Transportation Engineers. ITE Journal, 84(7), 31.
Technical Report

An Examination of the Impact of Commercial Parking Utilization on Cyclist Behavior in Urban Environments

 
Download PDF  (2.70 MB)
Publication Date: 2016
Summary:

There is little research on the behavioral interaction between bicycle lanes and commercial vehicle loading zones (CVLZ) in the United States. These interactions are important to understand, to preempt increasing conflicts between truckers and bicyclists. In this study, a bicycling simulator experiment examined bicycle and truck interactions. The experiment was successfully completed by 48 participants. The bicycling simulator collected data regarding a participant’s velocity and lateral position. Three independent variables reflecting common engineering approaches were included in this experiment: pavement marking (L1: white lane markings with no supplemental pavement color, termed white lane markings, L2: white lane markings with solid green pavement applied on the conflict area, termed solid green, and L3: white lane markings with dashed green pavement applied on the conflict area, termed dashed green), signage (L1: No sign and L2: a truck warning sign), and truck maneuver (L1: no truck in CVLZ, L2: truck parked in CVLZ, and L3: truck pulling out of CVLZ).

The results showed that truck presence does have an effect on bicyclist’s performance, and this effect varies based on the engineering and design treatments employed. Of the three independent variables, truck maneuvering had the greatest impact by decreasing mean bicyclist velocity and increasing mean lateral position. It was also observed that when a truck was present in a CVLZ, bicyclists had a lower velocity and lower divergence from right-edge of bike lane on solid green pavement, and a higher divergence from the right-edge of bike lane was observed when a warning sign was present.

Authors: Dr. Anne GoodchildDr. Ed McCormackManali Sheth, David S. Hurwitz, Masoud Ghodrat Abadi
Recommended Citation:
Hurwitz, David S., Ed McCormack, Anne Goodchild, Masoud Ghodrat Abadi, and Manali Sheth. An Examination of the Impact of Commercial Parking Utilization on Cyclist Behavior in Urban Environments. 2018.

Dr. Giacomo Dalla Chiara

Dr. Giacomo Dalla Chiara
Dr. Giacomo Dalla Chiara
  • Research Associate, Urban Freight Lab
giacomod@uw.edu  |  206-685-0567  |  Wilson Ceramics Lab 111
  • Urban transportation
  • Urban logistics
  • Operations research
  • Effectiveness of ebikes for last-mile delivery
  • Ph.D., Engineering Systems and Design, Singapore University of Technology and Design (SUTD) (2018)
    Dissertation: Commercial Vehicles Parking in Congested Urban Areas
  • M.S., Statistics, Swiss Federal Institute of Technology (ETH) (2012)
    Thesis: Factor Approach to Forecasting with High-Dimensional Data
  • B.S., Economics and Business, Libera Università Internazionale degli Studi Sociali (LUISS) (2010)
    Thesis: A Monopolistic State in Competitive Markets

Dr. Giacomo Dalla Chiara is a Post-Doctoral Research Associate at the Urban Freight Lab. Before moving to Seattle, he was postdoctoral research fellow at the Singapore University of Technology and Design in 2018 and visiting scholar at the Massachusetts Institute of Technology in 2017. He holds a PhD in Engineering Systems from the Singapore University of Technology and Design (Singapore), a MSc in Statistics from ETH Zurich (Switzerland) and a BSc in Economics from LUISS University (Italy).

His research focuses on statistical methods applied to urban mobility problems. His work involves developing models and simulations to study and develop new sustainable urban logistics practices.

  • Guest Editor, Transportation Research Part A: Policy and Practice (Elsevier) (2021)
Presentation

Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas

 
Publication: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Urban freight deliveries are increasingly challenged in dense urban areas, particularly where delivery trucks are required to meet delivery time windows. Depending on the route characteristics, Electric Assist (EA) cargo bikes may serve as an economic and environmentally sustainable alternative to delivery trucks. In this paper, the cost trade-offs between a box delivery truck and an EA cargo bikes are compared. The independent and constant variables and assumptions used for a cost function comparison model are gathered through data collection, a literature review, and interviews. An observed route completed by a well-known courier company was used as a control and the same route was modeled with an EA cargo bike. It was found that a delivery truck was a more cost efficient vehicle type given the route and delivery characteristics present. Four separate delivery scenarios were modeled to explore how the distance between distribution center (DC) and neighborhood, a number of stops, distance between each stop, and a number of parcels per stop would impact the optimum vehicle type. The results from the models indicate that the route and delivery characteristics significantly influence whether a delivery truck or EA cargo bike is the best option.

Recommended Citation:
Butrina, Polina, Manali Sheth, Anne Goodchild, and Edward McCormack. Measuring the Cost Trade-Offs Between Electric-Assist Cargo Bikes and Delivery Trucks in Dense Urban Areas. No. 18-05401. 2018.