Skip to content
Paper

How to Improve Urban Delivery Routes’ Efficiency Considering Cruising for Parking Delays

 
Download PDF  (2.27 MB)
Publication Date: 2022
Summary:

This paper explores the value of providing parking availability data in urban environments for commercial vehicle deliveries. The research investigated how historic cruising and parking delay data can be leveraged to improve the routes of carriers in urban environments to increase cost efficiency. To do so, the research developed a methodology consisting of a travel time prediction model and a routing model to account for parking delay estimates. The method was applied both to a real-world case study to show its immediate application potential and to a synthetic data set to identify environments and route characteristics that would most benefit from considering this information.

Results from the real-world data set showed a mean total drive time savings of 1.5 percent. The synthetic data set showed a potential mean total drive time savings of 21.6 percent, with routes with fewer stops, a homogeneous spatial distribution, and a higher cruising time standard deviation showing the largest savings potential at up to 62.3 percent. The results demonstrated that higher visibility of curb activity for commercial vehicles can reduce time per vehicle spent in urban environments, which can decrease the impact on congestion and space use in cities.

Authors: Fiete KruteinDr. Giacomo Dalla ChiaraDr. Anne Goodchild, Todor Dimitrov (University of Washington Paul G. Allen School of Computer Science & Engineering)
Recommended Citation:
Krutein, Klaas Fiete and Dalla Chiara, Giacomo and Dimitrov, Todor and Goodchild, Anne, How to Improve Urban Delivery Routes' Efficiency Considering Cruising for Parking Delays. http://dx.doi.org/10.2139/ssrn.4183322
Article

Local Area Routes for Vehicle Routing Problems

 
Download PDF  (1.44 MB)
Publication: arXiv
Publication Date: 2022
Summary:
In this research we consider an approach for improving the efficiency and tightness of column generation (CG) methods for solving vehicle routing problems. This work builds upon recent work on Local Area (LA) routes. LA routes rely on pre-computing (prior to any call to pricing during CG) the lowest cost elementary sub-route (called an LA arc) for each tuple consisting of the following: (1) a customer to begin the LA arc, (2) a customer to end the LA arc, which is far from the first customer, (3) a small set of intermediate customers nearby the first customer. LA routes are constructed by concatenating LA arcs where the final customer in a given LA arc is the first customer in the subsequent LA arc. A Decremental State Space Relaxation (DSSR) method is used to construct the lowest reduced cost elementary route during the pricing step of CG. We demonstrate that LA route based solvers can be used to efficiently tighten the standard set cover vehicle routing relaxation using a variant of subset row inequalities (SRI). However, SRI are difficult to use in practice as they alter the structure of the pricing problem in a manner that makes pricing difficult. SRI in their simplest form state that the number of routes servicing two or three members of a given set of three customers cannot exceed one. We introduce LA-SRI, which in their simplest form state that the number of LA arcs (in routes in the solution) including two or more members of a set of three customers (excluding the final customer of the arc) cannot exceed one. We exploit the structure of LA arcs inside a Graph Generation based formulation to accelerate convergence of CG. We apply our LA-SRI to CVRP and demonstrate that we tighten the LP relaxation, often making it equal to the optimal integer solution, and solve the LP efficiently without altering the structure of the pricing problem.

 

Authors: Amelia Regan, Udayan Mandal, Julian Yarkony
Recommended Citation:
Mandal, U., Regan, A., & Yarkony, J. (2022). Local Area Subset Row Inequalities for Efficient Exact Vehicle Routing. arXiv preprint arXiv:2209.12963.
Article

Local Area Subset Row Inequalities for Efficient Exact Vehicle Routing

 
Download PDF  (1.44 MB)
Publication:  arXiv e-prints (2022): arXiv-2209
Publication Date: 2022
Summary:
In this research we consider an approach for improving the efficiency and tightness of column generation (CG) methods for solving vehicle routing problems. This work builds upon recent work on Local Area (LA) routes. LA routes rely on pre-computing (prior to any call to pricing during CG) the lowest cost elementary sub-route (called an LA arc) for each tuple consisting of the following: (1) a customer to begin the LA arc, (2) a customer to end the LA arc, which is far from the first customer, (3) a small set of intermediate customers nearby the first customer. LA routes are constructed by concatenating LA arcs where the final customer in a given LA arc is the first customer in the subsequent LA arc. A Decremental State Space Relaxation (DSSR) method is used to construct the lowest reduced cost elementary route during the pricing step of CG. We demonstrate that LA route based solvers can be used to efficiently tighten the standard set cover vehicle routing relaxation using a variant of subset row inequalities (SRI). However, SRI are difficult to use in practice as they alter the structure of the pricing problem in a manner that makes pricing difficult. SRI in their simplest form state that the number of routes servicing two or three members of a given set of three customers cannot exceed one. We introduce LA-SRI, which in their simplest form state that the number of LA arcs (in routes in the solution) including two or more members of a set of three customers (excluding the final customer of the arc) cannot exceed one. We exploit the structure of LA arcs inside a Graph Generation based formulation to accelerate convergence of CG. We apply our LA-SRI to CVRP and demonstrate that we tighten the LP relaxation, often making it equal to the optimal integer solution, and solve the LP efficiently without altering the structure of the pricing problem.

 

Authors: Amelia Regan, Udayan Mandal, Julian Yarkony
Recommended Citation:
Mandal, U., Regan, A., & Yarkony, J. (2022). Local Area Subset Row Inequalities for Efficient Exact Vehicle Routing. arXiv preprint arXiv:2209.12963.