
Local Area Routes for Vehicle Routing Problems

Udayan Mandal 1, Amelia Regan 1, Julian Yarkony 1, 2

1University of California, Irvine, CA
2 Laminaar Optimization Research Group, La Jolla, CA

July 2022

Abstract

We consider an approach for improving the efficiency of column generation (CG) methods for solving
vehicle routing problems. We introduce Local Area (LA) route relaxations, an alternative/complement to
the commonly used ng-route relaxations and Decremental State Space Relaxations (DSSR) inside of CG
formulations. LA routes are a subset of ng-routes and a super-set of elementary routes. Normally, the
pricing stage of CG must produce elementary routes, which are routes without repeated customers, using
processes which can be computationally expensive. Non-elementary routes visit at least one customer
more than once, creating a cycle. LA routes relax the constraint of being an elementary route in such
a manner as to permit efficient pricing. LA routes are best understood in terms of ng-route relaxations.
Ng-routes are routes which are permitted to have non-localized cycles in space; this means that at least
one intermediate customer (called a breaker) in the cycle must consider the starting customer in the
cycle to be spatially far away. LA routes are described using a set of special indexes corresponding to
customers on the route ordered from the start to the end of the route. LA route relaxations further
restrict the set of permitted cycles beyond that of ng-routes by additionally enforcing that the breaker
must be a located at a special index where the set of special indexes is defined recursively as follows. The
first special index in the route is at index 1 meaning that it is associated with the first customer in the
route. The k’th special index corresponds to the first customer after the k-1’th special index, that is not
considered to be a neighbor of (considered spatially far from) the customer located at the k-1’th special
index. We demonstrate that LA route relaxations can significantly improve the computational speed of
pricing when compared to the standard DSSR.

1 Introduction

In this document we introduce a new tool called Local Area routes (LA routes), which serves as a component in
exact column generation (CG) solutions (Barnhart et al. 1996, Desrochers et al. 1992, Gilmore and Gomory
1961) to vehicle routing problems. For purposes of exposition for LA routes, we define the Capacitated
Vehicle Routing Problem (CVRP) below, which is a specific vehicle routing problem, though our approach
is not limited to such problems. CVRP defines a problem consisting of a starting and ending depot, a set
of customers with integer demands, and a set of homogeneous vehicles with integer capacity. The customers
and the starting/ending depot are positioned at various locations in two-dimensional space. Each vehicle
starts and ends at the depot, and does not service more demand than its capacity. We select a set of routes
so as to minimize total travel distance (sum of the travel distances of the individual routes) subject to the
constraint that all customers are serviced.

Exact solutions to vehicle routing problems are traditionally formulated as weighted set cover problems
where each customer must be covered and routes describe feasible sets with the cost of a set being the cost
of the route. This relaxation is a much tighter relaxation than that of compact forms(Desrochers et al. 1992,
Costa et al. 2019). Since the number of such routes grows exponentially in the number of customers, CG
methods are applied so that the set of routes need not be explicitly enumerated. CG methods imitate the
revised simplex approach and generate primal variables during pricing (called columns) on demand, which is
tackled as a combinatorial optimization problem.

In such problems, solving the CG pricing problem to generate routes for the CG restricted master problem
(RMP) is especially problematic since the routes produced must be elementary (meaning that no customer
is visited more than once in the route). We seek to ease solving the pricing problem by producing a class of
routes known as Local Area (LA) routes that are easy to price over, and can be used to efficiently generate
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elementary routes when used inside Decremental State Space Relaxation (DSSR) (Righini and Salani 2008,
2009).

An LA route is a route in which elementarity is relaxed, but not by much due to other constraints. The
set of LA routes does not include routes with cycles localized in space; where a cycle is a section of a route
consisting of the same customer at the start and end of the section. Localized cycles in space are cycles
consisting of customers which are all spatially close to one another. LA routes are a subset of the popular
ng-routes (Baldacci et al. 2011) (and a superset of elementary routes). Ng-routes are a part of many efficient
and modern CG algorithms for vehicle routing problems (Costa et al. 2019). Both LA routes and ng-routes
can be used inside DSSR to produce exact solutions to pricing over elementary routes.

No optimal integer solution of the set cover formulation over non-elementary routes that are otherwise
feasible (obey capacity restriction) visits the same customer more than once (either within a route or over
multiple routes) since by removing that customer we could decrease the cost of the solution, while preserving
feasibility. However, an optimal fractional solution may use such routes. Hence solving optimization over
a more restrictive subset of routes is beneficial if we cannot use elementary routes for computational rea-
sons. Solving the set cover formulation over a class of relaxed routes can be used inside a branch-and-price
formulation to ensure an exact solution to the set cover formulation (Barnhart et al. 1996).

1.1 Types of Routes

We now consider various classes of routes that are defined in the CVRP literature in addition to LA routes.
To assist in this discussion we consider the following graph upon which such routes are defined. Consider
a directed acyclic graph G with vertex set V and edge set E. Vertices are indexed by i or j and edges are
indexed by ij. We define the starting depot to be the source, denoted by −1 and the ending depot to be
the sink, denoted by −2. The starting/ending depot are the same place but we treat them separately for
convenience.

Each node except (−1,−2) is associated with a customer and the remaining capacity in the vehicle. A
path reaching node i = (u, d) indicates that prior to servicing u that there are d units of capacity remaining in
the vehicle. We define du to be the demand required by customer u. We connect i = (u, d) to j = (v, d− du)
for each pair of customers u, v s.t. u 6= v, d− du ≥ dv to form an edge with weight equal to the distance from
u to v. Traversing this edge indicates that the vehicle leaves u with d− du units of capacity remaining and
travels immediately to customer v. We connect −1 to (u, d0), where d0 is the vehicle capacity, to form an
edge with weight equal to the distance from the depot to u. Traversing this edge indicates that u is the first
customer visited on the route. We connect each node (u, d) (for du ≤ d) to the sink −2 to form edges with
weights equal to the distance from u to the depot. Traversing any one of these edges indicates that after
servicing u the vehicle heads to the ending depot, terminating its route. Each elementary path starting at
the source and ending at the sink corresponds to an elementary route. A path is elementary if there is no
more than one node corresponding to a given customer on the path. Each path has an associated cost equal
to the sum of weights of edges on the path.

We use P to denote the set of paths starting at −1 and ending at −2. Each such path in P describes
a route that may not be elementary but does not service more demand than available capacity and starts
and ends at the depot. Such paths are referred to as resource feasible. We use Vp to denote the set of nodes
excluding the source and sink in path p. We use upk to denote the customer associated with the k’th node
excluding the source and the sink in path p. We now describe various classes of routes.

• Elementary Routes:

We define Ω to be the set of all elementary routes, which are paths in P that visit no customer in the
path more than once. We define Ω formally using the following equation, with exposition afterwards.

Ω = {p ∈ P ;upk1 6= upk2 ∀k1, k2 s.t.(0 < k1 < k2 ≤ |Vp|) (1)

Ω consists of any path in P that does not visit the same customer at k1 and k2, where k1 and k2 (k1

comes before k2) are indexes of nodes on the path excluding the source and the sink.

• Q-routes:

Q-routes are routes which can not have cycles of length 1. This means that a route visiting customer
1, followed by customer 2, and then visiting customer 1 again is forbidden. However, a route visiting
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customer 1, then visiting customer 2, then visiting customer 3, and then visiting customer 1 after is not
forbidden. Q-routes were introduced by Christofides, Mingozzi and Toth in order to aid CG in solving
vehicle routing problems (Christofides et al. 1981).

We use Ω1 to denote the set of Q-Routes, which is defined as follows.

Ω1 = {p ∈ P ;uk 6= uk+2 ∀k s.t.(0 < k, k + 2 ≤ |Vp|) (2)

Q-routes can be generalized as KQ-routes where KQ-routes enforce that a customer can only be visited
again after visiting at least K intermediate customers. Observe that Q-routes correspond to KQ-routes
with K=1. We use the term KQ to draw the link to Q-routes, but this terminology is not standard in
the literature.

We use ΩK to denote the set of KQ-Routes, which is defined as follows.

ΩK = {p ∈ P ;upk1 6= upk2 ∀k1, k2 s.t.(0 < k1 < k2 ≤ min(|Vp|, k1 +K)) (3)

• ng-routes:

Ng-routes are highly celebrated and used by many researchers (Baldacci et al. 2011). Each customer
is associated with a set of customers which are close in proximity to that customer (also known as
neighbors of that customer). This set of neighbors of u is denoted Mu, where u represents the customer
the set is associated with. Ng-routes ban spatially localized cycles by enforcing that a cycle can only
exist starting and ending at u if there is an intermediate customer v for which u /∈Mv.

• LA-routes:

Local Area routes (LA routes) are the topic of this paper. LA routes are a subset of ng-routes but
further restrict cycles. Thus the CVRP set cover LP relaxation over LA routes is no looser than, and
in fact potentially tighter than that over ng-routes. LA routes are defined using LA neighborhood set
Nu (for each customer u) where Nu consists of spatially nearby customers to u. The LA neighborhood
sets Nu are computationally easier to consider than Mu and hence can be larger than Mu. LA routes
are defined with a set of special indexes associated with each path p. The set of special indexes in a
path p is defined recursively from the start of the route, with the first special index being equal to one.
Let qpj be the index of the j’th special index (meaning qp1 = 1). The j’th special index corresponds to
the first customer after qpj−1 that is not considered to be the an LA neighbor of up

qpj−1
. We define the

set of special indexes by defining the qpj terms recursively as follows.

qpj ← min
k>qpj−1

up
k /∈Nv

k ∀j > 1; where upqj−1
= v (4)

qp1 = 1

A resource feasible path (excluding elementarity) is an LA-route if for any cycle in that path start-
ing/ending at customer u, there is an intermediate special index with associated customer v for which
u /∈ Mv (note the use of Mv not Nv here). Note that the difference between an ng-route and an LA
route is understood by building on the statement “Ng-routes ban spatially localized cycles by enforcing
that a cycle can only exist starting and ending at u if there is an intermediate customer v for which
u /∈ Mv.” In contrast LA-routes ban spatially localized cycles by enforcing that a cycle can only exist
starting and ending at u if there is an intermediate customer v at a special index for which u /∈Mv.

1.2 Overview of Efficient Pricing over LA Routes

LA routes possess mathematical properties that make pricing over them efficient. We now provide an overview
of efficient pricing over LA routes, which exploits the following three properties.

1. For each u ∈ N,w ∈ N̂ , v ∈ N̂ , N̂ ⊆ Nu (where N is the set of all customers) we can compute the
lowest cost elementary path starting at w ending at v and visiting all customers in N̂ . The order of
customers in this path does not change as a function of the dual variables. The size of the sets Nu is
selected to be small enough (10-20) to permit all such terms to be computed in advance of CG (not at
each iteration of CG). This is done as a dynamic program and detailed in Section 4.3.
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2. Given any u ∈ N , v ∈ (N ∪ −2)− (Nu ∪ u), N̂ ⊆ Nu we can compute the lowest cost elementary path
starting at u ending at v and servicing all customers in N̂ using the computed terms in bullet point
1. The order of customers in this path does not change as a function of the dual variables. This is
computed once at the beginning of CG, not at each iteration of CG.

3. Given any u ∈ N, v ∈ (N ∪ −2) − (Nu ∪ u), d ≥ du we can at each iteration of CG during pricing,
efficiently compute the lowest reduced cost elementary path starting at u, ending at v, servicing only
intermediate customers in Nu and servicing d units of demand (including u not v). The membership
and the ordering (given the membership, which is the customers included in the path) of this path does
not change as a function of the dual variables (by bullet point 2).

We now discuss briefly how pricing is done over LA routes when the ng-neighborhood sets Mu are empty,
and then we extend this to the case where Mu sets are not empty. When the Mu sets are not empty, we can
integrate LA route relaxations with DSSR. Greater exposition is provided in later sections of this document.
To assist in this discussion we introduce a directed acyclic graph with nodes identical to the previous graph.
As in our previous graph each node except (−1,−2) is associated with a customer and the remaining capacity
in the vehicle. As before, a path reaching node i = (u, d) indicates that prior to servicing u there are d units
of capacity remaining in the vehicle. We connect i = (u, d1) to j = (v, d2) for u ∈ N, v ∈ N − (Nu ∪ u),
s.t. d1 − du ≥ d2 ≥ dv to form an edge with weight equal to the reduced cost of the lowest reduced cost
elementary path servicing exactly d1 − d2 units of demand (including u, not v), starting at u and ending
at v, and where all intermediate customers (denoted Nij) lie in Nu. Traversing this edge indicates that the
vehicle leaves u with d1−du units of capacity remaining and travels to customer v servicing d1−du−d2 units
of intermediate demand, and visits the intermediate customers Nij in the optimal order (where optimality
corresponds to minimizing the total cost). Note that the optimal ordering of customers for any such edge is
not a function of d1,d2 but only d1−d2 and hence does not need to be computed for each d1, d2 combination.
This edge is nonexistent if no such elementary path exists. In the remainder of this section when no such
path exists then the edge is not created, in this and subsequent cases.

We connect −1 to (u, d0), where d0 is the vehicle capacity, to form an edge with weight equal to the
distance from the depot to u. Traversing this edge indicates that u is the first customer visited on the route.
We connect each node (u, d) (for du ≤ d) to the sink −2 to form an edge with weight equal to the reduced
cost of the lowest reduced cost elementary path starting at u, ending at the depot, and servicing up to d
units of demand (including u), where all intermediate customers (denoted Ni,−2) lie in Nu. Traversing any
one of these edges indicates that after servicing u, the vehicle heads to the ending depot, terminating its
route and servicing all customers in Ni,−2 in the optimal order.

The lowest reduced cost elementary route can be represented by a path in this graph, as well as other
paths which need not be of lowest reduced cost. However, large numbers of paths containing localized cycles
in space can not be represented and the set of feasible paths decreases as the sizes of Nu sets increase. All
paths from the source to the sink correspond to LA routes when all Mu sets are empty. In order to permit the
use of Dijkstra’s algorithm for computing the lowest reduced cost path, which is computationally faster than
the Bellman-Ford algorithm, edge weights need to be non-negative. Thus we offset edge weights by constant
η weighted by the the change in demand between nodes (with nodes −1,−2 having demands 0 respectively)
serviced on the edge so as to ensure weights are non-negative. Thus we add η ∗ (d1 − d2) to the edge weight
between (u, d1) and (v, d2) where the source and sink are referenced as (−1, d0), (−2, 0) respectively. Here
−η is defined to be the minimizer of the reduced cost of the edge divided by the amount of demand serviced
(over all edges), thus −η ∗ d0 is a lower bound on the reduced cost of the route. By subtracting ηd0 from the
cost of any path we get the associated reduced cost. The optimal route is not changed by this alteration to
the weights, since all paths have costs offset by a constant value ηd0.

DSSR can then be applied to the Mu neighbor sets (not the Nu neighbor sets) in order to enforce that the
route generated above is elementary. In such cases, nodes become associated with (u,M1, d) terms, where
M1 ⊆ Mu and being at node u,M1, d indicates that the nascent route is at customer u with d units of
demand remaining (prior to servicing u) and has serviced each customer in M1 at least once. Edge weights
are suitably adjusted given edges between nodes. For example, we connect each node (u,M1, d) (for du ≤ d)
to the sink −2 to form edges with weights equal to the reduced cost of the lowest reduced cost elementary
path starting at u, ending at the depot, and servicing up to d units of demand (including u) and where all
intermediate customers lie in Nu −M1. We connect each node (u,M1, d1) to another node (v,M2, d2) with
edge weight corresponding to the cost of the lowest reduced cost path starting at u, ending at v, consuming
demand d1 − d2 (excluding v and including u), servicing some customers in the set Nu −M1, servicing no
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customers in the set Mv−M2, and servicing all customers in the set M2−M1. More about these connections
are described later in the document in Section 4.2.

To assist DSSR we use A∗ (Dechter and Pearl 1985) and dominance criteria in labels (Desaulniers et al.
2005) so as to limit the number of nodes expanded at each iteration of A∗, thus decreasing the computation
time of each iteration of DSSR. This is done by using the cost of the lowest reduced cost path from any given
u, d (computed when Mv sets are empty for all customers v) to the sink to describe an admissible heuristic
(Dechter and Pearl 1985) for each node u,M1 ⊆ Mu, d. Using the Bellman-Ford algorithm we compute the
shortest path from each node to the sink when all Mu sets are empty.

1.3 Outline of Paper

We organize this document as follows. In Section 2 we review related literature on pricing in column genera-
tion for vehicle routing problems. In Section 3 we discuss CVRP and its solution via Column Generation. In
Section 4 we derive pricing from an integer linear programming (ILP) formulation for LA routes. This pricing
procedure involved a simple shortest path calculation which we then integrate into Decremental State Space
Relaxation (Righini and Salani 2008) to produce elementary routes. In Section 5 we provide experimental
validation of our approach. In Section 6 we conclude and discuss extensions to our research.

We apply our LA route solution to CVRP, but our method is applicable to any combinatorial optimization
problem solved by Column Generation (CG) where pricing is an elementary resource constrained shortest
path problem.

2 Literature Review

2.1 Decremental State Space Relaxation/ng-routes

Decremental State Space Relaxation (DSSR)(Righini and Salani 2008, 2009) is an iterative technique used
to solve elementary resource constrained shortest path problems. These problems correspond to the pricing
problems generated over the course of Column Generation (CG) for vehicle routing problems (and other
problems in operations research). DSSR alternates between (1) generating the lowest reduced cost path
partially relaxing elementarity (and enforcing resource feasibility, meaning that the path is feasible with
respect to any resource constraints) and (2) augmenting the constraints enforced so as to prevent the current
non-elementary solution from being regenerated. Step (1) produces the path with the lowest reduced cost
from a super set of the set of elementary routes; this set decreases in size as DSSR proceeds. Termination of
DSSR is achieved when the generated path is elementary at which point this path is guaranteed to be the
lowest reduced cost elementary route. In practice DSSR does not need to generate all such constraints. DSSR
encodes constraints by associating each customer u with a set of the other customers called its neighborhood
which is denoted as Mu. The path generated at a given iteration of DSSR does not include any cycle
satisfying the following property: The cycle starts and ends at u, and u ∈Mv for all intermediate customers v.
Generating such a path in step (1) is tackled as a dynamic programming problem, which can be alternatively
solved using labeling algorithms (Desaulniers et al. 2005). Given a non-elementary path generated in (1),
a cycle is identified; then in step (2) the neighborhood sets of all intermediate customers are augmented
to include the starting/ending customer of the cycle. The solution time of the labeling algorithm can grow
exponentially as a function of the maximum size of any neighborhood. Specifically for the Capacitated
Vehicle Routing Problem (CVRP) the time complexity of step (1) scales on the order of |N |d0

∑
u∈N 2|Mu|

where N is the set of customers and d0 is the capacity of a vehicle. In order to not needlessly expand the
neighborhood sizes and hence the time used by DSSR, DSSR at step (2) can select the cycle intelligently.
For example, DSSR can select the cycle where the augmentation of neighborhoods results in smallest increase
in |N |d0

∑
u∈N 2|Mu|.

Ng-routes are routes not containing cycles localized in space (cycles localized in space are cycles where all
customers are spatially close together). The ng-route relaxation (Baldacci et al. 2011, 2012) solves the master
problem (MP) over a super set of elementary routes known as ng-routes. Solving the MP over ng-routes
is easier than solving the MP over elementary routes since pricing over ng-routes is less computationally
demanding than pricing over elementary routes. The MP over ng-routes is empirically not much looser than
the MP over elementary routes (Baldacci et al. 2011). The ng-route relaxation can be understood as an
adaptation of the ideas of DSSR to prevent the generation of routes with spatially localized cycles in CG.
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The ng-route relaxation can be understood as DSSR where we do not grow the set on neighbors but instead
initialize the neighbors of each given customer to be the set of customers it is spatially nearby.

The popular ng-route relaxation was introduced by Baldacci, Mingozzi, Roberti in 2011 and quickly
became widely used for solving vehicle routing problems of various kinds (Baldacci et al. 2011, 2012). See
for example (Baldacci et al. 2013, Bartolini et al. 2013, Contardo and Martinelli 2014, Gauvin et al. 2014,
Spliet and Desaulniers 2015, Andelmin and Bartolini 2017, Pecin et al. 2017b,a, Breunig et al. 2019, Duman
et al. 2021). Martinelli et al proposed a method of combining DSSR with ng-routes to examine routes with
ng-neighbor set sizes up to 64 and to solve CVRP instances with up to 200 customers (Martinelli et al. 2014).

2.2 General Dual Stabilization

The number of iterations of CG required to optimally solve the MP can be dramatically decreased by
intelligently altering the sequence of dual solutions generated (Pessoa et al. 2018, Du Merle et al. 1999) over
the course of CG. Such approaches, called dual stabilization, can be written as seeking to maximize the
Lagrangian bound at each iteration of CG (Geoffrion 1974). The Lagrangian bound is a lower bound on the
optimal solution objective to the MP that can be easily generated at each iteration of CG. In CVRP problems
the Lagrangian bound is the LP value of the restricted master problem (RMP) plus the reduced cost of the
lowest reduced cost column times the number of customers. Observe that when no negative reduced cost
columns exist, the Lagrangian bound is simply the LP value of the RMP. The Lagrangian bound is a concave
function of the dual variable vector. The current columns in the RMP provide for a good approximation
of the Lagrangian bound nearby dual solutions generated thus far but not regarding distant dual solutions.
This motivates the idea of attacking the maximization of the Lagrangian bound in a manner akin to gradient
ascent. Specifically we trade off maximizing the objective of the RMP, and having the produced dual solution
be close to the dual solution with the greatest Lagrangian bound identified thus far (called the incumbent
solution).

A simple but effective version of this idea is the the box-step method of (Marsten et al. 1975), which
maximizes the Lagrangian bound at each iteration of CG s.t. the dual solution does not leave a bounding box
around the incumbent solution. Given the new solution, the lowest reduced cost column is generated and if
the associated Lagrangian bound is greater than that of the incumbent then the incumbent is updated. The
simple approach of (Pessoa et al. 2018) takes the weighted combination of the incumbent solution and the
solution to the RMP and performs pricing on that weighted combination. Du Merle et al formalized the idea
of stabilized CG in their 1999 paper of that name (Du Merle et al. 1999). That paper proposed a 3-piecewise
linear penalty function to stabilize CG. Ben Amor and Desrosiers later proposed a 5-piecewise linear penalty
function for improved stabilization (Ben Amor and Desrosiers 2006). Shortly after, Oukil et al used the same
framework to attack highly degenerate instances of multiple-depot vehicle scheduling problems (Oukil et al.
2007). Ben Amor et al later proposed a general framework for stabilized CG algorithms in which a stability
center is chosen as an estimate of the optimal dual solution (Ben Amor et al. 2009). Gonzio et al proposed a
primal-dual CG method in which the sub-optimal solutions of the RMP are obtained using an interior point
solver that is proposed in an earlier paper by the first author (Gondzio 1995). They examine their solution
method relative to standard CG and the analytic center cutting plane method proposed by Babonneau et al.
(Babonneau et al. 2006, 2007). They found that while standard CG is efficient for small problem instances,
the primal-dual CG method performed better than standard CG on larger problems (Gondzio et al. 2013).

2.3 Dual Optimal Inequalities

Dual optimal inequalities (DOI) (Ben Amor et al. 2006) provide easily computed provable bounds on the space
where the optimal dual solution to the MP lies. In this manner, the use of DOI reduces the size of the dual
space that CG must search over and hence the number of iterations of CG. Dual constraints corresponding
to DOI are typically defined over one or a small number of variables and hence do not significantly increase
the solution time of the RMP (though exceptions exist (Haghani et al. 2021)). DOI are problem instance or
problem domain specific. One such example of DOI is in problems such as CVRP or cutting stock where the
cost of any column is not increased by removing customers (or rolls in the cutting stock problem (Gilmore and
Gomory 1961, Lübbecke and Desrosiers 2005)) from the column. Thus equality constraints enforcing that
each customer is covered at least once (for the CVRP example) can be replaced by inequality constraints since
the cost of a route is not increased by removing a customer from the route. In the dual representation, this
replacement corresponds to enforcing that the dual variable corresponding to the constraint that a customer
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must be covered is non-negative.
For the cutting stock problem, we can swap a roll of higher length for one of lower length without altering

the feasibility of a column (alternatively known as a pattern). Thus, it can be established that the dual
variables associated with rolls, when ordered by non-decreasing roll size must be non-decreasing (Ben Amor
et al. 2006). In the primal representation, these bounds correspond to swap operations permitting a roll of
a given length to be swapped for one of smaller length.

In (Haghani et al. 2021), it is observed that the improvement in the objective corresponding to removing
a customer from a column in CVRP (and also the Single Source Capacitated Facility Location Problem
(SSCFLP)) can be bounded. Thus primal operations corresponding to removing customers from columns are
provided. In the dual representation, these operations enforce that the reduced cost of a column should not
trivially become negative if customers are removed from it. In the case of SSCFLP, for a given column, this
property states that the dual contribution to the reduced cost for a given customer (included in the column)
is treated as the maximum of the following two values: the dual variable for that customer, or the distance
from the customer to the facility of that column.

In (Haghani et al. 2021) it is observed that the dual variables associated with constraints in problems
embedded in a metric space should change smoothly over that space. This is because the dual variable
associated with a given customer roughly describes how much larger the objective of the LP is as a consequence
of the given customer existing. Thus, nearby customers should not normally have vastly different dual
variables. Specifically (Haghani et al. 2021) shows that in CVRP for any given pair of customers u, v where
u has demand no less than v, the dual variable of u plus two times the distance from u to v is no less than
the dual variable of v. In the primal form, any such pair corresponds to slack variables that provide for swap
operations between customers.This is extended in (Yarkony et al. 2021b) to permit routes to cover customers
nearby existing customers on the route at low cost.

2.4 Graph Generation

Graph Generation (GG) (Yarkony et al. 2021a) is an approach to solving the MP, which employs a more
computationally intensive RMP than in standard CG at each iteration of CG. GG is implemented with the
aim of decreasing the number of iterations of CG required. As in other dual stabilization approaches, pricing
is unmodified. GG associates each column l generated during CG with a directed acyclic graph. On this
graph, every path from the source to the sink corresponds to a feasible column where the total cost along the
edges in the path is the associated cost of the column. Edges are associated with vectors that when summed
for a given path from source to sink produce the vector in the constraint matrix corresponding to the path.
The set of columns corresponding to paths from the source to the sink can be understood as columns related
to the column l by a problem instance specific measure. This set is referred to as the family of column l and
includes l.

The construction of graphs is problem domain/problem instance specific. The use of larger graphs, which
have the possibility of containing larger and more diverse sets of columns, has the possibility to decrease the
number of iterations of CG. However the use of larger graphs also leads to increasing computational difficulty
of the RMP at each iteration of CG. For problems where pricing (not solving the RMP) is the computational
bottleneck, GG outperforms standard CG because GG requires far fewer iterations than standard CG.

GG can be understood as a generalization of (De Carvalho 2002), which introduces a compact formulation
called the arc based formulation for bin-packing/cutting stock problems that is exactly as tight as the standard
CG formulation. GG extends the use of such arc based models to cover more general classes of problems by
introducing graphs associated with subsets of the columns. In the context of CVRP, the graph corresponds
to the standard compact formulation of CVRP except that there is an ordering of customers (which varies
between graphs) and a column is feasible if it does not violate this order. Thus if u comes before v in the
order associated with column l then no route can be generated in the graph associated with l where v comes
before u.

(Yarkony et al. 2021a) observed that customers that are in similar physical locations should be in similar
positions on the ordered list so that a route permitted by the graph can service these customers without
leaving the immediate area containing all of these customers prematurely. Thus (Yarkony et al. 2021a)
generates the ordering associated with column l by iteratively adding each given customer u behind the
existing customer in the route l nearest u.

GG can have a computational bottleneck at solving the RMP when there are numerous graphs or the
graphs are large (many nodes and edges). To this end, Principled Graph Management (PGM) (Yarkony
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and Regan 2022) constructs a sufficient set of edges s.t. optimization over those edges provides the optimal
solution to the RMP. PGM alternates between solving the RMP over a subset of the edges in the graphs,
and adding to the subset any edges associated with the lowest reduced cost path from the source to the sink
(which is the lowest reduced cost column associated with the graph) in each graph, which can be computed
as a simple dynamic program. Alternatively, edges on paths with near lowest reduced cost can be added and
such edges can be efficiently identified using shortest path algorithms. PGM terminates when the optimal
solution to the GG RMP is produced, which is achieved when no negative reduced cost columns exist in the
families associated with the graphs.

3 Column Generation for Capacitated Vehicle Routing

We now consider the Capacitated Vehicle Routing Problem (CVRP) which is defined informally as follows.
We are given a set of customers with integer demands, a number of homogeneous vehicles with common
capacity, and a depot embedded in a metric space. We seek to cover the customers with a set of ordered lists
(of customers) called routes, which are each serviced by a unique vehicle so as to minimize the total distance
traveled while ensuring that no vehicle services more demand than it has capacity. Vehicles start and end at
the depot.

We now describe CVRP formally. We use N to denote the set of customers, which we index by u.
We use N+ to denote N augmented with the starting/ending depot denoted (−1,−2) respectively. The
starting/ending depot are in the same place physically but are treated with different notation for convenience.
We denote the set of all feasible routes with Ω, which we index by l, and is typically too large to enumerate
much less consider in optimization. We use d0 to denote the capacity of a vehicle and D to denote the set
of integers ranging (inclusive) from 0 to d0. Each customer is associated with a positive integer demand
(the demand of the starting/ending depot is zero). We describe the mapping of customers to routes using
aul ∈ {0, 1} where aul = 1 if route l services customer u for any u ∈ N . For any u ∈ N+, v ∈ N+, d ∈ D
combination we set auvdl = 1 for route l IFF the vehicle leaves u with d units of capacity remaining and
departs immediately for v. Note that auvdl is only defined for d0 − du ≥ d ≥ dv since we must have dv units
of capacity remaining to service v and must have used du units of capacity to service u. Similarly the vehicle
can not leave the ending depot or enter the starting depot and hence auvdl terms are not defined for those
cases. The demand of the starting/ending depot is zero. The set of u, v, d that exist are denoted Q. For any
pair of u, v which lie in N+ the cost to travel from u to v is denoted cuv and is the distance between u, v.
The cost of a route is denoted cl, which is defined as the total distance traveled. We express cl formally as
follows in terms of cuv and auvdl.

cl =
∑
uvd∈Q

cuvauvdl ∀l ∈ Ω (5)

We write the necessary/sufficient characterization of feasible routes as follows.

• The route starts at the starting depot.∑
u∈N

a−1,u,d0,l = 1 ∀l ∈ Ω (6)

• The route ends at the ending depot. ∑
u∈N

d0−du≥d≥0

au,−2,d,l = 1 ∀l ∈ Ω (7)

• The route services no customer more than once meaning that aul ∈ {0, 1} where aul is defined in terms
of auvdl ∈ {0, 1} terms as follows.

aul =
∑
v∈N+

d0−du≥d≥dv

auvdl ∀l ∈ Ω, u ∈ N (8)
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• A vehicle must leave a customer u with the amount of resource it entered with minus du.∑
v∈N+

(v,u,d)∈Q

avudl =
∑
v∈N+

(u,v,d−du)∈Q

auv,d−du,l ∀l ∈ Ω, u ∈ N, d ≥ du (9)

As an aside, observe that (9) makes (7) redundant.

Given our definition of Ω the standard CVRP LP relaxation is written using decision variables θl where
θl = 1 if route l is used and otherwise θl = 0. We write the minimum weight set cover LP relaxation over Ω
given K vehicles as Ψ(Ω) below, with dual variables written in [].

Ψ(Ω) = min
θ≥0

∑
l∈Ω

clθl (10a)∑
l∈Ω

aulθl ≥ 1 ∀u ∈ N [πu] (10b)∑
l∈Ω

θl ≤ K [−π0] (10c)

In (10a) we minimize the total cost of the routes used. In (10b) we ensure that each customer is covered
(serviced) at least once. In (10c) we ensure that no more than K vehicles are used. Though an optimal
solution exists covering each customer exactly once, the use of an ≥ instead of = in (10b) is known to
accelerate common Column Generation (CG) solutions to (10) (which is called the master problem or MP),
without loosening the LP relaxation, by acting as a dual optimal inequality (Desrosiers and Lübbecke 2005).

Since the cardinality of the set of routes Ω can grow exponentially in the number of customers we cannot
trivially solve (10). Instead CG (Barnhart et al. 1996, Desrochers et al. 1992) is employed to solve (10). CG
constructs a sufficient subset of Ω denoted ΩR s.t. solving (10) over ΩR provides an optimal solution to (10)
over Ω. To construct ΩR, we iterate between (1) solving (10) over ΩR, which is referred to as the restricted
master problem (RMP) and written as Ψ(ΩR) and (2) identifying at least one l ∈ Ω with negative reduced
cost, which are then added to ΩR. Typically the lowest reduced cost column (member of Ω) is generated.
We write the selection of this column as optimization below using c̄l to denote the reduced cost of l ∈ Ω.

min
l∈Ω

c̄l (11a)

c̄l = cl + π0 −
∑
u∈N

aulπu ∀l ∈ Ω (11b)

The operation in (11) is referred to as pricing. CG terminates when pricing proves no column with negative
reduced cost exists in Ω. This certifies that CG has produced the optimal solution to (10). We initialize ΩR
with columns corresponding to a heuristically generated feasible integer solution or using artificial variables
that have prohibitively high cost to use in an optimal solution but can be used to create a feasible solution.
This can be done by creating |N | variables each of which covers a customer u with prohibitively high cost
but without using a vehicle. In Algorithm 1 we describe CG in pseudo-code.

We now consider pricing as an binary integer linear program where each binary decision variable xu, xuvd
correspond to variables aul, auvdl respectively enforcing (6)-(9). Below we define c̄uv to be the cost of traveling
from u to v minus the additional cost corresponding to dual variables so that c̄l =

∑
(uvd)∈Q c̄uvauvdl, ∀l ∈

Ω, which facilitates the efficient writing of pricing.

c̄uv = cuv − πv ∀(uvd) ∈ Q, v 6= −2 (12a)

c̄uv = cuv + π0 ∀(uvd) ∈ Q, v = −2 (12b)

Algorithm 1 Basic Column Generation

1: ΩR ← from user
2: repeat
3: Solve for Ψ(ΩR), generating θ, π using (10)
4: l∗ ← minl∈Ω c̄l
5: ΩR ← ΩR ∪ l∗
6: until c̄l∗ ≥ 0
7: Return last θ generated.
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We write the computation of the lowest reduced cost route below in the form of an integer linear program
(ILP), which we annotate after presenting the ILP.

min
x∈{0,1}

∑
(uvd)∈Q

c̄uvxuvd (13a)

∑
(−1,v,d)∈Q

x−1vd = 1 (13b)

∑
(uvd)∈Q

xuvd ≤ 1 ∀u ∈ N (13c)

∑
(uvd)∈Q

xuvd =
∑

(v,u,d−dv)∈Q

xv,u,d−dv ∀v ∈ N, d0 ≥ d ≥ dv (13d)

In (13a) we minimize the reduced cost of the generated route. The constraints in (13) correspond to
(6)-(9). In (13b) we enforce that the vehicle leaves the starting depot exactly once. In (13c) we ensure that a
customer is visited no more than once. In (13d) we enforce that the vehicle leaves each customer it services
with the appropriate amount of demand.

We should note that the solution of (13) is not typically solved as an ILP but instead treated as a resource
constrained shortest path problem and tackled with a labeling algorithm (Costa et al. 2019) for the sake of
efficiency. The resources that must be kept track of by the labeling algorithm are (a) the set of customers
visited thus far and (b) the total amount of capacity used.

We should note that CG can be applied to supersets of Ω, where the MP over such a superset is written
as Ψ(Ω+) for some Ω ⊆ Ω+. The use of such super-sets may weaken the LP relaxation in exchange for
greater tractability. The MP over these routes is designed so no optimal integer solution uses an infeasible
route. Thus Branch and Price (Barnhart et al. 1996) can be used to produce an optimal integer solution
to CVRP. Such supersets are often constructed to not include routes with short cycles or cycles localized in
space, but do not fully enforce elementarity (Baldacci et al. 2011, Righini and Salani 2008, Desrochers et al.
1992); however, these routes do enforce all other constraints such as capacity and time windows (in domains
where time windows are used). For example, the ng-route relaxation (Baldacci et al. 2011) is empirically
not much looser than the original LP relaxation (10); however, the ng-route relaxation is dramatically more
efficient to solve compared to solving (10) because of the ease of pricing.

Name space meaning

N set set of customers

N+ set set of customers plus the depot which is counted as −1 for starting
and −2 for ending even though they are the same place

d0 scalar amount of capacity in a vehicle

du scalar amount demand at customer u

cuv u ∈ N+, v ∈ N+ distance from u to v.

πu u ∈ N dual variable associated with customer u

π0 scalar dual variable associated with enforcing an upper bound on the
number of vehicles used

Ω set set of elementary routes.

aul u ∈ N, l ∈ Ω aul = 1 if route l covers customer u

auvdl u ∈ N+, v ∈
N+, d ∈ D, l ∈ Ω

auvdl = 1 if the route l leaves u with d units of demand remaining
and travels immediately to v. Here u, v, d must also lie in Q which
is the set of feasible possibilities of u, v, d

Table 1: CVRP Route Notation
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4 Local Area Routes

In this section we introduce Local Area routes (LA routes) and pricing over these routes. LA routes are
a subset of the celebrated ng-routes (Baldacci et al. 2011) and a superset of elementary routes. LA routes
have properties which allow for pricing to be conducted efficiently. Solving Ψ(ΩLA), where ΩLA is the set of
all LA routes, provides a fast to compute LP relaxation for Branch and Price solvers for CVRP. Similarly
LA routes can be used inside Decremental State Space Relaxation (DSSR) (Righini and Salani 2008, 2009),
in order to produce a fast exact solver for CVRP when solving Ψ(Ω). This in turn can be integrated with
Branch and Price.

We organize this section as follows. In Section 4.1 we provide a formal definition of LA routes. In
Section 4.2 we describe pricing over LA routes as a shortest path computation. In 4.3 we describe the fast
computation of terms used in Section 4.2. In Section 4.4 we discuss the use of the DSSR with LA routes to
solve Ψ(Ω).

4.1 Definition of LA routes in terms of ng-routes

In this section we define LA routes in terms of ng-routes. We express LA routes using the following terms
associated with each customer u ∈ N . Let Nu and Mu refer to two classes of neighboring customers of u,
which we refer to as the LA neighbors and the ng-neighbors respectively. We define Nu to be a subset of
the customers in N , that are nearby u with regards to spatial position. We may define Mu similarly except
that we may choose to grow the set when used with DSSR (Righini and Salani 2009). By convention, neither
Mu or Nu contain u. Also, by convention the starting/ending depot has no ng-neighbors or LA-neighbors;
furthermore, no customer considers the starting/ending depot to be a ng-neighbor or LA neighbor.

To assist in our description of LA routes, we first describe ng-routes. In the case of ng-routes, Mu is the
set of customers nearby u in space. We use upk to refer to the k’th customer in the path p ∈ P where P is the
set of paths that are resource feasible (meaning that the path does not service more demand than d0; starts
at the source and ends at the sink) but these paths do not necessarily have to be elementary. Note that a
customer u may be serviced more than once in such a path and hence use more demand than du. Recall
that a path is considered to be elementary if the path does not visit any customer more than once. A path
p ∈ P is an ng-route if spatially localized cycles are not present in p (recall that a cycle is a sub-sequence of
a path that visits the same customer at the start and end of the sub-sequence). Simply put, in ng-routes,
every cycle starting and ending at a customer u must contain at least one customer that does not consider
u to be an ng-neighbor. We now express this property with related exposition below.

(u = upk1 = upk2)→ ∃k3 s.t. k1 < k3 < k2 v = upk3 u /∈Mv,∀{u ∈ N, k1 < k2} (14)

The premise of (14) (left side of the→ in (14) ) is true if the same customer is at indexes k1 and k2 and that
customer is u. The inference (right side of the → in (14)) is that there must exist a customer at some index
k3 that lies between k1 and k2 and does not consider u to be a neighbor.

We now describe LA-routes in a manner akin to our description of ng-routes. To assist in our description
let us define for any path p ∈ P a set of indices that we refer to as special; we denote this set of indices as
Qp for path p. The first such special index on path p is 1 meaning that it refers to the first customer visited
in the route. We use qpj to denote the index of the j’th special index (meaning qp1 = 1). Thus the j’th special
index is associated with the qpj ’th customer visited in the route. Given that qpj−1 is associated with customer
v, we define qpj to be the first index after qpj−1 s.t. the associated customer u does not lie in Nv. We write qpj
mathematically below for any j > 1.

qpj ← min
k>qpj−1

up
k /∈Nv

k ∀j > 1; where upqj−1
= v (15)

The property beyond resource feasibility that a path must satisfy to be an LA route is as follows: every cycle
starting and ending at a customer u must contain at least one customer at a special index that does not
consider u to be a ng-neighbor. This is in contrast to ng-routes where that customer does not have to be at
a special index. Thus LA routes are a subset of ng-routes and a super-set of elementary routes. Thus the
CVRP LP relaxation over LA routes is no looser and potentially tighter than the ng-route relaxation (given
a fixed set of ng-neighbors for each customer). Using (15) we now describe the property beyond resource
feasibility that an LA route must satisfy formally with exposition below.

(u = upk1 = upk2)→ ∃k3 s.t. k1 < k3 < k2, k3 ∈ Qp, v = upk3 , u /∈Mv ∀{u ∈ N, k2 > k1} (16)
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The premise of (16) (left hand side of the → in (16) ) is true if the same customer is at indexes k1 and k2

and that customer is u. The inference (right hand side of the → in (16)) is that there must exist a customer
at special index k3 that lies between k1 and k2 and does not consider u to be a ng-neighbor.

Observe that both LA routes and ng-routes may visit the same customer more than once and hence aul
is a non-negative integer but is not necessarily of binary value (0 or 1). However auvdl is still binary for both
ng-routes and LA routes and the cost and reduced cost are defined with (5) and (11b) respectively.

We now consider an example of a ng-route that is not a LA route. In our example, the set Nu is identical
to the set Mu for each u ∈ N , |N | = 12, and the locations of the twelve customers correspond to the
set of positions on a classic analog clock. As a result, both the LA neighbors and the ng-neighbors of uk
are [uk−2,uk−1,uk+1,uk+2] applied with modulus 12. Thus the neighbors (ng and LA) of u4 (4 o’clock) are
Nu4

= [u2, u3, u5, u6] and the neighbors of u1 are Nu1
= [u11, u12, u2, u3]. Respecting the properties set

for our example, the following route is considered to be a feasible ng-route but is not a feasible LA route: -
1,u3,u1,u5,u1,-2. Observe that the set of special indices in our route consists of the index 1, which corresponds
to the customer u3.

4.2 LA Routes: Integer Linear Programming Formulation For Pricing

In this section we describe the computation of the lowest reduced cost LA route (minl∈ΩLA c̄l), which we
show is a shortest path problem, that can be trivially solved with Dijkstra’s shortest-path algorithm. To
achieve this we write pricing as a sequence of integer linear programs (ILPs); the last ILP corresponds to the
generation of the lowest reduced cost LA route as a shortest path problem. To assist in our discussion we
define Pu,v,M1,M2,d to be the set of all elementary paths satisfying the following.

• The path starts at u ∈ N+ and ends at v ∈ N+, where u and v are not equal and v is not in the set
(Nu ∪M1).

• No customers in M1 (which is a subset of Mu) are visited.

• All customers in M2 −M1 are visited where M2 ⊆Mv.

• No customers in Mv −M2 are visited.

• The total demand serviced is d (excluding v and including u, where the starting/ending depot has no
demand) OR if v is the end depot then the total demand serviced (including u) does not exceed d.

• All customers visited lie in Nu excluding u, v.

We use Np to denote the set of customers in path p excluding u and v. For purposes of clarity of commu-
nication we use Z to denote the set of [u, v,M1,M2, d] terms for which Pu,v,M1,M2,d is not empty. We index
the set Z with z. Given any dual solution π we define the reduced cost associated with a path p as c̄p, which
is described below.

c̄p = cp + π0[u = −1]−
∑
w∈N

[w ∈ (Np ∪ u)]πw ∀p ∈ Pz, z ∈ Z, z = (u, v,M1,M2, d) (17)

We now formulate pricing over the set of elementary routes as an ILP. We use the following binary decision
variables defined on a directed acyclic graph with edge set E where there is a source node, sink node, and
each unique u,M1, d combination (where u ∈ N,M1 ⊆ Mu, d0 −

∑
w∈M1

dw ≥ d ≥ du) is associated with a
unique node.

• We set xi,j = 1 where i = −1 (meaning the source), j = (u, {}, d0) to indicate that vehicle starts at the
starting depot then travels to customer u. The source can be equivalently written as (−1, {}, d0).

• We set xi,j = 1 where i = (u,M1, d1), j = −2 to indicate that a vehicle arrives at u with d1 units
of demand remaining and then visits customers in Nu −M1 with total demand less than or equal to
d1 − du before returning to the depot. The sink can be equivalently written as (−2, {}, 0).

• We set xij = 1 for i = (u,M1, d1), j = (v,M2, d2) where v /∈ (Nu ∪ u∪M1) to indicate that the vehicle
arrives at customer u with d1 units of demand remaining (just prior to servicing u) then travels along
some path in Pz where z = (u, v,M1,M2, d1 − d2).
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• The xij terms indicate the Pz sets that produce component paths, which are concatenated to form the
generated route. The selection of component paths is done using xp terms, which are defined for each
p ∈ Pz,z ∈ Z. We set xp = 1 to indicate that we use path p for p ∈ Pz. In cases where for a given p
there are multiple z ∈ Z for which p ∈ Pz then we create an independent variable xp associated with
each z. We refer to this as replication of edges.

The computation of the lowest reduced cost elementary route is described by the following ILP.

min
x∈{0,1}

∑
z∈Z

∑
p∈Pz

c̄pxp (18a)

∑
u∈N

x−1,(u,{},d0) = 1 (18b)∑
ij∈E

xij =
∑
ji∈E

xji ∀i = (u,M1, d) (18c)

∑
ij∈E

i=(u,M1,d1)
j=(v,M2,d2)
d1−d2=d

xij =
∑
p∈Pz

xp ∀z ∈ Z z = (u, v,M1,M2, d) (18d)

∑
z∈Z

z=(u,v,M1,M2,d)

∑
p∈Pz

xp[w ∈ (Np ∪ u)] ≤ 1 ∀w ∈ N (18e)

The objective equation in (18a) seeks to minimize the reduced cost of the generated route. The constraint
in (18b) forces the number of vehicles used by this route to be 1. The constraint in (18c) ensures that for
every selected edge entering a given node (excluding the source and the sink), there is another selected edge
leaving that node (so that the xij terms describe a connected path from source to sink). In (18d) we ensure
that the xp terms, which describe the intermediate customers in localized components of the path in space,
are consistent with the xij terms, which describe the non-localized structure of the path in space. Observe
that each p ∈ Pz (for any z ∈ Z) is associated with exactly one constraint of the form (18d) because of the
replication of edges. The constraint in (18e) ensures that no customer is serviced more than once.

Observe that no optimal solution to (18) uses a member of Pz that has a higher cost that a different
member of Pz given that the same customers are serviced. We express this concept using Ωz. We use Ωz
to denote the set of paths in Pz that are of lowest cost given fixed set of customers. We construct Ωz as
follows. Given any N̂ ⊆ Nu we select the single lowest cost path in p ∈ Pz for which N̂ = Np (breaking
ties arbitrarily). The set of paths in the Ωz terms over all z ∈ Z is alternatively called the set of LA arcs.
The determination of the paths that define Ωz (over all z ∈ Z) is done exactly once (not at each round
of pricing) because the membership of Ωz does not change with π. We provide detailed exposition on the
efficient determination of the paths in Ωz (over all z ∈ Z) in Section 4.3, which does not enumerate all of Pz.
Using Ωz, we reduce the size of (18) by replacing optimization over Pz with optimization over Ωz, producing
the following equivalent ILP.

(18) = min
x∈{0,1}

∑
z∈Z

∑
p∈Ωz

c̄pxp (19a)

∑
u∈N

x−1,(u,{},d0) = 1 (19b)∑
ij∈E

xij =
∑
ji∈E

xji ∀i = (u,M1, d) (19c)

∑
ij∈E

i=(u,M1,d1)
j=(v,M2,d2)
d1−d2=d

xij =
∑
p∈Ωz

xp ∀z ∈ Z; z = (u, v,M1,M2, d) (19d)

∑
z∈Z

z=(u,v,M1,M2,d)

∑
p∈Ωz

xp[w ∈ (Np ∪ u)] ≤ 1 ∀w ∈ N (19e)
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Since we seek to generate the lowest reduced cost LA route and not the lowest reduced cost elementary
route, we can ignore (19e) since that constraint enforces elementarity. Thus, an optimal solution to (19)
(when ignoring (19e)) would never use a p ∈ Ωz other than the minimizer of reduced cost over Ωz. Given
any dual solution π we use pz to denote the member of Ωz with lowest reduced cost meaning:

pz ← arg min
p∈Ωz

c̄p (20)

We now write the selection of the lowest reduced cost LA route as an ILP.

min
x∈{0,1}

∑
z∈Z

c̄pzxpz (21a)∑
u∈N

x−1,(u,{},d0) = 1 (21b)∑
ij∈E

xij =
∑
ji∈E

xji ∀i = (u,M1, d) (21c)

∑
ij∈E

i=(u,M1,d1)
j=(v,M2,d2)
d1−d2=d

xij = xpz ∀z ∈ Z; z = (u, v,M1,M2, d) (21d)

The formulation in (21) permits us to use (21d) to replace xpz in the objective.

(21) = min
x∈{0,1}

∑
z∈Z

c̄pz (
∑
ij∈E

i=(u,M1,d1)
j=(v,M2,d2)
d1−d2=d

z=(u,v,M1,M2,d)

xij) (22a)

∑
u∈N

x−1,(u,{},d0) = 1 (22b)∑
ij∈E

xij =
∑
ji∈E

xji ∀i = (u,M1, d) (22c)

Observe that the ILP described by (22) is identical in form to ILPs describing standard shortest path
problems. We can thus solve (22) using the Bellman-Ford algorithm to find the shortest path from -1 and -2
in E, since E may have negative weights but no negative weight cycles. Since E is a directed acyclic graph, E
has no cycles and therefore no negative weight cycles. If E can be transformed to an equivalent representation
with no negative edge weights, we can apply Dijkstra’s algorithm instead to find the shortest path. Applying
Dijkstra’s algorithm to an equivalent representation of E (which produces the same path and the same
minimal cost) is desirable due to the improved asymptotic time complexity of Dijkstra’s algorithm compared
to the Bellman-Ford algorithm. We detail how E can be transformed into an equivalent representation over
which Dijkstra’s algorithm can be used to produce the shortest path below.

We let d−1, d−2 be defined to be 0 and di = d; where i corresponds to (u,M1, d). Observe that for any
path starting at −1 and ending at −2 where the edges included are the set Ê the following property holds:∑
ij∈Ê(di + ([i = −1] ∗ d0) − dj) = d0. Let cij be the shorthand for the weight in front of xij in (22). Let

us offset cij where i = (u,M1, d1) and j = (v,M2, d2) by adding η ∗ (di + ([i = −1] ∗ d0) − dj) to cij where

η = −minz∈Z
c̄pz

zd
and zd is the capacity used in z (zd =

∑
w∈N̂pz∪u dw). This addition makes every edge

non-negative and the optimal path is identical to the shortest path produced by Bellman-Ford so Dijkstra’s
algorithm can be used. The optimal path from source to sink is not modified because the addition of the η
terms increases the cost of every path from source to sink by exactly d0η. By subtracting the term d0η from
the cost of the generated path, the original cost of the path (without the η additions) is obtained. Using
Dijkstra’s algorithm, only the Ωz terms corresponding to expanded nodes are required to be computed. In
comparison, Bellman-Ford algorithm requires the computation of all possible Ωz terms, making Bellman-Ford
far slower computationally.

Furthermore, when finding the lowest cost path using Dijkstra’s algorithm, we can ignore expanding
nodes that are considered to be dominated by another expanded node. A node (u,M1, d1) is considered
to be dominated by another node (u,M1, d) if the cost to reach (u,M1, d) from the source is less than the
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cost to reach u,M1, d1 from the source and d1 < d. Choosing to include (u,M1, d1) instead of (u,M1, d) is
costlier and leaves less remaining capacity for the path, meaning that no optimal solution uses u,M1, d1. We
now demonstrate this phenomenon formally. Let τ(u,M1,d) refer to the cost of the shortest path (minimal
sum of cost terms from start to end) in graph E starting at the source and ending at (u,M1, d). Note
that τ does not consider the addition of η terms. Suppose that the node (u,M1, d1) has been previously
expanded and Dijkstra’s algorithm now seeks to expand a node (u,M1, d2) for which d2 < d1 and for which
τu,M1,d1 < τu,M1,d2 . Clearly, the lowest reduced cost LA-route can not include the node (u,M1, d2) and hence
we need not expand the node. More advanced dominance criteria can be developed but we used this one in
experiments for its simplicity.

4.3 Fast Computation of Lowest Cost Component Paths

In this subsection we describe the pre-computation of lowest cost component path terms, a process that
ensures that pricing using LA routes is computationally fast. This pre-computation is done once prior to
the first iteration of CG and never needs to be repeated. This section shows that cuvN̂ terms are easy to
compute when the size of Nu sets are small. To assist in pre-computing cuvN̂ terms, we define terms of the

form pu
v,w,N̂

, where v ∈ N̂ , w ∈ N̂ , N̂ ⊆ Nu, and u ∈ N to be the lowest cost elementary path visiting all

customers in N̂ , starting at v, and ending at w. The cost associated with a given pu
v,w,N̂

term is given by the

term cu
v,w,N̂

.

We now consider a dynamic programming solution to compute pu
v,w,N̂

terms efficiently. We now define

the base cases for this dynamic programming solution. Clearly when N̂ contains only v1, the only associated
cu
v,w,N̂

term is cuv1,v1,{v1} = 0. Note that this is the only case where the arguments in cu
v,w,N̂

have v = w since

the path must be elementary. For any v ∈ Nu, w ∈ Nu where v 6= w, cuv,w,{v,w} = cvw by definition of cu
v,w,N̂

terms.
We compute cu

vwN̂
and pu

v,w,N̂
terms for increasing sizes of N̂ , first for size 3. To compute cu

v,w,N̂
we

optimize over the choice of y, where y ∈ N̂ − (w ∪ v) for the path which is described as follows. The path
begins at v, followed directly afterwards by y, ends at w, and contains N̂ − ([v, y, w]) in between y and w in
the lowest cost order. This is shown below.

cu
v,w,N̂

= min
y∈N̂−(w∪v)

cv,y + cu
y,w,N̂−v (23)

Given that y is the minimizer of (23), the path associated with cu
v,w,N̂

denoted, pu
v,w,N̂

, is the concatenation

of [v] and pu
y,w,N̂−v. We write the computation of cu

v,w,N̂
and pu

v,w,N̂
as a dynamic program in Alg 2. As an

aside, we should note that the values of cu
vwN̂

terms do not change for different values of u. Thus Alg 2 may
choose to not compute cu

vwN̂
terms already computed for different values of u.

We use pu
u,w,N̂

to denote the lowest cost elementary path starting at u, ending at w, and visiting all

customers in N̂ ∪u where N̂ ⊆ Nu and w ∈ N̂ ∪u (in order to ensure elementarity, w can only equal u when
N̂ is empty). The associated cost for a given pu

u,w,N̂
term is cu

u,w,N̂
. Here cuu,u,{} = 0 and cuu,w,{w} = cuw.

For the remaining cases, we compute cu
u,w,N̂

by conditioning on the second customer (which we write as v)

in the path as follows.

cu
uwN̂

= min
v∈N̂−w

cuv + cu
vwN̂

∀u ∈ N,w ∈ N̂ , N̂ ⊆ Nu, |N̂ | ≥ 3 (24)

The associated path pu
uvN̂

equals [u, pu
vwN̂

], where v is the minimizer of (24). We are now able to compute

the cuvN̂ terms as follows for non-empty N̂ sets by conditioning on the customer positioned immediately
before v.

cuvN̂ = min
w∈N̂

cu
uwN̂

+ cwv ∀u ∈ N, v ∈ N+ − (Nu ∪ u), N̂ ⊆ Nu, |N̂ | ≥ 1 (25)

The associated path puvN̂ equals [pu
uwN̂

, v], where w is the minimizer of (25).

To compute all Ωz set terms, we simply iterate over all u, v, N̂ terms and place puvN̂ in the appropriate

Ωz. Given u, v, N̂ , we iterate over M1 ⊆ Mu s.t. M1 ⊆ (Mu − (N̂ ∪ v)); we add puvN̂ to the Ωz set where

z = [u, v,M1,M2, d] for d = du +
∑
u∈N̂ dw and M2 = Mv ∩ (M1 ∪ N̂ ∪ u).
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Algorithm 2 Fast Computation of cu
v,w,N̂

terms

1: for f = 3 : maxu∈N |Nu| do
2: for u ∈ N do
3: for N̂ ⊆ Nu s.t. |N̂ | = f do
4: for v ∈ N̂ do
5: for w ∈ N̂ − v do
6: y ← arg miny∈N̂−(v∪w) cvy + cu

y,w,N̂−v
7: cu

v,w,N̂
← cvy + cu

y,w,N̂−v
8: pu

v,w,N̂
← [v, pu

y,w,N̂−v]

9: end for
10: end for
11: end for
12: end for
13: end for

Name Space Meaning

Nu Nu ⊆ {N − u} The LA neighbors of u.

Mu Mu ⊆ {N − u} The ng-neighbors of u.

z z ∈ Z z is a member of set Z where Z corresponds to
the space of u ∈ N+, v+ ∈ N,M1 ⊆Mu,M2 ⊆
Mv, d = d1 − d2.

i =
(u,M1, d)

u ∈ N,M1 ⊆
Mu, d0 −∑
w∈M1

dw ≥
d ≥ du

Being at i means that the nascent route is cur-
rently at u, has d units of capacity remain-
ing (prior to servicing u), and all customers in
M1 ⊆ Mu have been visited and serviced at
least once already.

Ωz z ∈ Z The set of minimum cost elementary paths
covering all possible sets of customers for ele-
mentary paths meeting the constraints set by
z = (u, v,M1,M2, d).

pz Ωz The lowest reduced cost path in Ωz.

cpz p ∈ Ωz, z ∈ Z The cost of the lowest reduced cost path in
Ωz.

Table 2: Local Area Routes Notation

4.4 Decremental State Space Relaxation

In this section we consider the use of the DSSR (Righini and Salani 2009) to generate the lowest reduced
cost elementary route, by exploiting the efficiencies of LA routes. We describe the procedure to use DSSR
alongside LA routes as follows. We initialize the neighborhoods Nu for all u ∈ N to be the composed of the
nearest customers to customer u. We initialize Mu = {} ∀u ∈ N , but these Mu sets increase in size over
iterations of DSSR. We then iterate between the following two steps until the lowest reduced cost LA route
generated is elementary.

1. Solve for the lowest reduced cost LA route, which is denoted l.

2. Find the shortest (by length) cycle in the selected route l. The length of a cycle is defined to be
the number of special indices between the two repeated customers at the start and end of the cycle.
Consider that the shortest cycle starts and ends with customer u at indexes k1, k2 where k2 > k1. Now,
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for each intermediate customer ulk3 corresponding to a special index at index k3 for which k2 > k3 > k1,
add u to Mul

k
. The number of nodes u,M1, d in the pricing graph grows exponentially in |Mu|. Hence

to accelerate step (1) we seek to select the cycle to use intelligently so as to decrease the number of
nodes/edges added to the pricing graph. Instead of using the shortest cycle to gradually increase the
sizes of Mu sets, we can alternatively use the cycle for which the corresponding increase in the number
of nodes or edges in pricing graph (in step (1)) is least (in our experiments we select the cycle that
minimizes the number of nodes added to the pricing graph).

Let N∗ be the set of N for which Mu was augmented. Given the updated pricing graph the Ωz terms
that need to be updated are restricted to the subset defined as follows: Ωz for z = [u, v,M1,M2, d]
s.t. u ∈ N∗ or v ∈ N∗. Note that this update does not involve recomputing the puvN̂ terms or the
corresponding cuvN̂ terms.

We now consider the use of A* (Dechter and Pearl 1985) to enhance the speed of convergence of DSSR
by limiting the number of nodes expanded during Dijkstra’s algorithm. Consider that we have a heuristic
providing a lower bound on the distance from each node to the sink (also known as the ending depot); this
heuristic is consistent, meaning that accuracy of the heuristic for the children is no less than that of the
parent. Then, we can choose to expand the node for which the distance from the source (also known as the
starting depot) plus the heuristic is minimized. Observe that each iteration of DSSR solves a similar problem
since the values of dual variables remain the same and very few nodes and edges are created from larger Mu

sets. Given empty Mu sets (as is the case during the first iteration of DSSR), we can easily compute the
shortest distance from each node (u, {}, d) (for customer u and demand remaining prior to servicing u as d)
to the sink. We denote this heuristic as hud and refer to the graph where all ng-neighbor sets are empty as
the initial graph. We associate each hud term to nodes of the form u,M1, d for each M1 ⊆ Mu. The hud
terms are computed exactly once for each call to pricing and not for each iteration of DSSR. Observe that
the hud terms provide an admissible heuristic for A* since the set of possible paths (in terms of customers on
the path) on the graph where all ng-neighbor sets are empty is a superset of the set of paths on any graph
in DSSR (for paths starting at the source or any u,M1, d and ending at the sink). By using an admissible
heuristic we ensure that A* provides the optimal solution to the shortest-path problem. We can easily and
jointly compute hud for each u, d via the Bellman-Ford algorithm.

In CG we need to only produce a negative reduced cost column at each iteration of pricing to ensure an
optimal solution to the master problem. In the early iterations of CG, the dual values may not reflect the
final dual values and hence exact pricing may not produce columns used in the final solution. Therefore,
excessive time spent on pricing at this stage is of limited value, thus motivating the use of heuristic pricing.
The use of DSSR inside LA routes motivates the following mechanism to efficiently produce negative reduced
cost columns. We map the non-elementary route generated at each iteration of DSSR to an elementary route.
If this route has negative reduced cost we return the associated column to the RMP; otherwise, we continue
with DSSR. In order to generate this elementary route, we remove each customer that is included more than
once (after its first inclusion). For example, given a route [−1, u1, u2, u3, u1, u5, u2, u1,−2], we would produce
the route [−1, u1, u2, u3, u5,−2] instead since we would remove the second copy of u2, as well as the second
and third copies of u1.

5 Experimental Validation

In this section we demonstrate the value of LA routes to accelerate the solution of the set cover formulation
over elementary routes in the Capacitated Vehicle Routing Problem (CVRP). We quantify this with and
without dual stabilization (via Graph Generation with Principled Graph Management (Yarkony et al. 2021a,
Yarkony and Regan 2022)). We consider a data set of CVRP instances that vary by numbers of customers,
customer demands, and vehicle capacity.In these experiments, pricing is solved using Decremental State
Space Relaxation (Righini and Salani 2008, 2009) (DSSR) over LA routes as described in Section 4.4. We
compare the total running time as well as the total time spent on pricing

We organize this section as follows. In Section 5.1 we consider the algorithms compared. In Section 5.2
we consider the implementation details. In Section 5.3 we describe the our data sets of problem instances.
In Section 5.4 we provide the timing comparisons. In Section 5.5 we analyze the results of our experiments.
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5.1 Algorithms Compared

To determine the value of stabilization we consider unstabilized column generation (UCG) and GG+PGM.
We follow the GG+PGM methodology from (Yarkony and Regan 2022). We varied the number of nearest
neighbors in the LA routes relaxations in order to determine the value of larger LA neighbor sets.

To determine the value of larger LA neighbor sets, we consider the use of LA neighbor sets of size [0,5,10]
associated with each customer. Note that using 0 LA neighbors corresponds to using standard DSSR. Thus,
there are a total of six variants under consideration (2 possibilities for dual stabilization times 3 possibilities
for the number of LA neighbors).

5.2 Implementation Details

All code is implemented in MATLAB and restricted master problems are solved using the MATLAB linprog
solver with default options. All linear programs are solved from scratch each time. In future work, we intend
to use CPLEX and not solve linear programs from scratch. All experiments were run on a 2014 Macbook
pro running Matlab 2016.

We initialize the columns in the RMP for UCG with one column for each customer describing the cost
for servicing that single customer.

5.3 Problem Instance Data Set

We first consider the effectiveness of our CG solvers on two large data sets.
Data Set One: All customers have unit demand. The number of customers lies in [20,30,40,60] and the

vehicle capacity lies in [4,8,10]. For each problem combination over the set of possible customers and the
set of possible vehicle capacities, we have up to ten problem instances. In each case, the locations of the
customers/depot are generated uniformly over a two-dimensional grid. We describe the number of problem
instances of each permutation of capacity/number of customers in the following table.

Vehicle Capacity Number of Customers Number of Problem Instances

4 20 10
4 30 10
4 40 10
8 20 10
8 30 10
8 40 7
8 60 1
10 20 10
10 30 7

Data Set Two: All customers have integer demand ranging uniformly over the range [1,10]. The vehicle
capacity lies in [20,30,40], but the problems are otherwise identical in terms of the random distribution
to data set one.We describe the number of problem instances of each permutation of capacity/number of
customers in the following table.

Vehicle Capacity Number of Customers Number of Problem Instances

20 20 10
20 30 10
20 40 10
30 20 10
30 30 10
30 40 5
40 20 10
40 30 10

We also consider the effectiveness of our CG solvers on a smaller data set. We analyze the speed of LP
convergence for problems in this data set at the individual instance level.
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Factor Speed up UCG LA=5 UCG LA=10 GG+PGM LA=0 GG+PGM LA=5 GG+PGM LA=10

∗1 0.6543 0.8519 1.0000 1.0000 1.0000
∗2 0.0247 0.2346 1.0000 0.9753 0.9877
∗5 0 0 0.7037 0.7531 0.8519
∗10 0 0 0.2346 0.2963 0.5185
∗20 0 0 0.0617 0.0988 0.2346
∗40 0 0 0 0.0247 0.0741
∗60 0 0 0 0 0.0247

Table 3: Factor Speed up: Proportion of problems achieving at least a given speedup over the baseline as a
function of the approach used. We consider problem instances of data set 1 where the baseline solver requires
at least 500 seconds to solve the master problem. Only the time taken up during pricing is considered. A
total of 81 problem instances are included.

Smaller Data Set: All customers have integer demand ranging uniformly over the range [1,10]. The
capacity of the vehicle is 40. The number of customers lies in [20,30], and only one problem instance
is considered per problem combination over the set of possible customers and the set of possible vehicle
capacities.

5.4 Results

For all of our figures, we utilize the UCG solver with LA neighbor sets of size 0 as our baseline solver which
corresponds to standard DSSR. Furthermore, all of our figures represent improvements in computational
time taken by CG solvers as a ”Factor Speed up” in comparison to the baseline solver. The Factor Speed up
of a CG solver for a specific problem is measured by a fraction with the time taken by the CG solver to solve
the problem as the denominator and the time taken by the baseline to solve the problem as the numerator.
In Fig 1, Fig 2, Fig 3, and Fig 4, we have two rows of scatter plots, where the top row shows comparisons
in time taken between CG solvers on the first data set, and the bottom row shows the same comparisons on
the second data set. A given data point in all of these figures describes the Factor Speed up of a CG solver
(given by the color of the data point) and the time required by the baseline solver for a problem instance;
which are encoded on the x, y axis for factor speed up and time required for baseline respectively.In Fig 1, we
represent the improvements in computational time taken by various implemented UCG solvers. We represent
these improvements on a logarithmic scale for both the x-axis and the y-axis in Fig 2. In Fig 3, we represent
the improvements in computational time taken by various implemented CG solvers utilizing GG+PGM. We
represent these improvements on a logarithmic scale for both the x-axis and the y-axis in Fig 4.

Data sets 1 and 2 are used alternatively in Tables 3 and 4. These tables describe the proportion of problem
instances for which a given approach achieves at least a Factor Speed up for problem instances requiring
at 500 seconds to be solved by the baseline solver. In Fig 5, for the first row, we represent the rate of LP
convergence for our CG solvers for two problems, taking into account the time taken by CG. In the second
row, we represent the rate of LP convergence for our CG solvers for two problems, taking only into account
the time taken by pricing. Each column corresponds to LP convergence plots for one of the two problems.
In these plots the x-coordinate shows the computational time taken thus far at a point in time by the CG
solver, while the y-coordinate shows the difference in the values of the last given LP solution and the final
LP solution on a CVRP problem instance. An addition of 1 is always given to this difference of LP values in
order to ensure the graph can always display the y-axis and the data on a log-scale.

5.5 Analysis

We observe large improvements in computation time taken to solve various CVRP problems by solvers
combining GG+PGM with LA route relaxations compared to the baseline CG solver. These improvements
are generally larger when problem instances which take the baseline longer to solve. We notice these properties
in Fig 3, where the various CG solvers incorporating LA route relaxations with GG+PGM showcase large
Factor Speed ups, even for problems which are quickly solved by the baseline CG solver. However, for
problems which take larger amounts of time for the baseline CG solver to solve, we often notice larger Factor
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Figure 1: Factor Speed ups for Unstabilized CG solvers (top row unit demand, bottom row, non-unit demand).

Factor Speed up UCG LA=5 UCG LA=10 GG+PGM LA=0 GG+PGM LA=5 GG+PGM LA=10

∗1 0.6250 0.7083 0.9583 0.9792 1.0000
∗2 0.2083 0.2917 0.9167 0.9583 1.0000
∗5 0 0 0.2708 0.6250 0.6458
∗10 0 0 0 0.2708 0.3333
∗20 0 0 0 0.0208 0.0833
∗40 0 0 0 0 0.0208
∗60 0 0 0 0 0

Table 4: Factor Speed up: Proportion of problems achieving at least a given speedup over the baseline as a
function of the approach used. We consider problem instances of data set 2 where the baseline solver requires
at least 500 seconds to solve the master problem. Only the time taken up during pricing is considered. A
total of 61 problem instances are included.
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Figure 2: Factor Speed ups for UCG solvers (top row unit demand, bottom row, non-unit demand), but
on a log-scale for both the x and y axis. Note for the top row, the y-axis starts at 0.5. The plots in this
figure follow the same legend as displayed by plots in Figure 1 (black corresponds to the baseline solver, red
corresponds to the UCG solver with LA neighbor set sizes of 5, green corresponds to the UCG solver with
LA neighbor set sizes of 10).
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Figure 3: Factor Speed ups for CG solvers incorporating PGM (top row unit demand, bottom row, non-unit
demand).

22



Figure 4: Factor Speed ups for CG solvers incorporating PGM (top row unit demand, bottom row, non-unit
demand), but on a log-scale for both the x and y axis. Note for the top row, the y-axis starts at 0.5. The
plots in this figure follow the same legend as displayed by plots in Figure 3 (top row unit demand, bottom
row, non-unit demand), but on a log-scale for both the x and y axis. Note for the top row, the y-axis starts
at 0.5.
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Figure 5: Factors Speed ups for a smaller non unit demand dataset (top row LP convergence rates taking
into account time needed for CG, bottom row LP convergence rates only taking into account time needed for
pricing, each column corresponds to one problem instance). It is important to note that the metric measuring
the difference in LP values always has an addition of 1 to allow for an LP difference of 0 to appear in the
graphs.
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Speed ups occur more consistently, as shown in the scatter plot measuring the aggregated optimization time
for unit demand problem instances. In Fig 4, this trend is even more apparent, and we can also more clearly
see the differences between CG solvers incorporating PGM with different sizes of LA neighbor sets. From
Fig 4, we notice that CG solvers with larger LA neighbor set sizes generally cause greater improvements
for larger problems, and the consistency and size of these improvements become more pronounced as the
problems increase in size.

For UCG solvers, we often see sizable improvements in computation time taken for many CVRP problems,
but we occasionally see none, or even negative, improvement for some problem instances, as shown in 1. For
larger problems, UCG solvers seem to be more likely to produce larger Factor Speed ups when compared
to the baseline solver. Furthermore, in 2, we notice that the UCG solver using larger LA neighbor set sizes
shows greater Factor Speed ups more consistently and with greater magnitude as problem size increases.
Still, in comparison to GG+PGM solvers, the results shown by our UCG solvers are much poorer.

Using Tables 3 and 4, we can more quantitatively gauge both the effectiveness and consistency of our
UCG and GG+PGM solvers. In both tables, we notice that the GG+PGM solvers showcase at least Factor
Speed ups of 2 in at least 91.67 % of all problem instances, while the UCG solvers showcase at least Factor
Speed ups of 2 with far less probability. Furthermore, we see that it is likely to achieve Factor Speed ups as
large as 10 using our GG+PGM solvers.

In our results, it is important to note that when only considering time taken by the pricing stage, we
notice much greater improvements in computational time taken. Therefore, when running the CPLEX LP
solver and not solving the RMP LP from scratch at each iteration of CG (or GG+PGM), we expect our
results considering only pricing time to more closely resemble our results considering all the time used in
the CG process. It is also important to note that these results can vary for different computers and linear
programming solver configurations, since hardware specifications and certain settings for the LP solver can
result in different properties of the intermediate dual solutions, altering the columns generated during pricing
(Yarkony et al. 2020). These properties can result in CG solvers utilizing LA route relaxations to be more
or less effective for larger sets of LA neighbors or when GG+PGM is used.

6 Conclusion

In this paper we introduce Local Area (LA) route relaxations to improve the tractability and speed of
Column Generation (CG) based solvers for large scale set cover/partitioning formulations, where pricing is a
elementary resource constrained shortest path problem (Costa et al. 2019); this is a common framework found
in large-scale transportation problems(Barnhart et al. 1996, Desrochers et al. 1992). LA route relaxations
employ LA routes which are routes which do not necessarily need to be elementary but cannot contain
spatially localized cycles. LA routes consist of LA arcs, which are elementary resource feasible paths starting
at a customer and ending at a customer outside the arc’s starting customer’s neighborhood (set of customers
spatially close to the customer) and visiting intermediate customers that are in the neighborhood of the
starting customer. The only arcs that can be part of an optimal solution to pricing are those which describe
the minimum cost path given the starting, ending and intermediate customers. The computation of such arcs
is done one prior to any calls to CG as a dynamic program which is tractable when the sizes of neighborhoods
is not massive. We used neighborhoods of size 10 efficiently in our experiments. We show how LA route
relaxations can improve the efficiency of solving one such problem: the Capacitated Vehicle Routing Problem.
Our approach is an alternative to the acclaimed ng-route relaxations/decremental state space relaxations
(DSSR) (Baldacci et al. 2011, Righini and Salani 2009) that permits fast pricing. Pricing stitches together a
sequence of LA arcs hence cycles localized in space are easily prevented. LA route relaxations are no looser
and potentially much tighter than ng-route relaxations. Furthermore, we show that LA routes can be used
alongside DSSR to produce negative reduced cost elementary routes efficiently during pricing.

Additionally in future work, we intend to explore the use of subset row inequalities (SRI) in order to
tighten the LP formulation (Jepsen et al. 2008). In this case, valid inequalities are associated with the LA
arcs included in the routes in the restricted master problem (RMP). For example, SRI of size three can be
written in a slightly weakened form as follows. We enforce that the number of LA arcs (in routes in the RMP)
including two or more members of a set of three customers (excluding the final customer of the arc) cannot
exceed one. We can also insert LA arcs into the graphs used in Graph Generation (GG) (Yarkony et al. 2021a,
Yarkony and Regan 2022)) which would permit each GG graph to describe optimal orderings of subsets of
customers and express these valid inequalities in the GG RMP without weakening the LP relaxation.
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In future work we intend to explore the use of an alternatively defined master problem that can express
all LA routes given the set of LA arcs. We would then solve optimization using column generation, where
pricing generates LA arcs.

We also intend to explore the use of LA routes in the context of time windows. Trivially we could compute
for each possible tuple of [start and end time, LA arc] the lowest cost time window feasible path. This path
starts and ends at the same customers as the LA arc and visits the associated customers s.t. the path starts
at the start time and ends prior to the end time. Then we could apply LA routes on a graph where nodes
describe the tuple of [remaining capacity, current time, ng-neighbors visited, current location]. More efficient
mechanisms than enumerating all such time windows for each LA arc would be a fruitful area of exploration.

References

J. Andelmin and E. Bartolini. An exact algorithm for the green vehicle routing problem. Transportation Science, 51
(4):1288–1303, 2017.

F. Babonneau, O. Du Merle, and J.-P. Vial. Solving large-scale linear multicommodity flow problems with an active
set strategy and proximal-accpm. Operations Research, 54(1):184–197, 2006.

F. Babonneau, C. Beltran, A. Haurie, C. Tadonki, and J.-P. Vial. Proximal-accpm: A versatile oracle based optimi-
sation method. In Optimisation, Econometric and Financial Analysis, pages 67–89. Springer, 2007.

R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies for the vehicle routing problem.
Operations Research, 59(5):1269–1283, 2011.

R. Baldacci, A. Mingozzi, and R. Roberti. Recent exact algorithms for solving the vehicle routing problem under
capacity and time window constraints. European Journal of Operational Research, 218(1):1–6, 2012.

R. Baldacci, A. Mingozzi, R. Roberti, and R. W. Calvo. An exact algorithm for the two-echelon capacitated vehicle
routing problem. Operations research, 61(2):298–314, 2013.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch-and-price: Column
generation for solving huge integer programs. Operations Research, 46:316–329, 1996.

E. Bartolini, J.-F. Cordeau, and G. Laporte. Improved lower bounds and exact algorithm for the capacitated arc
routing problem. Mathematical Programming, 137(1):409–452, 2013.

H. Ben Amor and J. Desrosiers. A proximal trust-region algorithm for column generation stabilization. Computers
& Operations Research, 33(4):910–927, 2006.
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