Skip to content
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Technical Report

Transit Corridor Study

 
Download PDF  (6.60 MB)
Publication Date: 2021
Summary:

This study is sponsored by Amazon, Bellevue Transportation department, Challenge Seattle, King County Metro, Seattle Department of Transportation, Sound Transit, and Uber, with support from the Mobility Innovation Center at UW CoMotion.

Population and extended economic growth in many Seattle neighborhoods are driving increased demand for private car travel along with transportation services such as ridehailing and on-demand delivery. Together, these trends are adding to existing demand for loading and unloading operations throughout the city, and exacerbating traffic congestion. Anecdotal evidence indicates that passenger/delivery vehicle stops at or next to transit stops can interfere with bus operations, causing longer or more volatile delays. The increased travel times and reduced reliability further erode the attractiveness of transit to travelers. Thus, it is important to understand how transit, ridehailing, and goods delivery vehicles interact in terms of both operations and travel demand.
This project focuses on the analysis of open-source transit data to screen for locations with slow and/or unreliable bus travel times, and couple that data with interference observation, environmental, and traffic-related data to potentially predict the likely causes. We have developed tools to identify transit corridors with high levels of interference from other road users, including passenger cars, ridehailing vehicles and goods delivery vehicles. These tools are applied to transit corridors in Seattle and Bellevue, and methods have been developed to identify likely sources of interference from available data.
We drew on multiple data sources for identifying high-interference corridors in the region, including:
  • a virtual workshop with participants from beneficiary agencies and stakeholders to solicit input;
  • an online crowdsourcing survey to engage the community and gather feedback from all road users;
  • route-level ridership data from King County Metro; and
  • aggregated pick-up/drop-off data on ridehailing activities from SharedStreets.
Data was consolidated and 10 corridors were selected based on their likelihood of containing interference between buses and other road users, transit ridership levels, and stakeholder and community feedback.
In addition, we have developed a tool for identifying corridors with slow and/or unreliable bus travel times from open-source real-time transit data. We implemented a pipeline for ingesting and analyzing King County Metro’s real-time Generalized Transit Feed Specification data (GTFS-RT) at 10-second intervals. Using this pipeline, active bus coordinate and schedule adherence data has been scraped and stored to an Amazon Web Services (AWS) server since September 2020. We developed efficient methods to aggregate tracked bus locations and assign them to roadway segments, and quantified delays in terms of schedule deviation and ratio of median to free-flow speeds, among other metrics. We have developed a web based visualization tool to display this data, and it is being updated daily with aggregated performance metrics from our database.
To collect ground truth validation data along selected corridors, we implemented an online data collection tool for field observations, and recruited research assistants to observe bus operations along the study corridors and record information on bus traversals and instances of interference. This dataset is analyzed alongside the GTFS-RT data, environmental, and traffic related data to identify instances of delay and predict the likely causes.
Field data was collected for three weeks along eight of the selected corridors in March 2021, but was later paused due to depressed levels of transportation activity during the COVID-19 pandemic and the current unstable condition of travel choices and city traffic (and thus interferences). Preliminary analysis on the collected data revealed that there is not a substantial effect shown in the GTFS-RT data when a bus is interfered with; however, there were not a lot of interference observations in the collected field data. So, it remains to be seen whether the lack of an identifiable effect is due to the lack of ground truth data, lack of precision in the automatic vehicle location system, or the relatively low impact of an interference when compared to the effects of general traffic congestion, signals, and other roadway conditions. A linear regression model was also generated to determine the extent to which roadway characteristics can predict segment performance, which produced mildly predictive results.
As businesses and transit services continue to reopen, there will likely be an increase in the amount of transit interference experienced between buses and other roadway users, which will potentially allow for the gathering of more ground truth validation data. Field observations will resume in late Summer/early Fall 2021 and will continue until enough data is collected to either (1) model connections between observed interference and bus delays in the GTFS-RT data; or (2) determine whether significant delays cannot be linked to observed instances of interference in the study corridors. The GTFS-RT data scraping will continue daily, and summarized in the developed interactive visualization tool.
The major anticipated benefits of the project can be summarized as follows:
  • This work will help identify network-wide road and route segments with slow and/or unreliable bus travel times. We may also be able to identify main causes of delay in the study corridors.
  • Moreover, we expect that this work will generate reusable analytical tools that can be applied by local agencies on an ongoing basis, and by other researchers and transportation agencies in their own jurisdictions.
  • The outcomes of this work will enable identifying corridors with slow and/or unreliable bus travel times as candidates for specific countermeasures to increase transit performance, such as increased enforcement, modified curb use rules, or preferential bus or street use treatments. Targeting such countermeasures towards priority locations will result in faster and more reliable bus operations, and a more efficient transportation network at a lower cost to transit agencies.
Authors: Dr. Andisheh Ranjbari, Zack Aemmer, Borna Arabkhedri, Don MacKenzie
Paper

Challenges in Credibly Estimating the Travel Demand Effects of Mobility Services

 
Download PDF  (3.21 MB)
Publication: Transport Policy
Volume: 103
Pages: 224-235
Publication Date: 2021
Summary:

Mobility services including carsharing and transportation network company (TNC) services have been growing rapidly in North America and around the world. Measuring the effects of these services on traveler behavior is challenging because the results of any such analysis are sensitive to how (1) outcomes are measured and (2) counterfactuals are constructed. The lack of good control groups or randomization of assignment leaves lingering uncertainty over the contributions of selection bias and treatment effects to reported differences in travel behavior between users and non-users of these services. This paper reports on two approaches for measuring the effects of mobility service adoption on travel rate and car ownership. We first tried a pretest-posttest randomized encouragement experiment to deal with the shortcomings of poor control groups. Then, we turned to the approach of self-reported effects based on hypothetical controls to investigate whether variations in survey question presentation could influence respondents’ answers and thus lead to changes in estimated effects. The data to conduct this study came from two sources: a panel survey administered by the authors at the University of Washington (UW), and a survey by Populus Technologies, Inc. (Populus). Various statistical tests were applied to analyze the data, and the results highlight the pivotal role that the research design plays in influencing the outcomes, and manifest the fundamental challenge of establishing credible estimates of the causal effects of adopting mobility services on travel behaviors.

Authors: Dr. Andisheh Ranjbari, Xiao Wen, Fan Qi, Regina R. Clewlow, Don MacKenzie
Recommended Citation:
Xiao Wen, Andisheh Ranjbari, Fan Qi, Regina R. Clewlow, Don MacKenzie. Challenges in credibly estimating the travel demand effects of mobility services. Transport Policy, (103:224-235) 2021. https://doi.org/10.1016/j.tranpol.2021.02.001.
Report

Curbing Conflicts: Curb Allocation Change Project Report

 
Download PDF  (4.05 MB)
Publication Date: 2019
Summary:

Like many congested cities, Seattle is grappling with how best to manage the increasing use of ride-hailing services by Transportation Network Companies (TNCs) like Uber and Lyft. According to a 2018 Seattle Times analysis, TNC ridership in the Seattle region has grown to more than five times the level it was in the beginning of 2015, providing, on average, more than 91,000 rides a day in 2018. And the newspaper reports Uber and Lyft trips are heavily concentrated in the city’s densest neighborhoods, where nearly 40,000 rides a day start in ZIP codes covering downtown, Belltown, Capitol Hill and South Lake Union.

This University of Washington (UW) study focuses on a strategy to manage TNC driver stops when picking up and dropping off passengers to improve traffic flow in the South Lake Union (SLU) area. SLU is the site of the main campus for Amazon, the online retail company. The site is known to generate a large number of TNC trips, and Amazon reports high rates of ride-hailing use for employee commutes. This study also found that vehicle picking-up/dropping-off passengers make up a significant share of total vehicle activity in SLU. The center city neighborhood is characterized by multiple construction sites, slow speed limits (25 mph), and heavy vehicle and pedestrian traffic.

Broad concerns about congestion, safety, and effective curb use led to this study, conducted by researchers at the UW’s Urban Freight Lab and Sustainable Transportation Lab. Amazon specifically was concerned about scarcity of curb space where TNC drivers could legally and readily stop to pick up and drop off passengers. Without dedicated load/unload curb space, TNC vehicles stop and wait at paid parking spots, other unauthorized curb spots, or in the travel lane itself, potentially blocking or slowing traffic. To try to mitigate the impacts of passenger pick-up/drop-off activity on traffic, the city proposed a strategy of increasing passenger loading zone (PLZ) spaces while Uber and Lyft implemented a geofence, which directs their drivers and passengers to designated pick-up and drop-off locations on a block. (Normally, drivers pick up or drop off passengers at any address a rider requests via the ride-hailing app.)

By providing ample designated pick-up and drop-off spots along the curb, the thinking goes, TNC drivers would reduce the frequency with which they stop in the travel lane to pick up or drop off passengers and the time they stay stopped there. By these measures, this study’s findings show the approach was successful. But it is important to note that the strategy is not a silver bullet for solving traffic congestion—nor is it designed as such. It is also important to note that any initiative to manage use of curbs and roads (by TNCs or others) is part of a city’s broader transportation policy framework and goals.

For this study, researchers analyzed an array of data on street and curb activity along three block-faces on Boren Ave N in December 2018 and January 2019. At a minimum, data were collected during the morning and afternoon peak travel times (with some collected 24 hours a day). The research team collected data using video and sensor technology as well as in-person observation. Researchers also surveyed TNC passengers for demographic, trip-related and satisfaction data. The five Amazon buildings in the area studied house roughly 8,650 employees. Researchers collected data in three stages. Phase 1, the study baseline, was before PLZs were added and geofencing started. Phase 2 was after the new PLZs were added, expanding total PLZ curb length from 20 feet (easily filled by one to two vehicles) to 274 feet. Phase 3 was after geofencing was added to the expanded PLZs. The added PLZ spaces were open to any passenger vehicle—not just TNC vehicles—weekdays from 7am to 10am and 2pm to 7pm. (Permitted food trucks were authorized from 10am to 2pm.)

Note that while other cities can learn from this analysis, the findings apply to streets with comparable traffic speed, mix of roadway users, and street design.

The study’s main findings include:

  • A significant percentage of vehicles performing a pick-up/drop-off stop in the travel lane. Those in-lane stops appear connected to the lack of available designated curb space: Adding PLZs and geofencing increased driver compliance in stopping at the curb versus stopping in the travel lane to load and unload passengers. But it was not lack of curb space alone that influenced driver activity: Between 7 percent and 10 percent of drivers still stopped in the travel lane even when PLZs were empty. After adding PLZs and geofencing, in-lane stops fell from 20 percent to 14 percent for pick-ups and from 16 percent to 15 percent for drop-offs.
  • Adding PLZs and geofencing reduced the average amount of time drivers stopped to load and unload passengers. For example, 90 percent of drop-offs took less than 1 minute 12 seconds, 42 seconds faster than the average with the added PLZs alone.
  • While curb occupancy increased after adding PLZs and geofencing, occupancy results show the current allocation of PLZ spaces is more than what is needed to meet observed demand: Average PLZ occupancy remained under 20 percent after PLZ expansion, even during peak commute hours.
  • Vehicles picking-up/dropping-off passengers account for a significant share of total traffic volume in the study area: during peak hours the observed average percentage of vehicles performing a pick-up/drop-off with respect to the total traffic volume was 29 percent (in Phase 1), 32 percent (in Phase 2) and 39 percent (in Phase 3).
  • High volumes of pedestrians (400-500 per hour on average) cross the street at points where there was no crosswalk. Passengers picked-up/dropped-off constituted a fraction (five to seven percent) of those pedestrians, but high rates of passengers (30 to 40 percent) cross the street at non-crosswalk locations.
  • Adding PLZs and geofencing did not have a significant impact on traffic safety. Researchers found no significant change in the number of observed conflicts from baseline to the addition of PLZs and geofencing. Conflicts are situations where a vehicle, bike, or pedestrian is interrupted, forced to alter their path, or engaged in a near-miss situation. Conflicts include vehicles passing in the oncoming traffic lane. • Adding PLZs and geofencing also did not produce a significant impact on roadway travel speed.
  • Of the 116 TNC passengers surveyed in the study area:
    • Roughly 40 percent to 50 percent said their trip was work related. More than half said they used ride-hailing service at least once a week and 70 percent or more used TNC alone (versus in combination with other transportation options) to get from their origin to their destination.
    • Most responded positively to the added PLZs and geofence: 79 percent rated their pick-up satisfactory and 100 percent rated their drop-off satisfactory as compared to 72 percent and 89 percent in the baseline.
    • Nearly half said they would have taken transit and one-third would have walked if ride-hailing was not available.
    • 40 percent requested a shared TNC vehicle in Phase 1 and 47 percent in Phase 3.

The study suggests that while vehicles picking-up/dropping-off passengers account for a significant share of traffic volume in SLU, they are not the primary cause of congestion. Myriad factors impact neighborhood congestion, including high vehicle volume overall and bottlenecks moving out of the neighborhood onto regional arterials. As researchers observed in the afternoon peak, these bottlenecks cause spillbacks onto local streets. Amazon garages exit vehicles onto streets that then feed into these clogged arterials.

Regarding traffic safety in SLU, this study was not designed to assess whether TNC driver behavior on average is safer or less safe than that of other vehicles. It is important to understand the safety and speed findings in the context of the SLU traffic environment. Drivers tend to drive at relatively slow speeds, navigating around high pedestrian and jaywalking volumes, and seem relatively comfortable stopping in the middle of the street for short periods of time. Due to the nature of area traffic, this seems to have relatively little impact on other drivers. Drivers appear to anticipate both this behavior and the high volumes of vehicles moving onto/off the curb and into/out of driveways and alleys.

Whether the strategy this study analyzed is recommended depends on a city’s transportation goals and approach. The researchers found the increased PLZ allocation and geofencing strategy worked in that it improved driver compliance, reduced dwell times, and boosted TNC user satisfaction. However, this may encourage commuters to use TNC. The passenger survey clearly shows that TNC service is attracting passengers who would have otherwise walked or used transit. While in the short term the increased PLZs and geofencing had a positive effect on traffic, if this induces TNC demand, there could be larger, more negative long-term consequences. If the end goal is to reduce traffic congestion, measures to reduce—rather than encourage—TNC and passenger car use as the predominant mode of commuting will yield the most substantial benefits.


In the news:

Geekwire: As Uber and Lyft pick-ups and drop-offs clog traffic, new study calls load zones a move in right direction

The Seattle Times: Seattle Uber and Lyft drivers often stop in the street to pick up or drop off riders. Here’s a way to reduce that.

Recommended Citation:
Goodchild, Anne. Giacomo dalla Chiara. Jose Luis Machado. Andisheh Ranjbari. (2019) Curb Allocation Change Project.