Skip to content
Report

Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities

 
Download PDF  (1.27 MB)
Publication Date: 2023
Summary:

Freight load and unload facilities located off the public right-of-way are typically not documented in publicly available databases. Without detailed knowledge of these facilities, i.e. private freight load and unload infrastructure, cities are limited in their ability to complete system-wide freight planning and to comprehensively evaluate the total supply of load and unload spaces in the city. To address this challenge, this research describes the development and application of a data collection methodology and a typology of private freight load/unload facilities for their inventory and documentation in dense urban centers.

The tools developed in this research are practice-ready and can be implemented in other cities to support research, policy and planning approaches that aim to improve the urban freight system. Assessment of the degree of harmonization between the current delivery vehicle dimensions and infrastructure they service is a crucial step of any policy that addresses private freight load/unload infrastructures. This includes providing: the adequate access dimensions, capacity to accommodate the volume and vehicle type, and an effective connecting design between the facilities and the public right-of-way.

A case study in Downtown Seattle found more than 337 private freight facilities for loading/unloading of goods but that translates into only 5% of the buildings in the densest areas of the city had these facilities. Alleys were found to play a critical role since 36% of this freight infrastructure was accessed through alleys.

This research results in the first urban inventory of private freight load/unload infrastructure, which has been shown to be a valuable resource for the City of Seattle that can be used to better understand and plan for the urban freight system.

Recommended Citation:
Machado León, J., Girón-Valderrama, G., Goodchild, A., & McCormack, E. Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities (2023).
Report

Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (7.07 MB)
Publication Date: 2022
Summary:

This three-year project supported by the U.S. Department of Energy Vehicle Technologies Office has the potential to radically improve the urban freight system in ways that help both the public and private sectors. Working from 2018-2021, project researchers at the University of Washington’s Urban Freight Lab and collaborators at the Pacific Northwest National Laboratory have produced key data, tested technologies in complex urban settings, developed a prototype parking availability app, and helped close major knowledge gaps.

All the fruits of this project can be harnessed to help cities better understand, support and actively manage truck load/unload operations and their urban freight transport infrastructure. Project learnings and tools can be used to help make goods delivery firms more efficient by reducing miles traveled and the time it takes to complete deliveries, benefitting businesses and residents who rely on the urban freight system for supplies of goods. And, ultimately, these project learnings and tools can be used to make cities more livable by minimizing wasted travel, which, in turn, contributes to reductions in fuel consumption and emissions.

Cities today are challenged to effectively and efficiently manage their infrastructure to absorb the impacts of ever-increasing e-commerce-fueled delivery demand. All delivery trucks need to park somewhere to unload and load. Yet today’s delivery drivers have no visibility on available parking until they arrive at a site, which may be full. That means they can wind up cruising for parking, which wastes time and fuel and contributes to congestion. Once drivers do find parking, the faster they can unload at the spot, the faster they free up space for other drivers, helping others avoid circling for parking. This makes the parking space—and thus the greater load/unload network—more productive.

To this end, the research team successfully met the project’s three goals, developing and piloting strategies and technologies to:

  • Reduce parking-seeking behavior in the study area by 20%
  • Reduce parcel truck dwell time (the time a truck spends in a spot to load/unload) in the study area by 30%
  • Increase curb space, alley space, and private loading bay occupancy rates in the study area

The research team met these goals by creating and piloting on Seattle streets OpenPark, a first-of-its-kind real-time and forecasting curb parking app customized for commercial delivery drivers—giving drivers the “missing link” in their commonly used routing tools that tell them how best to get to delivery locations, but not what parking is available to use when they get there. Installing in-ground sensors on commercial vehicle load zones (CVLZs) and passenger load zones (PLZs) in the 10-block study area in Seattle’s downtown neighborhood of Belltown let researchers glean real-time curb parking data. The research team also met project goals by piloting three parcel lockers in public and private spaces open to any delivery carrier, creating a consolidated delivery hub that lets drivers complete deliveries faster and spend less time parked. Researchers collected and analyzed data to produce the first empirical, robust, statistically significant results as to the impact of the lockers, and app, on on-the-ground operations. In addition to collecting and analyzing sensor and other real-time and historical data, researchers rode along with delivery drivers to confirm real-world routing and parking behavior. Researchers also surveyed building managers on their private loading bay operations to understand how to boost usage.

Key findings that provide needed context for piloting promising urban delivery solutions:

  • After developing a novel model using GPS data to measure parking-seeking behavior, researchers were able to quantify that, on average, a delivery driver spends 28% of travel time searching for parking, totaling on average one hour per day for a parcel delivery driver. This project offers the first empirical proof of delivery drivers’ cruising for parking.
  • While many working models to date have assumed that urban delivery drivers always choose to double-park (unauthorized parking in the travel lane), this study found that behavior is rare: Double parking happened less than 5% of the times drivers parked.
  • That said, drivers do not always park where they are supposed to. The research team found that CVLZ parking took place approximately 50% of the time. The remaining 50% included mostly parking in “unauthorized” curb spaces, including no-parking zones, bus zones, entrances/exits of parking garages, etc.
  • Researcher ride-alongs with delivery drivers revealed parking behaviors other than unauthorized parking that waste valuable time and fuel: re-routing (after failing to find a desired space, giving up and doubling back to the delivery destination later in the day) and queuing (temporarily parking in an alternate location and waiting until the desired space becomes available).
  • Some 13% of all parking events in CVLZ spaces were estimated as overstays; the figure was 80% of all parking events in PLZ spaces. So, the curb is not being used efficiently or as the city intended as many parking events exceed the posted time limit.
  • Meantime, there is unused off-street capacity that could be tapped in Seattle’s Central Business District. Estimates show private loading bays could increase area parking capacity for commercial vehicles by at least 50%. But surveys show reported use of loading bays is low and property managers have little incentive to maximize it. Property managers find curb loading zones more convenient; it seems delivery drivers do, too, as they choose to park at the curb even when loading bay space is available.

Key findings from the technology and strategies employed:

Carriers give commercial drivers routing tools that optimize delivery routes by considering travel distance and (often) traffic patterns—but not details on parking availability. Limited parking availability can lead to significant driver delays through cruising for parking or rerouting, and today’s drivers are largely left on their own to assess and manage their parking situation as they pull up to deliver.

The project team worked closely with the City of Seattle to obtain permission to install parking sensors in the roadway and communications equipment to relay sensor data to project servers. The team also developed a fully functional and open application that offers both real-time parking availability and near-time prediction of parking availability, letting drivers pick forecasts 5, 15, or 30 minutes into the future depending on when the driver expects to arrive at the delivery destination. Drivers can also enter their vehicle length to customize availability information.

After developing, modeling, and piloting the real-time and forecasting parking app, researchers conducted an experiment to determine how use of the app impacted driver behavior and transportation outcomes. They found that:

  • Having access to parking availability via the app resulted in a 28% decrease in the time drivers spent cruising for parking. Exceeding our initial goal of reducing parking seeking behavior by 20%. In the study experiment, all drivers had the same 20-foot delivery van and the same number of randomly sampled delivery addresses in the study area. But some drivers had access to the app; others did not.
  • Preliminary results based on historic routing data show that the use of such a real-time curb parking information and prediction app can reduce route time by approximately 1.5%. An analysis collected historic parking occupancy and cruising information and integrated it into a model that was then used to revise scheduling and routing. This model optimally routed vehicles to minimize total driving and cruising time. However, since the urban environment is complex and consists of many random elements, results based on historic data underly a high amount of randomness. Analysis on synthetic routes suggests including parking availability in routing systems is especially promising for routes with high delivery density and with stops where the cruising time delays vary a lot along the planned time horizon; here, route time savings can reach approximately 20.4% — conditions outlined in the report.
  • The central tradeoff among four approaches to parking app architecture going forward is cost and accuracy. The research team found that it is possible to train machine learning models using only data from curb occupancy sensors and reach a higher than 90% accuracy. Training of state-space models (those using inputs such as time of day, day of the week, and location to predict future parking availability) is computationally inexpensive, but these models offer limited accuracy. In contrast, deep-learning models are highly accurate but computationally expensive and difficult to use on streaming data.

Common carrier lockers create delivery density, helping delivery people complete their work faster. The driver parks next to the locker system, loads packages into it, and returns to the truck. When delivery people spend less time going door-to-door (or floor-to-floor inside a building), it cuts the time their truck needs to be parked, increasing turnover and adding parking capacity in crowded cities. This project piloted and collected data on common carrier lockers in three study area buildings.

From piloting the common carrier parcel lockers, researchers found that:

  • The implementation of the parcel locker allowed delivery drivers to increase productivity: 40%-60% reduction in time spent in the building and 33% reduction in vehicle dwell time at the curb.
Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraFiete KruteinDr. Andisheh RanjbariDr. Ed McCormackElizabeth Guzy, Dr. Vinay Amatya (PNNL), Ms. Amelia Bleeker (PNNL), Dr. Milan Jain (PNNL)
Recommended Citation:
Urban Freight Lab (2022). Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Paper

Providing Curb Availability Information to Delivery Drivers Reduces Cruising for Parking

 
Download PDF  (2.03 MB)
Publication: Scientific Reports
Volume: (2022) 12:19355
Publication Date: 2022
Summary:

Delivery vehicle drivers are experiencing increasing challenges in finding available curb space to park in urban areas, which increases instances of cruising for parking and parking in unauthorized spaces. Policies traditionally used to reduce cruising for parking for passenger vehicles, such as parking fees and congestion pricing, are not effective at changing delivery drivers’ travel and parking behaviors.

Intelligent parking systems that use real-time curb availability information to better route and park vehicles can reduce cruising for parking, but they have never been tested for delivery vehicle drivers.

This study tested whether providing real-time curb availability information to delivery drivers reduces the travel time and distance spent cruising for parking. A curb parking information system deployed in a study area in Seattle, Wash., displayed real-time curb availabilities on a mobile app called OpenPark. A controlled experiment assigned drivers’ deliveries in the study area with and without access to OpenPark.

The data collected showed that when curb availability information was provided to drivers, their cruising for parking time significantly decreased by 27.9 percent, and their cruising distance decreased by 12.4 percent. These results demonstrate the potential for implementing intelligent parking systems to improve the efficiency of urban logistics systems.

Recommended Citation:
Dalla Chiara, G., Krutein, K.F., Ranjbari, A. et al. Providing curb availability information to delivery drivers reduces cruising for parking. Sci Rep 12, 19355 (2022). https://doi.org/10.1038/s41598-022-23987-z
Presentation

Investigation of Private Loading Bay Operations in Seattle’s Central Business District

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Cities need new load/unload space concepts to efficiently move freight, particularly as autonomous vehicles (both passenger and freight) become feasible. This research aims to: understand the importance of off-street commercial parking, understand how off-street facilities are managed, and determine whether off-street commercial parking is an underutilized resource for urban goods delivery.

Researchers determined the locations of commercial and residential buildings in Seattle’s Central Business District with off-street delivery infrastructure, established communication with property management or building operators, and conducted interviews regarding facility management, usage, roadblocks in design/operations, and utilization.

This research finds that overbooking of off-street space is infrequent, most facility management is done by simple tenant booking systems, buildings relying primarily on curb space notes that infrastructure and operations were hindered by municipal services — especially when connecting to alleyways.

Recommended Citation:
Griffin Donnelly and Anne Goodchild. Investigation of Private Loading Bay Operations in Seattle's Central Business District. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Technical Report

Urban Goods Delivery Toolkit

Publication Date: 2020
Summary:

This Toolkit is designed to help transportation professionals and researchers gather key data needed to make the Final 50 Feet segment function as efficiently as possible, reducing both the time trucks park in load/unload spaces and the number of failed first delivery attempts.

In addition, the toolkit can help transportation planners, traffic engineers, freight system managers, parking and operations strategists, and researchers build a fundamental knowledge base for planning; managing parking operations; managing emergency management and response; updating traffic, land use and building codes; and modeling future scenarios and needs.

In short, the toolkit can be used to help cities meet the ever-increasing demand for trucks and other load/unload activities.

Recommended Citation:
Urban Freight Lab. (2020) Urban Goods Delivery Toolkit. https://depts.washington.edu/toolkit
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.
Technical Report

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Technical Report)

 
Download PDF  (5.66 MB)
Publication Date: 2020
Summary:

This report presents research to improve the understanding of curb space and delivery needs in urban areas. Observations of delivery operations to determine vehicle type, loading actions, door locations, and accessories used were conducted. Once common practices had been identified, then simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities.

A bicycling simulator experiment examined bicycle and truck interactions in a variety of CVLZ designs. The experiment was completed by 50 participants. The bicycling simulator collected data regarding a participant’s velocity, lane position, and acceleration. Three independent variables were included in this experiment: pavement marking (No, Minimum, or Recommended CVLZ), Courier Position (none, behind vehicle, on driver’s side), and Accessory (none or hand truck). The results support the development of commercial loading zone design recommendations that will allow our urban street system to operate more efficiently, safely, and reliably for all users.

As urban populations and freight activities grow, there is continued pressure for multiple modes to share urban streets and compete for curb space. Cities are recognizing curb space as valuable public real estate that must be better understood and designed in order to improve the quality of life for residents and the transportation systems of cities.

Current commercial vehicle load zones are not well designed to accommodate safe, efficient, and reliable deliveries. Commercial vehicles using urban curbside loading zones are not typically provided with a consistent envelope, or a space allocation adjacent to the vehicle for deliveries. While completing loading and unloading activities, drivers are required to walk around the vehicle, extend ramps and handling equipment, and maneuver goods; these activities require space around the vehicle. But these unique space needs of delivery trucks are not commonly acknowledged by or incorporated in current urban design practices. Due to this lack of a truck envelope, drivers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities as well as walking in traffic lanes. These actions put themselves, and other road users in direct conflict and potentially in harm’s way.

This project improves our understanding of curb space requirements and delivery needs in urban areas. The research approach involved the observation of delivery activities operations to measure the envelope required for different vehicle types, loading actions, door locations, and accessories. Once the envelope was determined the (simulator was used).

Common loading and unloading practices and where freight activities occurred in relationship to trucks (sides, back, or front) were initially identified by observing twenty-five curbside deliveries in urban Seattle. The research team next collaborated with three delivery companies with active operations in urban areas. These companies proved access to their facilities, nine different urban delivery vehicles, and a variety of loading accessories. The research team initially recorded the commercial vehicle’s closed vehicle footprint without any possible extensions engaged. Next the open vehicle footprint was measured when all vehicle parts such as doors, lift gates, and ramps were extended for delivery operations. Finally, the active vehicle footprint was recorded as the companies’ drivers simulated deliveries which allowed the research team to observe and precisely measure driver and accessory paths around the vehicle.

This process resulted in robust measurements, tailored to different types of truck configurations, loading equipment and accessories, of the operating envelope around a commercial vehicle. These measurements, added to the foot print of a user-selected delivery truck sizes, provides the envelope needed to reduce conflicts between truck loading and unloading activities and adjacent pedestrian, bicycle, and motor vehicle activities.

A bicycling simulator experiment examined bicycle and truck interactions in a variety of CVLZ designs. The experiment was successfully completed by 50 participants. The bicycling simulator collected data regarding a participant’s velocity, lane position, and acceleration.

Three independent variables were included in this experiment: pavement marking (No, Minimum, or Recommended CVLZ), Courier Position (none, behind vehicle, on driver’s side), and Accessory (none or hand truck). Several summary observations resulted from the bicycling simulator experiment:

  • A bicyclist passing by no loading zone (truck is obstructing bike lane) or minimum loading zone (truck next to the bike lane without a buffer) had a significantly lower speed than a bicyclist passing a preferred loading zone (truck has an extra buffer). A smaller loading zone had a ix decreasing effect on mean speed, with a courier exiting on the driver side of the truck causing the lowest mean speed.
  • A courier on the driver’s side of the truck had an increasing effect on mean lateral position, with a no CVLZ causing the highest divergence from the right edge of the bike lane. Consequently, bicyclists shifted their position toward the left edge of bike lane and into the adjacent travel lane. Moreover, some bicyclists used the crosswalk to avoid the delivery truck and the travel lane.
  • In the presence of a courier on the driver’s side of the truck, the minimum CVLZ tended to be the most disruptive for bicyclists since they tended to depart from the bike lane toward the adjacent vehicular travel lane.
  • When the bicyclist approached a delivery vehicle parked in the bicycle lane, they had to choose between using the travel lane or the sidewalk. About one third of participants decided to use the sidewalk.

From our results, commercial loading zone best practice envelope recommendations can be developed that will allow our urban street system to operate more efficiently, safely, and reliably for all users

Authors: Dr. Ed McCormackDr. Anne GoodchildManali Sheth, David S. Hurwitz, Hisham Jashami, Douglas P. Cobb
Recommended Citation:
McCormack, Ed. Anne Goodchild, Manali Sheth, et.al. (2020). Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Paper

Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint

 
Download PDF  (2.13 MB)
Publication: Cities
Volume: 105
Publication Date: 2020
Summary:

There is growing pressure in cities to unlock the potential of every public infrastructure element as density and demand for urban resources increase. Despite their historical role as providing access to land uses for freight and servicing, alleys have not been studied as a resource in modern freight access planning.

The authors developed a replicable data collection method to build and maintain an alley inventory and operations study focused on commercial vehicles. A Seattle Case study showed that 40% of the urban center city blocks have an alley. 90% of those alleys are wide enough to accommodate only a single lane for commercial vehicles. 437 parking operations were recorded in seven alleys during business hours and found that all alleys were vacant 50% of the time.

This confirms that, in its alleys, Seattle has a valuable resource as both space for freight load/unload; and direct access to parking facilities and business entrances for commercial, private, and emergency response vehicles.

However, alley design features and the prevalence of parking facilities accessed through the alley may restrict the freight load/unload space in the alley. Future efforts should investigate how to better manage these infrastructures.

Recommended Citation:
Machado-León, Girón-Valderrama, G. del C., & Goodchild, A. (2020). Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint. Cities, 105. https://doi.org/10.1016/j.cities.2020.102847