Skip to content
Report

The Final 50 Feet of the Urban Goods Delivery System (Final Report)

 
Download PDF  (6.73 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Goods delivery is an essential but little-noticed activity in urban areas. For the last 40 years, deliveries have been mostly performed by a private sector shipping industry that operates within general city traffic conditions. However, in recent years e-commerce has created a rapid increase in deliveries, which implies an explosion of activity in the future.

Meeting current and future demand is creating unprecedented challenges for shippers to meet both increased volumes and increasing customer expectations for efficient and timely delivery. Anecdotal evidence suggests that increasing demand is overwhelming goods delivery infrastructure and operations. Delivery vehicles parked in travel lanes, unloading taking place on crowded sidewalks, and commercial truck noise during late night and early morning hours are familiar stories in urban areas.

These conditions are noticeable throughout the City of Seattle as our population and employment rapidly increase. However, goods delivery issues are particularly problematic in Seattle’s high-density areas of Downtown, Belltown, South Lake Union, Pioneer Square, First Hill, Capitol Hill and Queen Anne, described as Seattle’s “Center City”. Urban goods transportation makes our economy and quality of life possible.

As the Seattle Department of Transportation (SDOT) responds to the many travel challenges of a complex urban environment, we recognize that goods delivery needs to be better understood and supported to retain the vitality and livability of our busiest neighborhoods.

U.S. cities do not have much information about the urban goods delivery system. While public agencies have data on city streets, public transportation and designated curbside parking, the “final 50 feet” in goods delivery also utilizes private vehicles, private loading facilities, and privately-owned and operated buildings outside the traditional realm of urban planning.

Bridging the information gap between the public and private sectors requires a new way of thinking about urban systems. Specifically, it requires trusted data sharing between public and private partners, and a data-driven approach to asking and answering the right questions, to successfully meet modern urban goods delivery needs.

The Urban Freight Lab (UFL) provides a standing forum to solve a range of short-term as well as long-term strategic urban goods problem solving, that provides evidence of effectiveness before strategies are widely implemented in the City.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System.
Paper

Ecommerce and Logistics Sprawl: A Spatial Exploration of Last-Mile Logistics Platforms

 
Download PDF  (3.64 MB)
Publication: Journal of Transport Geography
Volume: 112
Publication Date: 2023
Summary:

The rise of ecommerce helped fuel consumer appetite for quick home deliveries. One consequence has been the placing of some logistics facilities in proximity to denser consumer markets. The trend departs from prevailing discussion on “logistics sprawl,” or the proliferation of warehousing into the urban periphery. This study spatially and statistically explores the facility- and region-level dimensions that characterize the centrality of ecommerce logistics platforms. Analyzing 910 operational Amazon logistics platforms in 89 U.S. metropolitan statistical areas (MSAs) between 2013 and 2021, this study estimates temporal changes in distances to relative, population centroids and population-weighted market densities. Results reveal that although some platforms serving last-mile deliveries are located closer to consumers than upstream distribution platforms to better fulfill time demands, centrality varies due to facility operating characteristics, market size, and when the platform opened.

Ecommerce has transformed the “consumption geography” of cities. These transformations have major implications for shopping behaviors and retail channels, last-mile operations and delivery mode choice, the management and pricing of competing uses for street and curb space, and the spatial ordering and functional role of logistics land uses. In the latter case, researchers have observed a diversification of logistics platforms to more efficiently serve home delivery demand. These platforms range from “dark stores” and “microfullfilment centers” that fulfill on-demand deliveries and omni-channeled retail without a consumer facing storefront, multi-use urban distribution centers that convert unproductive sites (e.g., abandoned rail depots) to more lucrative land uses, and “microhubs” that stage transloading between cargo vans and e-bicycles suited for dense urban neighborhoods.

Logistics spaces play an important role in improving urban livability and environmental sustainability. Planning decisions scale geographically from the region-level to the curb. Facilities such as urban consolidation centers and loading zones can mitigate common delivery inefficiencies, such as low delivery densities and “cruising” for parking, respectively. These inefficiencies generate many negative externalities including climate emissions, air and noise pollution, congestion, and heightened collision risks, especially for vulnerable road users such as pedestrians and bicyclists. Limited commercial data has made it difficult, however, to observe spatial patterns with regards to ecommerce logistics platforms.

Using detailed proprietary data, this paper explores the evolving spatial organization of ecommerce logistics platforms. Given the company’s preeminence as the leading online retailer in the U.S., the paper presents Amazon as a case study for understanding warehousing and distribution (W&D) activity in the larger ecommerce space. Utilizing proprietary data on Amazon logistics facilities between 2013 and 2021, this research explores the geographic shape and explanatory dimensions of ecommerce within major U.S. metropolitan areas. In the following section, this study defines the state of research related to broader W&D land use and its implications to ecommerce’s distinct consumption geography. Afterwards, two methodologies for measuring logistics centrality are tested: a temporally relative barycenter-based metric, the prevailing method in literature, and another GIS-based, population-weighted service distance metric. The two measurements reveal nuances between facility- and region-level differences in the spatial organization of ecommerce platforms, which has yet to be fully researched. After presenting results from an exploratory regression analysis, this study discusses implications for future urban logistics land use and transport decisions.

Recommended Citation:
Fried, T., & Goodchild, A. (2023). E-commerce and logistics sprawl: A spatial exploration of last-mile logistics platforms. Journal of Transport Geography, 112, 103692. https://doi.org/10.1016/j.jtrangeo.2023.103692

Last-Mile Freight Curb Access: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Use

The U.S. Department of Transportation (USDOT) awarded a $2 million grant under its SMART (Strengthening Mobility and Revolutionizing Transportation) grant program to support the development of the Last-Mile Freight Curb Access Program: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Utilization, a collaboration between the Urban Freight Lab, Seattle Department of Transportation, and Open Mobility Foundation. This project will develop sensor-based technology solutions that address to transportation problems, enabling commercial vehicles to make faster, safer, and more efficient deliveries with reduced vehicle emissions.

The Last Mile Freight Curb Access Program focuses on providing commercial vehicle drivers with real-time information to park legally and expedite deliveries. Research from a 2019 Urban Freight Lab study showed that more than 40% of commercial vehicles in downtown Seattle park in unauthorized locations. Another study showed that equipping commercial vehicles with real-time parking availability and load zone information could reduce their “cruising” time by nearly 30%. The project aims to make information about curbside regulations digitized and more accessible to commercial drivers, and leverage this data to improve regulations.

Other cities including Portland, San Francisco, San Jose, Los Angeles, Minneapolis, Philadelphia, and Miami-Dade County have also received SMART grants to implement similar technology-based solutions for improving curb access.

Background

Since 2010, the Seattle Department of Transportation (SDOT) has been a national leader in data-driven curbside management by using parking occupancy data to set on-street parking rates. We proposed to extend our data-driven pricing and curb literacy to a new use: designated commercial vehicle load zones (CVLZ) and the commercial vehicle permit (CVP). Our plan is to establish new CVP policies in close collaboration with urban freight companies, adjacent businesses, and other critical stakeholders; implement a digital CVP built on the Curb Data Specification (CDS) that enables capture of curb utilization measurements and communicates demand management policies; and transform our legacy digital curb inventory to the national CDS standard.

Strategies

To address these challenges, SDOT proposes a SMART project that will use a combination of digital technologies coupled with targeted outreach. This approach will be implemented through three key strategies:

  1. Engage with local businesses and urban freight companies to understand challenges and build a foundation of trust SDOT will engage with a variety of stakeholders including local neighborhood businesses, commercial vehicle users from large carriers, and commercial vehicle permit (CVP) holders from small and local businesses. The goal is to build trust and work collaboratively with our users to modernize and improve our existing CVP to create a system that works for urban freight companies, local businesses, and benefits the community at large.
  2. Prototype a digital CVP and use findings to modernize and scale the system SDOT will conduct a vendor procurement to prototype and assess a wireless vehicle-to-curb infrastructure (V2I) communication system, built on top of the Curb Data Specification (CDS) standard as a new way to manage our CVP. Data collected through this prototype will be leveraged by the UFL to conduct research to develop standardized data collection efforts for commercial curb use and create new data-driven policy and permit recommendations.
  3. Collaborate with a national cohort of cities implementing the Curb Data Specification SDOT will partner with the Open Mobility Foundation (OMF) and collaborate with a national cohort of OMF member cities to support the shared objectives in how CDS can help cities and companies pilot and scale dynamic curb use. SDOT will share lessons from Stage 1 prototyping with OMF cohort cities to strengthen all CDS-related SMART grant projects and better position proven technologies to be implemented at scale for a Stage 2 project. SDOT is uniquely positioned to deliver a successful Stage 1 project focusing on commercial vehicle curb access and utilization given our existing CVP and leadership in data driven curbside management. Specifically, this project will directly address the SMART goals of equity and access, partnerships, and integration and build the foundation for dramatic improvements in safety, reliability, and climate in Stage 2. Our goal is that the Stage 1 learnings will allow us to scale a digital CVP for citywide adoption in Stage 2, thus promoting interoperability of technology solutions to improve curb access for commercial curb users citywide. Our approach centers on stakeholder and community partnerships, data-driven assessment, and technical capacity-building. Potential outcomes for testing and implementation in Stage 2 include updated policies or curb allocations that might address inequities through deeper understanding of the variety of commercial users of the curb, reduced carbon emissions by creating or incenting CV zero emission zones, and decreased impacts to vulnerable road users through optimized curb allocation.

Objectives

The expected benefits of Stage 1 will be threefold:

    1. Rigorously assess the piloted technology system to understand its scaling potential: The project will develop a technology assessment methodology that will look critically at accuracy and data use model development. This assessment will be transparent and developed in collaboration with OMF cohort cities to ensure solutions are scalable while meeting the core needs of Seattle’s digital CVP.
    2. Create a CDS framework for standardizing data collection efforts of commercial curb space: SDOT will share lessons learned from Stage 1 prototyping and policy recommendations with OMF cohort cities to collectively strengthen all CDS-related SMART grant projects and better position proven technologies to be implemented at scale.
    3. Create new data-driven commercial vehicle policy and permit recommendations to be enacted during Stage 2 of this grant

The recommendations will be informed by data models created by the UFL using utilization data from the project overlayed with characteristics of adjacent urban form and land use. These models will help SDOT identify areas for adjustments to existing curb allocation as well as establish a deeper understanding of the variety of commercial vehicle user behavior at the curb to meet climate goals. We anticipate these policies will benefit both curb users and local community members by reducing congestion and creating safer streets.

Roadblocks to Sustainable Urban Freight

While freight transportation is a necessary activity to sustain cities’ social and economic life, enabling the movement and deployment of goods and services in and between urbanized areas, it also accounts for a significant portion of greenhouse gas (GHG) emissions, and therefore it is a major contributor to climate change. Guaranteeing an efficient and sustainable urban freight transport ecosystem is necessary for cities to survive and tackle the climate emergency.
Several stakeholders in the private and public sectors are currently taking action and drafting roadmaps to achieve such goals. However, as the urban freight ecosystem is a complex network of stakeholders, achieving such sustainability goals requires collaboration and coordination between multiple agents.
The project will collect and synthesize expert views from both the private and public sectors on what is needed to sustainably deliver the last mile and aims at identifying the roadblocks towards this goal. All types of goods and services will be considered, with the end goal of raising the entire industry’s understanding of the barriers to achieving sustainable urban freight.

Approach

Task 1: Research Scan (September-November 2020) Subtasks:

  1. identify an accepted and shared definition of sustainable urban freight;
  2. identify and classify the main agents of the urban freight system from both the private and public sectors and their main role in the last-mile ecosystem;
  3. identify and classify the main accepted strategies currently adopted towards sustainability.
The research team will also define the boundaries of the study, including the geographical region of concentration.

Task 2: Private sector expert interviews (December 2020-April 2021)

The main private sector agents identified in Task 1 will include vehicle manufacturers, retailers, carriers and more. The research team will identify and reach out to representatives of at least 15 companies. Participants will be interviewed using an open question format and will have an optional follow-up online survey. The objectives of the interviews and surveys are:
  1. listing the current strategies adopted to reach sustainable urban freight;
  2. understanding what the impacts are of other private and public sectors agents’ decisions on their sustainability strategies;
  3. identifying agents’ needs and obstacles to achieve their stated sustainable goals.

Task 3: Public sector expert interviews (December 2020-April 2021)

The research team will identify different urban typologies, classifying cities into homogeneous groups according to economic, demographic, urban form, mobility and sustainability indicators. The typologies will be used to sample cities from each identified urban typology.
The team will then reach out to representatives from the public sector agents from the sampled cities, including regulators, planners and public utility representatives, and perform a combination of online survey and online/phone interviews. At least 15 representatives from public sector agents will be contacted. The objectives of the interviews are:
  1. listing the current policies adopted by cities towards sustainable urban freight, including infrastructure investments and transport demand management;
  2. understanding what the obstacles are to achieve sustainability goals.

Task 4: Synthesizing research and identifying roadblocks (May-June 2021)

Synthesizing the work of the previous 3 tasks, and applying the research team’s own expertise, this task will identify the key obstacles to sustainable urban freight. Through a review of existing writings, discussions with experts, and their own domain expertise, the research team will identify the obstacles in the areas of transportation technology, infrastructure, and policy. This review will consider the obstacles in public sector, barriers to private business decision making, and where the two sectors need to take a collaborative approach. The results obtained in the study will be made available publicly as a white paper or submitted for scientific journal publication.
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov
Paper

Do Parcel Lockers Reduce Delivery Times? Evidence from the Field

 
Download PDF  (1.61 MB)
Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 172 (2023)
Publication Date: 2023
Summary:

Common carrier parcel lockers have emerged as a secure, automated, self-service means of delivery consolidation in congested urban areas, which are believed to mitigate last-mile delivery challenges by reducing out-of-vehicle delivery times and consequently vehicle dwell times at the curb. However, little research exists to empirically demonstrate the environmental and efficiency gains from this technology. In this study, we designed a nonequivalent group pre-test/post-test control experiment to estimate the causal effects of a parcel locker on delivery times in a residential building in downtown Seattle. The causal effects are measured in terms of vehicle dwell time and the time delivery couriers spend inside the building, through the difference-in-difference method and using a similar nearby residential building as a control. The results showed a statistically significant decrease in time spent inside the building and a small yet insignificant reduction in delivery vehicle dwell time at the curb. The locker was also well received by the building managers and residents.

Recommended Citation:
Ranjbari, A., Diehl, C., Dalla Chiara, G., & Goodchild, A. (2023). Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transportation Research Part E: Logistics and Transportation Review, 172, 103070. https://doi.org/10.1016/j.tre.2023.103070 
Paper

Providing Curb Availability Information to Delivery Drivers Reduces Cruising for Parking

 
Download PDF  (2.03 MB)
Publication: Scientific Reports
Volume: (2022) 12:19355
Publication Date: 2022
Summary:

Delivery vehicle drivers are experiencing increasing challenges in finding available curb space to park in urban areas, which increases instances of cruising for parking and parking in unauthorized spaces. Policies traditionally used to reduce cruising for parking for passenger vehicles, such as parking fees and congestion pricing, are not effective at changing delivery drivers’ travel and parking behaviors.

Intelligent parking systems that use real-time curb availability information to better route and park vehicles can reduce cruising for parking, but they have never been tested for delivery vehicle drivers.

This study tested whether providing real-time curb availability information to delivery drivers reduces the travel time and distance spent cruising for parking. A curb parking information system deployed in a study area in Seattle, Wash., displayed real-time curb availabilities on a mobile app called OpenPark. A controlled experiment assigned drivers’ deliveries in the study area with and without access to OpenPark.

The data collected showed that when curb availability information was provided to drivers, their cruising for parking time significantly decreased by 27.9 percent, and their cruising distance decreased by 12.4 percent. These results demonstrate the potential for implementing intelligent parking systems to improve the efficiency of urban logistics systems.

Recommended Citation:
Dalla Chiara, G., Krutein, K.F., Ranjbari, A. et al. Providing curb availability information to delivery drivers reduces cruising for parking. Sci Rep 12, 19355 (2022). https://doi.org/10.1038/s41598-022-23987-z
Presentation

Improving Delivery Efficiency and Understanding User Behavior through Common Carrier Parcel Lockers

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Common-carrier parcel lockers have emerged as a secure, automated, self-service means of delivery consolidation in congested urban areas, which are believed to mitigate last-mile delivery challenges by reducing out-of-vehicle delivery times and consequently vehicle dwell times at the curb. However, little research exists to empirically demonstrate the environmental and efficiency gains from this technology.

In this study, we designed a nonequivalent group pretest/post-test experiment to estimate the causal effects of a common-carrier locker in a residential building in downtown Seattle, WA. The causal effects are measured in terms of vehicle dwell time and the time delivery drivers spend inside the building, through the difference-in-difference method and using a similar residential building as a control.

The results showed a statistically significant decrease in time spent inside the building and a small yet insignificant reduction in vehicle dwell times.

Recommended Citation:
Andisheh Ranjbari, Caleb Diehl, Giacomo Dalla Chiara, and Anne Goodchild (2022). Improving Delivery Efficiency and Understanding User Behavior through Common Carrier Parcel Lockers. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Presentation

Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Micro-consolidation implementations and pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools.

Recommended Citation:
Şeyma Güneş and Anne Goodchild (2022). Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.