Skip to content
Report

The Final 50 Feet of the Urban Goods Delivery System (Final Report)

 
Download PDF  (6.73 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Goods delivery is an essential but little-noticed activity in urban areas. For the last 40 years, deliveries have been mostly performed by a private sector shipping industry that operates within general city traffic conditions. However, in recent years e-commerce has created a rapid increase in deliveries, which implies an explosion of activity in the future.

Meeting current and future demand is creating unprecedented challenges for shippers to meet both increased volumes and increasing customer expectations for efficient and timely delivery. Anecdotal evidence suggests that increasing demand is overwhelming goods delivery infrastructure and operations. Delivery vehicles parked in travel lanes, unloading taking place on crowded sidewalks, and commercial truck noise during late night and early morning hours are familiar stories in urban areas.

These conditions are noticeable throughout the City of Seattle as our population and employment rapidly increase. However, goods delivery issues are particularly problematic in Seattle’s high-density areas of Downtown, Belltown, South Lake Union, Pioneer Square, First Hill, Capitol Hill and Queen Anne, described as Seattle’s “Center City”. Urban goods transportation makes our economy and quality of life possible.

As the Seattle Department of Transportation (SDOT) responds to the many travel challenges of a complex urban environment, we recognize that goods delivery needs to be better understood and supported to retain the vitality and livability of our busiest neighborhoods.

U.S. cities do not have much information about the urban goods delivery system. While public agencies have data on city streets, public transportation and designated curbside parking, the “final 50 feet” in goods delivery also utilizes private vehicles, private loading facilities, and privately-owned and operated buildings outside the traditional realm of urban planning.

Bridging the information gap between the public and private sectors requires a new way of thinking about urban systems. Specifically, it requires trusted data sharing between public and private partners, and a data-driven approach to asking and answering the right questions, to successfully meet modern urban goods delivery needs.

The Urban Freight Lab (UFL) provides a standing forum to solve a range of short-term as well as long-term strategic urban goods problem solving, that provides evidence of effectiveness before strategies are widely implemented in the City.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System.
Technical Report

Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (2.46 MB)
Publication: U.S. Department of Energy
Publication Date: 2021
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

In Year 2, the team executed the implementation plan:

  • oversaw installation of the in-road sensors, and collecting and processing data,
  • managed installation, marketing and operations of three common locker systems in the pilot test area,
  • tested the prototype smart phone parking app with initial data stream, and
  • developed a truck parking behavior simulation model.
Recommended Citation:
Urban Freight Lab (2021). Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Technical Report

Urban Goods Delivery Toolkit

Publication Date: 2020
Summary:

This Toolkit is designed to help transportation professionals and researchers gather key data needed to make the Final 50 Feet segment function as efficiently as possible, reducing both the time trucks park in load/unload spaces and the number of failed first delivery attempts.

In addition, the toolkit can help transportation planners, traffic engineers, freight system managers, parking and operations strategists, and researchers build a fundamental knowledge base for planning; managing parking operations; managing emergency management and response; updating traffic, land use and building codes; and modeling future scenarios and needs.

In short, the toolkit can be used to help cities meet the ever-increasing demand for trucks and other load/unload activities.

Recommended Citation:
Urban Freight Lab. (2020) Urban Goods Delivery Toolkit. https://depts.washington.edu/toolkit
Report

Cargo E-Bike Delivery Pilot Test in Seattle

 
Download PDF  (2.98 MB)
Publication Date: 2020
Summary:

This study performed an empirical analysis to evaluate the implementation of a cargo e-bike delivery system pilot tested by the United Parcel Service, Inc. (UPS) in Seattle, Washington. During the pilot, a cargo e-bike with a removable cargo container was used to perform last-mile deliveries in downtown Seattle. Cargo containers were pre-loaded daily at the UPS Seattle depot and loaded onto a trailer, which was then carried to a parking lot in downtown.

Data were obtained for two study phases. In the “before-pilot” phase, data were obtained from truck routes that operated in the same areas where the cargo e-bike was proposed to operate. In the “pilot” phase, data were obtained from the cargo e-bike route and from the truck routes that simultaneously delivered in the same neighborhoods. Data were subsequently analyzed to assess the performance of the cargo e-bike system versus the traditional truck-only delivery system.

The study first analyzed data from the before-pilot phase to characterize truck delivery activity. Analysis focused on three metrics: time spent cruising for parking, delivery distance, and dwell time. The following findings were reported:

  • On average, a truck driver spent about 2 minutes cruising for parking for each delivery trip, which represented 28 percent of total trip time. On average, a driver spent about 50 minutes a day cruising for parking.
  • Most of the deliveries performed were about 30 meters (98 feet) from the vehicle stop location, which is less than the length of an average blockface in downtown Seattle (100 meters, 328 feet). Only 10 percent of deliveries were more 100 meters away from the vehicle stop location.
  • Most truck dwell times were around 5 minutes. However, the dwell time distribution was right-skewed, with a median dwell time of 17.5 minutes.

Three other metrics were evaluated for both the before-pilot and the pilot study phases: delivery area, number of delivery locations, and number of packages delivered and failed first delivery rate. The following results were obtained:

  • A comparison of the delivery areas of the trucks and the cargo e-bike before and after the pilot showed that the trucks and cargo e-bike delivered approximately in the same geographic areas, with no significant changes in the trucks’ delivery areas before and during the pilot.
  • The number of establishments the cargo e-bike delivered to in a single tour during the pilot phase was found to be 31 percent of the number of delivery locations visited, on average, by a truck in a single tour during the before-pilot phase, and 28 percent during the pilot phase.
  • During the pilot, the cargo e-bike delivered on average to five establishments per hour, representing 30 percent of the establishments visited per hour by a truck in the before-pilot phase and 25 percent during the pilot.
  • During the pilot, the number of establishments the cargo e-bike delivered to increased over time, suggesting a potential for improvement in the efficiency of the cargo e-bike.
  • The cargo e-bike delivered 24 percent of the number of packages delivered by a truck during a single tour, on average, before the pilot and 20 percent during the pilot.
  • Both before and during the pilot the delivery failed rate (percentage of packages that were not delivered throughout the day) was approximately 0.8 percent. The cargo e-bike experienced a statistically significantly lower failed rate of 0.5 percent with respect to the truck fail rate, with most tours experiencing no failed first deliveries.

The above reported empirical results should be interpreted only in the light of the data obtained. Moreover, some of the results are affected by the fact that the pilot coincided with the holiday season, in which above average demand was experienced. Moreover, because the pilot lasted only one month, not enough time was given for the system to run at “full-speed.”

Recommended Citation:
Urban Freight Lab (2020). Cargo E-Bike Delivery Pilot Test in Seattle.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Report

The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower

 
Download PDF  (1.59 MB)
Publication Date: 2018
Summary:

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: Common Carrier Locker Systems that create parcel delivery density and provide secure delivery locations in public spaces.

Common carrier locker systems are an innovative strategy because they may be used by any retailer, carrier, and goods purchaser, and placed on public property.  This contrasts with branded lockers such as those operated by Amazon, UPS, and FedEx that are limited to one retailer’s or one carrier’s use. Common carrier lockers use existing smart locker technology to provide security and convenience to users.

The Common Carrier Locker System Pilot Test in the Seattle Municipal Tower was uniquely designed for multiple retailers’ and delivery firms’ use in a public space. In spring 2018, a common carrier locker system was placed in the 62-floor Seattle Municipal Tower for ten days as part of a joint research project of the Urban Freight Lab (UFL) at the University of Washington’s Supply Chain Transportation & Logistics Center and the Seattle Department of Transportation (SDOT), with additional funding from the Pacific Northwest Transportation Consortium (PacTrans).

This report demonstrates common carrier lockers’ potential to reach both public and private goals by reducing dwell time (the time a truck is parked in a load/unload space in the city) and the number of failed first delivery attempts to dense urban areas. This research provides evidence that delivering multiple packages to a single location such as a locker, rather than delivering packages one-by-one to individual tenants in an urban tower increases the productivity of public and private truck load/unload spaces.

The concept for this empirical pilot test draws on prior UFL-conducted research on the Final 50 Feet of the urban goods delivery system. The Final 50 Feet is the term for the last segment of the supply chain. It begins when a truck parks in a load/unload space, continues as drivers maneuver goods along sidewalks and into urban towers to make the final delivery, and ends where the customer takes receipt of the goods.

The UFL’s 2017 research documented that of the 20 total minutes delivery drivers spent on average in the Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors.  The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which translates into a substantial reduction in truck dwell time.

Recommended Citation:
Urban Freight Lab (2018). The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower.
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 
Report

The Final 50 Feet of the Urban Goods Delivery System (Executive Summary)

 
Download PDF  (1.91 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Two key goals have been identified early for the Final 50 Feet program:

  • Reducing truck time in a load/unload space in the city (“dwell time”)
  • Minimizing failed first package deliveries. About 8-10% of first delivery attempts in urban areas are unsuccessful, creating more return trips
Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System: Executive Summary.

UPS E-Bike Delivery Pilot Test in Seattle: Analysis of Public Benefits and Costs (Task Order 6)

The City of Seattle granted a permit to United Parcel Service, Inc. (UPS) in fall 2018 to pilot test a new e-bike parcel delivery system in the Pioneer Square/Belltown area for one year. The Seattle Department of Transportation (SDOT) commissioned the Urban Freight Lab (UFL) to quantify and document the public impacts of this multimodal delivery system change in the final 50 feet of supply chains, to provide data and evidence for development of future urban freight policies.

The UFL will conduct analyses into the following research questions:

  1. What are the total changes in VMT and emissions (PM and GHG) to all three affected cargo van routes due to the e-bike pilot test in the Pike Place Market and neighboring areas?
  2. What is the change in the delivery van’s dwell time, e.g. the amount of time the van is parked, before and after introducing the e-bike?
  3. How does the e-bike system affect UPS’ failed first delivery (FFD) attempt rate along the route?
  4. If UPS begins to stage drop boxes along the route for the e-bike (instead of having to replenish from the parked trailer) what are the impacts to total VMT and emissions?
  5. How do e-bike delivery operations impact pedestrian, other bike, and motor traffic?
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6