Skip to content
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Special Issue

The Curb Lane

Publication: Transportation Research Part A: Policy and Practice
Publication Date: 2021
Summary:

Efforts to regulate the curb also suffer from a lack of publicly accessible data on both the demand and supply of curb space. Cities often do not have the technical expertise to develop a curb data collection and data-sharing strategy. In addition, the private individuals and companies that generate most of the curb-use data often withhold them from public use to protect proprietary information and personal user data.

However, new uses of data sources, such as the Global Positioning System (GPS) and cellular networks, as well as the implementation of wide networks of IoT devices, are enabling the “digitization” of the curb, allowing cities to gain a better understanding of curb use as well as ways to change their approach toward curb space management.

In a way, the revolution in curb space management has already started. Many cities are re-inventing their role from passively regulating on-street parking to dynamically allocating and managing the curb, both physically and digitally, to serve many different users. Geofencing and time-dependent allocation of curb space facilitate efficient passenger pickup and drop off. Parking information systems and pay-for-parking apps enable dynamic parking allocation and pricing. We believe this is the right time for scientific research to “catch up” with current changes and to develop new analytical tools for curb space management. Such efforts are the focus of this special issue on curb lane analysis and policy.

Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraDr. Andisheh Ranjbari, Susan Shaheen (University of California, Berkeley), Donald Shoup (UCLA)
Recommended Citation:
Special Issue: The Curb Lane. Transportation Research Part A: Policy and Practice | ScienceDirect.com by Elsevier.
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Paper

Providing Curb Availability Information to Delivery Drivers Reduces Cruising for Parking

 
Download PDF  (2.03 MB)
Publication: Scientific Reports
Volume: (2022) 12:19355
Publication Date: 2022
Summary:

Delivery vehicle drivers are experiencing increasing challenges in finding available curb space to park in urban areas, which increases instances of cruising for parking and parking in unauthorized spaces. Policies traditionally used to reduce cruising for parking for passenger vehicles, such as parking fees and congestion pricing, are not effective at changing delivery drivers’ travel and parking behaviors.

Intelligent parking systems that use real-time curb availability information to better route and park vehicles can reduce cruising for parking, but they have never been tested for delivery vehicle drivers.

This study tested whether providing real-time curb availability information to delivery drivers reduces the travel time and distance spent cruising for parking. A curb parking information system deployed in a study area in Seattle, Wash., displayed real-time curb availabilities on a mobile app called OpenPark. A controlled experiment assigned drivers’ deliveries in the study area with and without access to OpenPark.

The data collected showed that when curb availability information was provided to drivers, their cruising for parking time significantly decreased by 27.9 percent, and their cruising distance decreased by 12.4 percent. These results demonstrate the potential for implementing intelligent parking systems to improve the efficiency of urban logistics systems.

Recommended Citation:
Dalla Chiara, G., Krutein, K.F., Ranjbari, A. et al. Providing curb availability information to delivery drivers reduces cruising for parking. Sci Rep 12, 19355 (2022). https://doi.org/10.1038/s41598-022-23987-z
Article

Giving Curb Visibility to Delivery Drivers

 
Download PDF  (2.14 MB)
Publication: American Planning Association | 2022 State of Transportation Planning
Pages: 134-143
Publication Date: 2022
Summary:
At the time we are writing this article, hundreds of thousands of delivery vehicles are getting ready to hit the road and travel across U.S. cities to meet the highest peak of demand for ecommerce deliveries during Thanksgiving, Black Friday, and the Christmas holiday season. This mammoth fleet will not only add vehicle miles traveled through urban centers but also increase parking congestion, battling with other vehicles for available curb space.
While the integration of road traffic data with modern navigation systems has seen huge developments in the past decade, drastically changing the way we, and delivery vehicles, navigate through cities, not as much can be said when it comes to parking. The task of finding and securing parking is still left to drivers, and largely unsupported by real-time information or app-based solutions.
Delivery vehicle drivers are affected by curb parking congestion even more than any other driver because delivery drivers have to re-park their vehicles not once or twice, but 10, 20, or even more times during a delivery route.
Our work, discussed in this article, focuses on improving delivery drivers’ lives when it comes to finding available curb space, improving the delivery system, and reducing some of the externalities generated in the process. We first describe what types of parking behaviors delivery drivers adopt when facing a lack of available curb parking, then we will quantify the cost of lack of available parking, estimating how much time delivery drivers spend circling the block and searching for parking. We then discuss how we can improve on that by creating the first curb availability information system – OpenPark.

 

Recommended Citation:
Dalla Chiara, Giacomo and Anne Goodchild. Giving Curb Visibility to Delivery Drivers. Intersections + Identities: State of Transportation Planning 2022, 134-143.