Skip to content

How Cargo Cycle Drivers Use the Urban Transport Infrastructure

Download PDF  (10.47 MB)
Publication: Transportation Research Part A: Policy and Practice
Volume: 167
Publication Date: 2023

Electric cargo cycles are often considered a viable alternative mode for delivering goods in an urban area. However, cities in the U.S. are struggling to regulate cargo cycles, with most authorities applying the same rules used for motorized vehicles or traditional bikes. One reason is the lack of understanding of the relationships between existing regulations, transport infrastructure, and cargo cycle parking and driving behaviors.

In this study, we analyzed a cargo cycle pilot test in Seattle and collected detailed data on the types of infrastructure used for driving and parking. GPS data were augmented by installing a video camera on the cargo cycle and recording the types of infrastructure used (distinguishing between the travel lane, bicycle lane, and sidewalk), the time spent on each type, and the activity performed.

The analysis created a first-of-its-kind, detailed profile of the parking and driving behaviors of a cargo cycle driver. We observed a strong preference for parking (80 percent of the time) and driving (37 percent of the time) on the sidewalk. We also observed that cargo cycle parking was generally short (about 4 min), and the driver parked very close to the delivery address (30 m on average) and made only one delivery. Using a random utility model, we identified the infrastructure design parameters that would incentivize drivers to not use the sidewalk and to drive more on travel and bicycle lanes.

The results from this study can be used to better plan for a future in which cargo cycles are used to make deliveries in urban areas.

Recommended Citation:
Dalla Chiara, G., Donnelly, G., Gunes, S., & Goodchild, A. (2023). How Cargo Cycle Drivers Use the Urban Transport Infrastructure. Transportation Research Part A: Policy and Practice, 167, 103562.

Giving Curb Visibility to Delivery Drivers

Download PDF  (2.14 MB)
Publication: American Planning Association | 2022 State of Transportation Planning
Pages: 134-143
Publication Date: 2022
At the time we are writing this article, hundreds of thousands of delivery vehicles are getting ready to hit the road and travel across U.S. cities to meet the highest peak of demand for ecommerce deliveries during Thanksgiving, Black Friday, and the Christmas holiday season. This mammoth fleet will not only add vehicle miles traveled through urban centers but also increase parking congestion, battling with other vehicles for available curb space.
While the integration of road traffic data with modern navigation systems has seen huge developments in the past decade, drastically changing the way we, and delivery vehicles, navigate through cities, not as much can be said when it comes to parking. The task of finding and securing parking is still left to drivers, and largely unsupported by real-time information or app-based solutions.
Delivery vehicle drivers are affected by curb parking congestion even more than any other driver because delivery drivers have to re-park their vehicles not once or twice, but 10, 20, or even more times during a delivery route.
Our work, discussed in this article, focuses on improving delivery drivers’ lives when it comes to finding available curb space, improving the delivery system, and reducing some of the externalities generated in the process. We first describe what types of parking behaviors delivery drivers adopt when facing a lack of available curb parking, then we will quantify the cost of lack of available parking, estimating how much time delivery drivers spend circling the block and searching for parking. We then discuss how we can improve on that by creating the first curb availability information system – OpenPark.


Recommended Citation:
Dalla Chiara, Giacomo and Anne Goodchild. Giving Curb Visibility to Delivery Drivers. Intersections + Identities: State of Transportation Planning 2022, 134-143.

Commercial Vehicle Driver Behaviors and Decision Making: Lessons Learned from Urban Ridealongs

Download PDF  (0.79 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2675 (9)
Pages: 608-619
Publication Date: 2021

As ecommerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries.

In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices.

The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with only less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times.

We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers.

The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.

In recent years, cities have changed their approach toward managing urban freight vehicles. Passive regulations, such as limiting delivery vehicles’ road and curb use to given time windows or areas have been replaced by active management through designing policies for deploying more commercial vehicle (CV) load zones, pay-per-use load zone pricing, curb reservations, and parking information systems. The goal is to reduce the negative externalities produced by urban freight vehicles, such as noise and emissions, traffic congestion, and unauthorized parking, while guaranteeing goods flow in dense urban areas. To accomplish this goal, planners need to have an understanding of the fundamental parking decision-making process and behaviors of CV drivers.

Two main difficulties are encountered when CV driver behaviors are analyzed. First, freight movement in urban areas is a very heterogeneous phenomenon. Drivers face numerous challenges and have to adopt different travel and parking behaviors to navigate the complex urban network and perform deliveries and pick-ups. Therefore, researchers and policy makers find it harder to identify common behaviors and responses to policy actions for freight vehicles than for passenger vehicles. Second, there is a lack of available data. Most data on CV movements are collected by private carriers, who use them to make business decisions and therefore rarely release them to the public. Lack of data results in a lack of fundamental knowledge of the urban freight system, inhibiting policy makers’ ability to make data-driven decisions.

The urban freight literature discusses research that has employed various data collection techniques to study CV driver behaviors. Cherrett et al. reviewed 30 UK surveys on urban delivery activity and performed empirical analyses on delivery rates, time-of-day choice, types of vehicles used to perform deliveries, and dwell time distribution, among others. The surveys reviewed were mostly establishment-based, capturing driver behaviors at specific locations and times of the day. Allen et al. performed a more comprehensive investigation, reviewing different survey techniques used to study urban freight activities, including driver surveys, field observations, vehicle trip diaries, and global positioning system (GPS) traces. Driver surveys collect data on driver activities and are usually performed through in-person interviews with drivers outside their working hours or at roadside at specific locations. In-person interviews provide valuable insights into driver choices and decisions but are often limited by the locations at which the interviews occur or might not reflect actual choices because they are done outside the driver work context. Vehicle trip diaries involve drivers recording their daily activities while field observations entail observing driver activities at specific locations and establishments; neither collects insights into the challenges that drivers face during their trips and how they make certain decisions. The same limitations hold true for data collected through GPS traces. Allen et al. mentioned the collection of travel diaries by surveyors traveling in vehicles with drivers performing deliveries and pick-ups as another data collection technique that could provide useful insights into how deliveries/pick-ups are performed. However, they acknowledged that collecting this type of data is cumbersome because of the difficulty of obtaining permission from carriers and the large effort needed to coordinate data collection.

This study aims to fill that gap by collecting data on driver decision-making behaviors through observations made while riding along with CV drivers. A systematic approach was taken to observe and collect data on last-mile deliveries, combining both qualitative observations and quantitative data from GPS traces. The ridealongs were performed with various delivery companies in Seattle, Washington, covering a range of vehicle types (cars, vans, and trucks), goods types (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail).

The data collected will not only add to the existing literature by providing estimates of trip times, parking choice types, time and distance spent cruising for parking, and parking dwell times but will also provide insights into why those decisions are made and the factors affecting driver choices.

The objectives of this study are to provide a better understanding of CV driver behaviors and to identify common and unique challenges they experience in performing the last mile. These findings will help city planners, policy makers, and delivery companies work together better to address those challenges and improve urban delivery efficiency.

The next section of this paper describes the relevant literature on empirical urban freight behavior studies. The following section then introduces the ridealongs performed and the data collection methods employed. Next, analysis of the data and qualitative observations from the ridealongs are described, and the results are discussed in five overarching categories: the time spent in and out of the vehicle, parking location choice, the reasons behind those choices, parking cruising time, and factors affecting dwell time.

Recommended Citation:
Chiara, Giacomo Dalla, Krutein, Klaas Fiete, Ranjbari, Andisheh, & Goodchild, Anne. (2021). Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making. Transportation Research Record, 2675(9), 608-619.

Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle

Download PDF  (5.46 MB)
Publication: Transport Policy
Volume: 97
Pages: 26-36
Publication Date: 2020

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affect such behavior.

In this study we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in Seattle downtown. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Dalla Chiara, Giacomo, & Goodchild, Anne. (2020) Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transport Policy, 97, 26-36.

The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle

Download PDF  (4.54 MB)
Publication Date: 2019

Vehicles of all kinds compete for parking space along the curb in Seattle’s Greater Downtown area. The Seattle Department of Transportation (SDOT) manages use of the curb through several types of curb designations that regulate who can park in a space and for how long. To gain an evidence-based understanding of the current use and operational capacity of the curb for commercial vehicles (CVs), SDOT commissioned the Urban Freight Lab (UFL) at the University of Washington Supply Chain Transportation & Logistics Center to study and document curb parking in five selected Greater Downtown areas.

This study documents vehicle parking behavior in a three-by-three city block grid around each of five prototype Greater Downtown buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were part of the UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the final 50 feet.

The areas around these five prototype buildings were intentionally chosen for this curb study to deepen the city’s understanding of the Greater Downtown area.

Significantly, this study captures the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs). The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces.

Four key findings, shown below, emerged from the research team’s work:

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs, and passenger vehicles are parking in CVLZs. Passenger vehicles made up more than half of all vehicles observed parking in CVLZs (52%). More than one-quarter of commercial vehicle drivers parked in PLZs (26 %.) This fact supports more integrated planning for all curb space, versus developing standalone strategies for passenger vehicle and for commercial vehicle parking.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes. Across the five locations, more than half (54%) of all CVs parked for 15 minutes or less in all types of curb spaces. Nearly three-quarters of all CVs (72%) parked for 30 minutes or less. When considering just the delivery CVs, an even higher percentage, 60%, parked for 15 minutes or less. Eighty-one percent of the delivery CVs parked for 30 minutes or less.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes. In contrast to delivery CVs that predominately parked for 30 minutes or less, service CVs’ parking behavior was bifurcated. While 56% of them parked for 30 minutes or less, 44% parked for more than 30 minutes. And more than one quarter (27%) of the service CVs parked for an hour or more. Because service vehicles make up such a big share of total CVs at the curb, this may have an outsize impact on parking space turn rates at the curb.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominately office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

The occupancy study documents that each building and the built environment surrounding it has unique features that impact parking operations. As cities seek to more actively manage curb space, the study’s findings illuminate the need to plan a flexible network with capacity for distinct types (time and space requirements) of CV parking demand.

This study also drives home that the curb does not function in isolation, but instead forms one element of the Greater Downtown’s broader, interconnected load/unload network, which includes alleys, the curb, and private loading bays and docks. (1,2,3) SDOT commissioned this work as part of its broader effort with the UFL to map—and better understand—the entire Greater Downtown area’s commercial vehicle load/unload space network. Cities and other parties interested in the details of how to conduct a commercial vehicle occupancy study can see a step-by-step guide in Appendix C.

In this study, researchers deployed six data collectors to observe each curb study area for three days over roughly six weeks in October and December 2017. To make the data produced in this project as useful as possible, the research team designed a detailed vehicle typology to track specific vehicle categories consistently and accurately. The typology covers 10 separate vehicle categories, from various types of trucks and vans to passenger vehicles to cargo bikes. Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.

The five prototype Seattle buildings studied are Seattle Municipal Tower (also the site of a common carrier parcel locker pilot), Dexter Horton, Westlake Center, and Insignia Towers. (4) The study shows how different building and land uses interact with the broader load/unload network. By collecting curb occupancy data in the same locations as their earlier work, the research team added a new layer of information to help the city evaluate—and manage—the Greater Downtown area load/unload network more comprehensively.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload spaces as a coordinated network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project. (5) The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

The UFL is a living laboratory made up of retailers, truck freight carriers and parcel companies, technology companies supporting transportation and logistics, multifamily residential and retail/commercial building developers and operators, and SDOT. Current members are Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno, USPack, UPS, and the United States Postal Service (USPS).

Recommended Citation:
Urban Freight Lab (2019). The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle.

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143.