Skip to content
Paper

Finding Service Quality Improvement Opportunities Across Different Typologies of Public Transit Customers

Publication Date: 2018
Summary:

Existing approaches dealing with customer perception data have two fundamental challenges: heterogeneity of customer perceptions and simultaneous interrelationships between attitudes that explain customer behavior. This paper aims to provide practitioners with a methodology of service quality (SQ) evaluation based on public transit customers behavioral theory and advanced market segmentation that deals with these two fundamental challenges. The original contributions of this paper are: the definition of customer typologies based on advanced customer segmentation with latent class clustering; analysis of the effect of SQ perceptions on behavioral intentions within the behavioral theory framework that considers multiple attitudes simultaneously affecting customers’ intentions; identification of transit service improvement opportunities for specific customer typologies as well as common to most customers. Our research shows practitioners and researchers that specific needs and perceptions of customers can be identified by using advanced segmentation. We applied our method to a light-rail transit service in Seville, Spain. We measured the direct effects on behavioral intentions of the LRT SQ, customer satisfaction and, in the case of some customers, the available transportation alternatives. Other observed that attitudes of customers were indirectly related to behavioral intentions as well. We found customer agreement around these LRT SQ aspects of tangible service equipment, accessibility, information, individual space and environmental pollution. Customers clearly showed different opinions related to safety, customer service and availability.

Authors: José Luis Machado León, Rocio de Ona, Francisco Diez-Mesa, Juan De Ona
Recommended Citation:
Machado, J. L., de Oña, R., Diez-Mesa, F., & de Oña, J. (2018). Finding service quality improvement opportunities across different typologies of public transit customers. Transportmetrica A: Transport Science, 14(9), 761-783.
Paper

Activity Modeling of Freight Flows in Washington State: Case Studies of the Resilience of Potato and Diesel Distribution Systems

 
Download PDF  (0.62 MB)
Publication Date: 2009
Summary:
This paper describes the development and use of a network model using publicly available industry data to analyze the resilience of two important Washington state industries. Modeling of freight activity in support of the potato and diesel industry in Washington state demonstrates how individual industries utilize the road network and how they are affected by a transportation disruption. We estimate the potato industry, which relies entirely on trucks for intra-state deliveries, generates about 50 cross-Cascade truck trips per day. Roughly 90 percent of the trucks deliver potatoes from processing facilities on the east side of the state to markets on the west side, while 10 percent carry fresh potatoes from the west to the east for processing. The coupled origins and destinations do not vary unless there is a disruption to the network. The diesel distribution system in Washington state also relies heavily on trucks, but only for the final segment of the logistics chain because both barge transport and pipelines are more cost effective modes. By necessity, trucks deliver from terminals to racks, but there is an established flexibility in these distribution operations as routes and travel distances regularly change because of variations in commodity price at each terminal and the presence of multiple terminals. As a consequence, we demonstrate that the diesel distribution system is much more resilient to roadway disruptions, especially those which occur along the cross-Cascades routes. These examples demonstrate the necessity of understanding industry practice as it relates to analyzing needed infrastructure and operational improvements to reduce economic impacts resulting from transportation disruptions.

 

 

Authors: Dr. Anne Goodchild, Sunny Rose, Derik Andreoli, Eric Jessup.
Recommended Citation:
Goodchild, Anne. Sunny Rose, Derik Andreoli, and Eric Jessup. "Activity Modeling of Freight Flows in Washington State: Case Studies of the Resilience of Potato and Diesel Distribution Systems." 
Paper

Rails-Next-to-Trails: A Methodology for Selecting Appropriate Safety Treatments at Complex Multimodal Intersections

 
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

There are more than 212,000 at-grade railroad crossings in the US. A number of them features paths running adjacent to the railroad tracks, and crossing a highway; serving urban areas, recreational activities, light rail station access and a variety of other purposes. Some of these crossings see a disproportionate number of violations and conflicts between rail, vehicles and pedestrians and bikes. This research focuses on developing a methodology for appropriately addressing the question of treatments in these complex, multi-modal intersections. The methodology is designed to be able to balance a predetermined, prescriptive approach with the professional judgment of the agency carrying out the investigation. Using knowledge and data from literature, field studies and video observations, a framework for selecting treatments based on primary issues at a given location is developed. Using such a framework allows the agency to streamline their crossing improvement efforts; to easily communicate and inform the public of the decisions made and their reasons for doing so; to secure stakeholder buy-in prior to starting a project or investigation; to make sure that approach and selected treatments are more standardized; ensure transparency in the organization to make at-grade crossings safer for pedestrians and bicyclists, without negatively impacting trains or vehicles.

Recommended Citation:
Alligood, Anna Bovbjerg, Manali Sheth, Anne Goodchild, Edward McCormack, and Polina Butrina. "Rails-next-to-trails: a methodology for selecting appropriate safety treatments at complex multimodal intersections." Transportation research record 2672, no. 10 (2018): 12-27.
Paper

The Relative Contribution of Transportation to Supply Chain Greenhouse Gas Emissions: A Case Study of American Wheat

Publication: Transportation Research Part D: Transport and Environment
Volume: 14 (7)
Pages: 487-92
Publication Date: 2009
Summary:

This life cycle assessment case study puts the supply chain contribution of transportation to greenhouse gas emissions in context with other contributors using American wheat grain as a representative product. Multiple locations, species and routes to market are investigated. Transportation contributes 39–56% of the supply chain emissions, whereas there is a 101% intra-species and 62% inter-species variation in greenhouse gas emissions from production, demonstrating that transportation is both of smaller magnitude, and less sensitive than other factors, in particular, field sequestration.

Authors: Dr. Anne Goodchild, Brendan O'Donnell, Joyce Cooper, and Toshi Ozawa
Recommended Citation:
O’Donnell, Brendan. Anne Goodchild, Joyce Cooper, and Toshi Ozawa. "The Relative Contribution of Transportation to Supply Chain Greenhouse Gas Emissions: A Case Study of American Wheat." Transportation Research Part D: Transport and Environment 14, no. 7 (2009): 487-492.
Paper

ITS Devices Used to Collect Truck Data for Performance Benchmarks

 
Download PDF  (1.61 MB)
Publication: Transportation Research Record
Volume: 1957
Pages: 43-50
Publication Date: 2006
Summary:

This paper documents the development of data collection methodologies that can be used to measure truck movements along specific roadway corridors in Washington State cost-effectively. The intent of this study was to design and test methodologies that could provide information to ascertain the performance of freight mobility roadway improvement projects. The benchmarks created would be used to report on speed and volume improvements that resulted from completed roadway projects. One technology tested consisted of Commercial Vehicle Information System and Networks electronic truck transponders, which were mounted on the windshields of approximately 30,000 trucks traveling in Washington. These transponders were used at weigh stations across the state to improve the efficiency of truck regulatory compliance checks. With transponder reads from sites anywhere in the state being linked through software, the transponder-equipped trucks can become a travel time probe fleet. The second technology tested involved Global Positioning Systems (GPS) placed in volunteer trucks to collect specific truck movement data at 5-s intervals. GPS data made it possible to locate when and where monitored trucks experienced congestion. With this information aggregated over time, it was possible to generate performance statistics related to the reliability of truck trips and even to examine changes in route choice for trips between high-volume origin-destination pairs. The study found that both data collection technologies could be useful; however, the key to either technology is whether enough instrumented vehicles pass over the roadways for which data are required.

Authors: Dr. Ed McCormack, Mark Hallenbeck
Recommended Citation:
McCormack, Edward & Hallenbeck, Mark. (2006). ITS Devices Used to Collect Truck Data for Performance Benchmarks. Transportation Research Record. 1957. 43-50. 10.3141/1957-07. 
Paper

Structuring a Definition of Resilience for the Freight Transportation System

 
Download PDF  (0.17 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2097
Pages: 19-25
Publication Date: 2009
Summary:

This paper summarizes a broad literature review on system resilience. After these interpretations of resilience are considered, a definition of resilience in the context of freight transportation systems is provided. The definition of resilience offered here captures the interactions between managing organizations—namely, state departments of transportation, the infrastructure, and users—which is critical considering that the freight transportation system exists to support economic activity and production. A list of properties of freight transportation system resilience is outlined. These properties of resilience can contribute to the overall ability of the freight transportation system to recover from disruptions, whether exhibited at the infrastructure, managing organization, or user dimension. This contribution provides a framework that can serve as a starting point for future research, offering a shared language that promotes a more structured conversation about freight transportation resilience.

Authors: Dr. Anne Goodchild, Chilan Ta, Kelly Pitera
Recommended Citation:
Ta, Chilan. Anne V. Goodchild, and Kelly Pitera. "Structuring a definition of resilience for the freight transportation system." Transportation Research Record 2097, no. 1 (2009): 19-25.
Paper

What is the Right Size for a Residential Building Parcel Locker?

 
Download PDF  (1.87 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2022
Summary:

Common-carrier parcel lockers present a solution for decreasing delivery times, traffic congestion, and emissions in dense urban areas through consolidation of deliveries. Multi-story residential buildings with large numbers of residents, and thus a high volume of online package orders, are one of the best venues for installing parcel lockers. But what is the right size for a residential building locker that would suit the residents’ and building managers’ needs?

Because of the novelty of parcel lockers, there is no clear guideline for determining the right locker size and configuration for a residential building given the resident population. A small locker would result in packages exceeding capacity and being left in the lobby, increasing the building manager’s workload and confusing and inconveniencing users. On the other hand, a large locker is more expensive, more difficult to install, and unappealing to residents.

To answer this question, we installed a common-carrier parcel locker in a residential building in downtown Seattle, WA, U.S.A. Through collecting detailed data on locker usage from the locker provider company, we studied and quantified carriers’ delivery patterns and residents’ online shopping and package pickup behaviors. We then used this information to model the locker delivery and pickup process, and simulated several locker configurations to find the one that best suits the delivery needs of the building.

These findings could aid urban planners and building managers in choosing the right size for residential building lockers that meet delivery demand while minimizing costs and contributing to environmental benefits.

Recommended Citation:
Ranjbari, A., Diehl, C., Chiara, G. D., & Goodchild, A. (2022). What is the Right Size for a Residential Building Parcel Locker?. Transportation Research Record, 03611981221123807. https://doi.org/10.1177/03611981221123807
Paper

Site-Specific Transportation Demand Management: Case of Seattle’s Transportation Management Program, 1988–2015

 
Download PDF  (2.53 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2021
Summary:

A central theme of U.S. transportation planning policies is to reduce single-occupancy vehicle (SOV) trips and promote transit and non-motorized transportation by coordinating land-use planning and transportation demand management (TDM) programs. Cities often implement TDM programs by intervening with new development during the municipal permit review process. Seattle’s Transportation Management Program (TMP) under a joint Director’s Rule (DR) requires a commitment from developers to adopt select strategies from six TDM element categories: program management, physical improvements, bicycle/walking programs, employer-based incentives, transit and car/vanpooling, and parking management. TMP targets new developments and requires some TDM elements, recommends others, and leaves the rest to negotiation. The result is an individualized TMP agreement that is site-specific, reflecting both city policy and developer needs. This case study presents a qualitative analysis of the guiding eight DRs and 41 site-specific TMP agreements in Seattle’s Downtown and South Lake Union (SLU) area since 1988. Overall, a content analysis of TMP documents reveals that the average number of elements adopted in an agreement falls short of requirements set by DRs (34%–61%). Major findings include developer preference toward non-traditional TDM measures such as physical improvement of frontage and urban design features, as well as parking management. High-occupancy vehicle (HOV) elements showed higher adoption rates (59%–63%) over biking/walking programs (1%). It is concluded that future TDM policies could benefit if future research includes examining the effectiveness of the range of management options stemming from the real estate trends toward green buildings, tenants’ values in sustainability, and city policy to reduce automobile trips.

Authors: Dr. Ed McCormack, Mairin McKnight-Slottee, Chang-Hee Christine Bae
Recommended Citation:
McKnight-Slottee, Bae, C.-H. C., & McCormack, E. (2022). Site-Specific Transportation Demand Management: Case of Seattle’s Transportation Management Program, 1988–2015. Transportation Research Record, 2676(1), 573–583. https://doi.org/10.1177/03611981211035765. 
Paper

Truck Trip Generation by Grocery Stores

 
Download PDF  (0.95 MB)
Publication: Washington State Transportation Innovations Unit and Washington State Transportation Commission
Publication Date: 2010
Summary:
Quantifying the relationship between the number and types of truck trips generated by different land uses provides information useful for traffic demand analyses, forecasting models, and a general understanding of the factors that affect truck mobility. This project evaluated data collection methodologies for determining truck trip generation rates by studying a specific kind of establishment. This effort focused on grocery stores and collected both interview and manual count data from eight supermarkets in the Puget Sound region.
We selected grocery stores for this project because they constitute a common land use that is present in almost every type of neighborhood in the metropolitan region. Grocery stores generate truck trips that have the potential to affect all levels of the transportation roadway network, from local roads in neighborhoods to highways. The eight stores in the Puget Sound region identified for this study were diverse and included both national and local chains. The stores ranged in size from 23,000 to 53,500 square feet and included a variety of urban and suburban locations.
Methodologies for gathering trip generation information were identified in the literature. Telephone interviews and manual counts, which are frequently used data collection methodologies, were explored in this project. The project started with telephone interviews of four distribution centers. This step helped to refine the interview approach and helped to determined that data from larger warehouses could not be easily used to develop information on the number of trips traveling to individual stores. A second round of interviews, lasting between 10 and 15 minutes, was then conducted with the managers or receivers of the nine grocery stores. In addition to the number of truck trips that the store generated, the interviews explored a range of topics related to the busiest days and their delivery windows. This information was used to set up manual, on-site truck counts at each of the grocery stores.
We concluded that a combination of telephone interviews and manual counts is a reasonable way to collect accurate truck trip generation rates. Telephone interviews were an important first step. They established contact with grocery stores, which then provided permission for on-site manual counts. Information elicited from store interviews also included the days and times when the viii truck deliveries occurred so that the manual counts could be scheduled to reflect optimal times. In addition, the interview conversations provided sometimes unanticipated but valuable information that was relevant to understanding truck trip-generation rates. Because it is cost prohibitive and inefficient to send manual counting teams to observe facilities for long shifts, information from store managers regarding their delivery windows and hours made the counts more feasible.
The Puget Sound grocery stores in the study (all of which were conventional supermarkets) generated an average of 18 truck trips per day on typical weekdays. These daily counts were probably low, as some of the stores accepted a few late deliveries outside of the receiving windows. Most of these truck arrivals occurred before noon, and the average delivery time was 27 minutes. Although peak days of the week varied across the sample set, all reported higher volumes during holidays.
The manual counts (15 site observations) provided more accurate truck trip generation rates than did telephone interviews. The interview responses indicated approximately ten to twelve trucks per day in comparison to the average of 18 trucks per day counted at each store by observers. The telephone interviewees at the grocery stores clearly underestimated the number of trucks and provided only minimal information on truck characteristics. Manual counts also provided more detailed information regarding truck type, delivery location (loading docks or front door), average delivery time, and product mix.
Few grocery store characteristics that could be directly related to truck trip generation rates were identified. The project team reviewed literature discussing both trip generation data collection and grocery store management and could not identify any specific characteristic that could be used to quantify the number of truck trips generated by different stores. While size or employment is often related to truck trips in the ITE Trip Generation Manual, this effort did not find any direct relationship with these variables, with a possible exception related to a store’s size. This finding, that smaller stores generated more trucks trips, suggests that one promising area to explore is the linkage between the level at which stores are served by regional warehouses or direct service delivery (DSD) and the number and type of truck trips. The manual counts indicated variability in the nature and size of the delivery trucks, which in turn related to ix whether the deliveries were at the front door (often small trucks and DSD) or loading dock (larger trucks from warehouses with consolidated loads). Smaller stores often use more DSD, which may result in more truck trips generated. It is also possible that smaller stores had smaller stock rooms, requiring more frequent deliveries. Other census-related variables such median household income, residential density and jobs-housing balance, were evaluated, but no significant relationships to truck trip rates were found.

 

Authors: Dr. Ed McCormack, Alon Bassok, Emily Fishkin, Chilan Ta
Recommended Citation:
McCormack, E., Ta, C., Bassok, A., & Fishkin, E. (2010). Truck Trip Generation by Grocery Stores. (No. TNW2010-04).
Paper

A Framework for Determining Highway Truck-Freight Benefits and Economic Impacts

 
Download PDF  (0.84 MB)
Publication: Journal of the Transportation Research Forum
Volume: 52
Pages: 27-43
Publication Date: 2013
Summary:
This paper proposes a method for calculating both the direct freight benefits and the larger economic impacts of transportation projects. The identified direct freight benefits included in the methodology are travel time savings, operating cost savings, and environmental impacts. These are estimated using regional travel demand models (TDM) and additional factors. Economic impacts are estimated using a regional Computable General Equilibrium (CGE) model. The total project impacts are estimated combining the outputs of the transportation model and an economic model. A Washington State highway widening project is used as a case study to demonstrate the method. The proposed method is transparent and can be used to identify freight specific benefits and generated impacts.
Though the Washington State Department of Transportation (WSDOT) has a long standing Mobility Project Prioritization Process (MPPP) (WSDOT 2000), which is a Benefit-Cost Analysis (BCA) framework used for mobility program assessment, it does not separately evaluate or account for the truck freight benefits of proposed highway infrastructure projects. It is therefore unable to evaluate and consider the economic impacts of highway projects that accrue to freight-dependent industries (those heavily reliant on goods movement) or non-freight-dependent firms (service sector) that are perhaps indirectly impacted by the productivity of the freight system. The established evaluation criteria of any transportation project largely influences the project selection and direction, thus for freight to become an integrated component of a managing agency’s transportation program, it must be recognized and acknowledged through the project evaluation criteria (NCHRP 2007). Before implementing any freight project evaluation criteria, an agency must first be able to identify the measures that matter to freight and freight-related systems. At this time there is no known nationally accepted framework for analyzing the full range of freight-related impacts stemming from transportation infrastructure projects. Complex interactions with separate, but not isolated, effects among economic, environmental, and social components with sometimes conflicting priorities make freight impacts more difficult to measure than those of other highway users (Belella 2005).
To successfully compete in a new funding world with significantly reduced monies for transportation infrastructure, states must become even more pragmatic about the means by which they emphasize and prioritize investments. Identification of the necessity to include freight performance measures in local, state, and national transportation plans, and rise above anecdotal understandings of system performance, is becoming evident as more municipalities and state agencies move toward implementing freight-related plans (MnDOT 2008, Harrison et al. 2006). Therefore, WSDOT has undertaken the development of an improved methodology to assess highway truck-freight project benefits designed to be integrated into the department’s existing prioritization processes. This paper lays out the development process of this effort and the resulting methodology. The contribution of this paper to the literature is to present a methodology that includes a truck-specific determination of the economic value of a project in addition to the economic impacts captured by a regional Highway Truck-Freight Benefits 28 computable general equilibrium (CGE) framework. The proposed method is transparent, and can be used to identify freight-specific benefits and generated impacts.
The remainder of this paper is organized as follows: the second section provides a brief review of the state of practice in the evaluation of transportation infrastructure investments; the third section details the process by which the benefits to be included in the analysis were selected and the methodology subsequently developed; the next section applies the methodologies to a case study and provides its result; the last section offers conclusions of the proposed methodology as well as the limitations of the study and directions for future work on fully incorporating freight into state DOT investment decisions.

 

 

Recommended Citation:
Wang, Zun, Jeremy Sage, Anne Goodchild, Eric Jessup, Kenneth Casavant, and Rachel L. Knutson. "A framework for determining highway truck-freight benefits and economic impacts." In Journal of the Transportation Research Forum, vol. 52, no. 1424-2016-118048, pp. 27-43. 2013.