Skip to content
Paper

Do Parcel Lockers Reduce Delivery Times? Evidence from the Field

 
Download PDF  (1.61 MB)
Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 172 (2023)
Publication Date: 2023
Summary:

Common carrier parcel lockers have emerged as a secure, automated, self-service means of delivery consolidation in congested urban areas, which are believed to mitigate last-mile delivery challenges by reducing out-of-vehicle delivery times and consequently vehicle dwell times at the curb. However, little research exists to empirically demonstrate the environmental and efficiency gains from this technology. In this study, we designed a nonequivalent group pre-test/post-test control experiment to estimate the causal effects of a parcel locker on delivery times in a residential building in downtown Seattle. The causal effects are measured in terms of vehicle dwell time and the time delivery couriers spend inside the building, through the difference-in-difference method and using a similar nearby residential building as a control. The results showed a statistically significant decrease in time spent inside the building and a small yet insignificant reduction in delivery vehicle dwell time at the curb. The locker was also well received by the building managers and residents.

Recommended Citation:
Ranjbari, A., Diehl, C., Dalla Chiara, G., & Goodchild, A. (2023). Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transportation Research Part E: Logistics and Transportation Review, 172, 103070. https://doi.org/10.1016/j.tre.2023.103070 
Paper

The Isolated Community Evacuation Problem with Mixed Integer Programming

 
Download PDF  (0.78 MB)
Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 161
Pages: 102710
Publication Date: 2022
Summary:

As awareness of the vulnerability of isolated regions to natural disasters grows, the demand for efficient evacuation plans is increasing. However, isolated areas, such as islands, often have characteristics that make conventional methods, such as evacuation by private vehicle, impractical to infeasible. Mathematical models are conventional tools for evacuation planning. Most previous models have focused on densely populated areas, and are inapplicable to isolated communities that are dependent on marine vessels or aircraft to evacuate. This paper introduces the Isolated Community Evacuation Problem (ICEP) and a corresponding mixed integer programming formulation that aims to minimize the evacuation time of an isolated community through optimally routing a coordinated fleet of heterogeneous recovery resources. ICEP differs from previous models on resource-based evacuation in that it is highly asymmetric and incorporates compatibility issues between resources and access points. The formulation is expanded to a two-stage stochastic problem that allows scenario-based optimal resource planning while also ensuring minimal evacuation time. In addition, objective functions with a varying degree of risk are provided, and the sensitivity of the model to different objective functions and problem sizes is presented through numerical experiments. To increase efficiency, structure-based heuristics to solve the deterministic and stochastic problems are introduced and evaluated through computational experiments. The results give researchers and emergency planners in remote areas a tool to build optimal evacuation plans given the heterogeneous resource fleets available, which is something they have not been previously able to do and to take actions to improve the resilience of their communities accordingly.

Recommended Citation:
Krutein, K. F., & Goodchild, A. (2022). The isolated community evacuation problem with mixed integer programming. In Transportation Research Part E: Logistics and Transportation Review (Vol. 161, p. 102710). Elsevier BV. https://doi.org/10.1016/j.tre.2022.10271
Paper

Testing Curbside Management Strategies to Mitigate the Impacts of Ridesourcing Services on Traffic

 
Download PDF  (2.01 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2020
Summary:

Increased use of ridehailing leads to increased pick-up and drop-off activity. This may slow traffic or cause delays as vehicles increase curb use, conduct pick-up and drop-off activity directly in the travel lane, or slow to find and connect with passengers. How should cities respond to this change in an effort to keep travel lanes operating smoothly and efficiently? This research evaluates two strategies in Seattle, WA, in an area where large numbers of workers commute using ridesourcing services: (i) a change of curb allocation from paid parking to passenger load zone (PLZ), and (ii) a geofencing approach by transportation network companies (TNCs) which directs their drivers and passengers to designated pick-up and drop-off locations on a block. An array of data on street and curb activity along three study blockfaces was collected, using video and sensor technology as well as in-person observations. Data were collected in three phases: (i) the baseline, (ii) after the new PLZs were added, expanding total PLZ curb length from 20 ft to 274 ft, and (iii) after geofencing was added to the expanded PLZs. The added PLZs were open to any passenger vehicle (not just TNC vehicles), weekdays 7:00–10:00 a.m. and 2:00–7:00 p.m. The results showed that the increased PLZ allocation and geofencing strategy reduced the number of pick-ups/drop-offs in the travel lane, reduced dwell times, increased curb use compliance, and increased TNC passenger satisfaction. The two strategies, however, had no observable effect on travel speeds or traffic safety in the selected study area.

Recommended Citation:
Ranjbari, Andisheh, Jose Luis Machado-León, Giacomo Dalla Chiara, Don MacKenzie, and Anne Goodchild. “Testing Curbside Management Strategies to Mitigate the Impacts of Ridesourcing Services on Traffic.” Transportation Research Record, (October 2020). https://doi.org/10.1177/0361198120957314.
Paper

Bike-Share Planning in Cities with Varied Terrain

 
Download PDF  (7.65 MB)
Publication: Institute of Transportation Engineers (ITE) Journal
Volume: 84:07:00
Pages: 31-35
Publication Date: 2014
Summary:
Decisions to install public bike-share programs are increasingly based on ridership estimations, but the topography’s influence on ridership is rarely quantified. This research evaluated a geographic information system-based approach for estimating ridership that accounted for hills. Double-weighting a slope relative to other measures produces a realistic representation of the bicycling experience. Because of their benefits, bike-share programs are increasingly of interest in cities and universities across the country. A bike-share program provides short-term use bicycles to the public through a system of unattended stations for their checkout and return. This research enhanced methodology developed in Philadelphia by developing and evaluating an additional indicator that accounts for hills. Several scenarios were tested, using Seattle as a case study, to find the best method to account for the notable impact of hills on bike riders’ choices and to evaluate the addition of slope to the calculation of bike-share demand.
Authors: Dr. Ed McCormack, Erica Wygonik, Daniel H. Rowe
Recommended Citation:
McCormack, E., & Rowe, D. H. (2014). Bike-share planning in cities with varied terrain. Institute of Transportation Engineers. ITE Journal, 84(7), 31.
Paper

An Evaluation of Logistics Sprawl in Chicago and Phoenix

 
Download PDF  (2.28 MB)
Publication: Journal of Transport Geography
Volume: 88
Publication Date: 2018
Summary:

This paper evaluates whether or not there is a sprawling tendency to the spatial patterns of warehouse establishments in the Chicago and Phoenix metropolitan areas. The trend of warehouses to move away from the urban centers to more suburban and exurban areas is referred to as “Logistics Sprawl”. To measure sprawl, the barycenter of warehousing establishments was compared to the barycenter of all other industry establishments in the region between the years of 1998 and 2013 for Chicago; 1998 and 2015 for Phoenix. This shows that logistics sprawl is a behavior experienced by warehouses in the Chicago area, but not in the Phoenix area. This paper discusses if logistics sprawl is a national trend or a regional behavior by comparing these results to the previous case studies of the Atlanta, Los Angeles, and Seattle metropolitan areas.

Authors: Dr. Anne Goodchild, Melaku Dubie, Kai C. Kuo
Recommended Citation:
Dubie, Melaku, Kai C. Kuo, Gabriela Giron-Valderrama, and Anne Goodchild. (2018) An Evaluation of Logistics Sprawl in Chicago and Phoenix. Journal of Transport Geography, 88, 102298–. https://doi.org/10.1016/j.jtrangeo.2018.08.008
Paper

Evaluating the Impacts of Density on Urban Goods Movement Externalities

Publication: Journal of Urbanism: International Research on Placemaking and Urban Sustainability
Volume: 10:04
Pages: 13-Jan
Publication Date: 2017
Summary:

Research has established a potential to reduce vehicle miles traveled (VMT) by replacing passenger travel for shopping with delivery service, and a few studies have indicated CO2 emissions can also be reduced. However, that research has mostly focused on urban locations and has not addressed criteria pollutants. This study examines the impacts of replacing passenger travel for shopping with delivery service over a broader set of externalities (VMT, CO2, NOx, and PM10) in both urban and rural communities. Three different goods movement strategies are considered in three different municipalities in King County, Washington, which vary in size, density, and distance from the metropolitan core. The research finds that delivery services can reduce VMT over passenger vehicle travel for shopping, however, the potential to reduce CO2, NOx, and PM10 emissions varies by municipality. Significant trade-offs are observed between VMT and emissions – especially between VMT and criteria pollutants.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. Evaluating the Impacts of Density on Urban Goods Movement Externalities. Journal of Urbanism: International Research on Placemaking and Urban Sustainability 10, no. 4 (2017): 487-499. 
Thesis: Array
Paper

Current State of Estimation of Multimodal Freight Project Impacts

 
Download PDF  (0.50 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2410
Pages: 141-149
Publication Date: 2014
Summary:

As available data have increased and as the national transportation funding bills have moved toward objective evaluation, departments of transportation (DOTs) throughout the United States have begun to develop tools to attempt to measure the effects of different projects. Increasingly, DOTs recognize that the freight transportation system is necessarily multimodal. However, no DOTs have clearly stated objective tools with which to evaluate multimodal freight project comparisons.

This paper fills that gap by summarizing the existing academic literature on the state of the science for the estimation of freight project impacts and by reviewing methods currently used by selected DOTs nationwide. These methods are analyzed to identify common themes to determine potential avenues for multimodal project evaluation.

Authors: Dr. Anne Goodchild, Erica Wygonik, Daniel Holder, B. McMullen
Recommended Citation:
Wygonik, Erica, Daniel Holder, B. Starr McMullen, and Anne Goodchild. "Current State of Estimation of Multimodal Freight Project Impacts." Transportation Research Record 2410, no. 1 (2014): 141-149. 
Paper

The Clean Trucks Program: Evaluation of Policy Impacts on Marine Terminal Operations

Publication: Journal of Maritime Economics and Logistics
Volume: 10(4)
Pages: 393-408
Publication Date: 2008
Summary:

The Clean Trucks Program is a Clean Air Action Plan initiative currently being adopted by the Ports of Los Angeles and Long Beach. This paper examines each of the Clean Trucks Program’s current requirements and estimates the impact on terminal operations. Using terminal operations data supplied by three terminal operating companies, we conduct a simple queuing analysis and present a regression model which allow us to consider the potential impact of the policy changes. While the impact at a specific terminal is not estimated in this paper, we consider order of magnitude effects. While the programme itself does not require terminal operations changes, the programme will modestly increase incentives to improve operational efficiency outside the terminal and reduce terminal gate processing time. It will also require technology that could be used for further operational changes. We show, however, that unless gate time improvements are matched with these operational improvements in the terminal, they will only move the delay inside the terminal and not reduce total terminal time. Our research considers the impact of the Clean Trucks Program on the Ports of Los Angeles and Long Beach, but similar concerns are driving changes at ports around the globe.

Authors: Dr. Anne Goodchild, Karthik Mohan
Recommended Citation:
Goodchild, Anne, and Karthik Mohan. “The Clean Trucks Program: Evaluation of Policy Impacts on Marine Terminal Operations.” Maritime Economics & Logistics, vol. 10, no. 4, 2008, pp. 393–408., doi:10.1057/mel.2008.13.
Paper

How Cargo Cycle Drivers Use the Urban Transport Infrastructure

 
Download PDF  (10.47 MB)
Publication: Transportation Research Part A: Policy and Practice
Volume: 167
Publication Date: 2023
Summary:

Electric cargo cycles are often considered a viable alternative mode for delivering goods in an urban area. However, cities in the U.S. are struggling to regulate cargo cycles, with most authorities applying the same rules used for motorized vehicles or traditional bikes. One reason is the lack of understanding of the relationships between existing regulations, transport infrastructure, and cargo cycle parking and driving behaviors.

In this study, we analyzed a cargo cycle pilot test in Seattle and collected detailed data on the types of infrastructure used for driving and parking. GPS data were augmented by installing a video camera on the cargo cycle and recording the types of infrastructure used (distinguishing between the travel lane, bicycle lane, and sidewalk), the time spent on each type, and the activity performed.

The analysis created a first-of-its-kind, detailed profile of the parking and driving behaviors of a cargo cycle driver. We observed a strong preference for parking (80 percent of the time) and driving (37 percent of the time) on the sidewalk. We also observed that cargo cycle parking was generally short (about 4 min), and the driver parked very close to the delivery address (30 m on average) and made only one delivery. Using a random utility model, we identified the infrastructure design parameters that would incentivize drivers to not use the sidewalk and to drive more on travel and bicycle lanes.

The results from this study can be used to better plan for a future in which cargo cycles are used to make deliveries in urban areas.

Recommended Citation:
Dalla Chiara, G., Donnelly, G., Gunes, S., & Goodchild, A. (2023). How Cargo Cycle Drivers Use the Urban Transport Infrastructure. Transportation Research Part A: Policy and Practice, 167, 103562. https://doi.org/10.1016/j.tra.2022.103562
Paper

Identifying the Challenges to Sustainable Urban Last-Mile Deliveries: Perspectives from Public and Private Stakeholders

 
Download PDF  (0.48 MB)
Publication: Sustainability
Volume: 14, 4701
Publication Date: 2022
Summary:

While freight transportation is a necessary activity to sustain cities’ social and economic life—enabling the movement and deployment of goods and services in urbanized areas—it also accounts for a significant portion of carbon dioxide (CO2) emissions. The urban freight ecosystem is a complex network of agents, both public and private. Reducing CO2 emissions from urban freight requires the collaboration and coordination between those agents, but the motivations behind their goals, strategies for achieving those goals, and the challenges faced by each agent may differ. In this paper, we document the strategies aimed at reducing CO2 emissions considered by cities and private companies with the goal of understanding the challenges to progress faced by each. To accomplish this, we interviewed officials from purposefully sampled city departments in North America and private companies involved in city logistics. We found that cities face challenges related to a lack of strong leadership, resources, and policy tools. Companies must consider technological challenges, costs, and their workforce before reducing emissions. Cities and companies are challenged by the disaggregated nature of the urban freight “system”—a system that is not organized at the municipal scale and that is driven by performance and customer expectations.

Recommended Citation:
Maxner, T.; Dalla Chiara, G.; Goodchild, A. Identifying the Challenges to Sustainable Urban Last-Mile Deliveries: Perspectives from Public and Private Stakeholders. Sustainability 2022, 14, 4701. https://doi.org/10.3390/su14084701.