Skip to content
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Paper

Estimating Truck Trips with Product Specific Data: A Disruption Case Study in Washington Potatoes

Publication: Transportation Letters: The International Journal of Transportation Research
Volume: 4 (3)
Publication Date: 2013
Summary:

Currently, knowledge of actual freight flows in the US is insufficient at a level of geographic resolution that permits corridor-level freight transportation analysis and planning. Commodity specific origins, destinations, and routes are typically estimated from four-step models or commodity flow models. At a sub-regional level, both of these families of models are built on important assumptions driven by the limited availability of data. This study was motivated by a desire to determine whether efforts to gather corridor-level freight movement data will bring significant new insights over current approaches to freight transportation modeling. Through a case study of Washington State’s potato and value added potato products industry, we show that significant insight can be gained by collecting commodity-specific truck trip generation and destination data: the approach allows product specific truck trips to be estimated for each roadway link. When considering a network change, the number of affected trips can be identified, and their re-route distance quantified.

Authors: Dr. Anne Goodchild, Derik Andreoli, Eric Jessup
Recommended Citation:
Derik Andreoli, Anne Goodchild & Eric Jessup (2012) Estimating truck trips with product specific data: a disruption case study in Washington potatoes, Transportation Letters, 4:3, 153-166, https://doi.org/10.3328/TL.2012.04.03.153-166
Paper

SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions

Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 141
Publication Date: 2020
Summary:

Despite significant advances in freight transport modeling in recent years, there is still lack of available tools for evaluating novel logistics solutions. We introduce the framework of SimMobility Freight, which is part of SimMobility, a multi-scale agent-based urban transportation simulation platform. SimMobility Freight is capable of simulating commodity contracts, logistics and vehicle operation planning and parking decisions in a fully-disaggregate manner. This allows us to evaluate alternative logistics solutions and measure their impacts. To illustrate its capability, we conduct an analysis of delivery time window regulations, assessing the policy impacts.

Authors: Dr. Giacomo Dalla Chiara, Takanori Sakai, André Romano Alho, B.K. Bhavathrathan, Raja Gopalakrish, Peiyu Jinge, Tetsuro Hyodo, Lynette Cheah, Moshe Ben-Akivae
Recommended Citation:
Sakai, T., Romano Alho, A., Bhavathrathan, B., Chiara, G. D., Gopalakrishnan, R., Jing, P., Hyodo, T., Cheah, L., & Ben-Akiva, M. (2020). SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions. Transportation Research Part E: Logistics and Transportation Review, 141, 102017. https://doi.org/10.1016/j.tre.2020.102017
Paper

GPS Tracking of Freight Vehicles to Identify and Classify Bottlenecks

Publication: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference
Publication Date: 2012
Summary:

This paper presents a systematic methodology for identifying and ranking bottlenecks using probe data collected by commercial GPS fleet management devices. This methodology is based on the hypotheses that truck speed distributions can be represented by either a unimodal or bimodal probability density function, and it proposes a new reliability measure for evaluating roadway performance.

Authors: Dr. Ed McCormack, Wenjuan Zhao, Daniel J. Dailey
Recommended Citation:
McCormack, E., Zhao, W., & Dailey, D. J. (2012, September). GPS Tracking of Freight Vehicles to Identify and Classify Bottlenecks. In 2012 15th International IEEE Conference on Intelligent Transportation Systems (pp. 1245-1249). IEEE.
Paper

Measuring Delivery Route Cost Trade-Offs Between Electric-Assist Cargo Bicycles and Delivery Trucks in Dense Urban Areas

 
Download PDF  (3.79 MB)
 
Publication: European Transport Research Review
Volume: 11
Publication Date: 2019
Summary:

Introduction

Completing urban freight deliveries is increasingly a challenge in congested urban areas, particularly when delivery trucks are required to meet time windows. Depending on the route characteristics, Electric Assist (EA) cargo bicycles may serve as an economically viable alternative to delivery trucks. The purpose of this paper is to compare the delivery route cost trade-offs between box delivery trucks and EA cargo bicycles that have the same route and delivery characteristics, and to explore the question, under what conditions do EA cargo bikes perform at a lower cost than typical delivery trucks?

Methods

The independent variables, constant variables, and assumptions used for the cost function comparison model were gathered through data collection and a literature review. A delivery route in Seattle was observed and used as the base case; the same route was then modeled using EA cargo bicycles.

Four separate delivery scenarios were modeled to evaluate how the following independent route characteristics would impact delivery route cost – distance between a distribution center (DC) and a neighborhood, number of stops, distance between each stop, and number of parcels per stop.

Results

The analysis shows that three of the four modeled route characteristics affect the cost trade-offs between delivery trucks and EA cargo bikes. EA cargo bikes are more cost effective than delivery trucks for deliveries in close proximity to the DC (less than 2 miles for the observed delivery route with 50 parcels per stop and less than 6 miles for the hypothetical delivery route with 10 parcels per stop) and at which there is a high density of residential units and low delivery volumes per stop.

Conclusion

Delivery trucks are more cost effective for greater distances from the DC and for large volume deliveries to one stop.

 

Recommended Citation:
Sheth, Manali, Polina Butrina, Anne Goodchild, and Edward McCormack. "Measuring delivery route cost trade-offs between electric-assist cargo bicycles and delivery trucks in dense urban areas." European Transport Research Review 11, no. 1 (2019): 11.
Paper

A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010

Publication: Transportation Research Board 95th Annual Meeting
Volume: 16-5911
Publication Date: 2016
Summary:

Bicycling is being encouraged across the US and the world as a low-impact, environmentally friendly mode of transportation. In the US, many states and cities, especially cities facing congestion issues, are encouraging cycling as an alternative to automobiles. However, as cities grow and consumption increases, freight traffic in cities will increase as well, leading to higher amounts of interactions between cyclists and trucks. This paper will describe where and how accidents between cyclists and trucks occur. From 2000 to 2010, 807 bicyclists were killed the United States in accidents involving trucks. In 2009, trucks accounted for 9.5% of fatal bicycle accidents, despite trucks only accounting for 4.5% of registered vehicles. The typical fatal bike-truck accident happens in an urban area on an arterial street with a speed limit of 35 or 45 mph. It is about equally likely to occur mid-block or at an intersection. Most accidents involved trucks going straight (56%), and right-turning trucks were involved in a much larger number of accidents (24%) than left turning trucks (7%). Methods such as providing bicycle lanes, or even physically separated bicycle tracks, will not be sufficient to address bicycle-truck collisions, as a significant number of accidents (49%) occur in intersections or are intersection related. Cities with a higher mode-share of bicycling had a lower rate of bicycle-truck fatality accidents.

Authors: Dr. Anne Goodchild, Jerome Drescher
Recommended Citation:
Drescher, Jerome and Anne Goodchild. (2016), "A Description of Fatal Bicycle Truck Accidents in the United States: 2000 to 2010," Accepted for presentation at the 95th Transportation Research Board Annual Meeting, Washington DC, January 10-14. [Paper # 16-5911]
Paper

Examining the Differential Responses of Shippers and Motor Carriers to Travel Time Variability

Publication: International Journal of Applied Logistics
Volume: 3 (1)
Pages: 39-53
Publication Date: 2012
Summary:

Shippers and motor carriers are impacted by and react differently to travel time variability due to their positions within the supply chain and end goals. Through interviews and focus groups these differences have been further examined. Shippers, defined here as entities that send or receive goods, but do not provide the transportation themselves, are most often concerned with longer-term disruptions, which are typically considered within the context of transportation system resilience. Motor carriers, defined here as entities engaged in transporting goods for shippers, are most often concerned with daily travel time variability from events such as congestion. This paper describes the disparity in concerns and the strategies shippers and motor carriers are likely to engage in to address time travel variability. This knowledge allows for a better understanding of how investments to mitigate travel time variability will impact shippers and motor carriers.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Kelly Pitera
Recommended Citation:
Goodchild, Anne V., Kelly Pitera, and Edward McCormack. "Examining the differential responses of shippers and motor carriers to travel time variability." International Journal of Applied Logistics (IJAL) 3, no. 1 (2012): 39-53.
Paper

Understanding Freight Trip Chaining Behavior Using Spatial Data Mining Approach with GPS Data

 
Download PDF  (2.26 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2596
Pages: 44-54
Publication Date: 2016
Summary:

Freight systems are a critical yet complex component of the transportation domain. Understanding the dynamic of freight movements will help in better management of freight demand and eventually improve freight system efficiency. This paper presents a series of data-mining algorithms to extract an individual truck’s trip-chaining information from multi-day GPS data. Individual trucks’ anchor points were identified with the spatial clustering algorithm for density-based spatial clustering of applications with noise. The anchor points were linked to construct individual trucks’ trip chains with 3-day GPS data, which showed that 51% of the trucks in the data set had at least one trip chain. A partitioning around medoids nonhierarchical clustering algorithm was applied to group trucks with similar trip-chaining characteristics. Four clusters were generated and validated by visual inspection when the trip-chaining statistics were distinct from each other. This study sheds light on modeling freight-chaining behavior in the context of massive freight GPS data sets. The proposed trip chain extraction and behavior classification algorithms can be readily implemented by transportation researchers and practitioners to facilitate the development of activity-based freight demand models.

Authors: Dr. Ed McCormack, X. Ma, W. Yong, and Yinhai Wang
Recommended Citation:
Ma, Xiaolei & Wang, Yong & McCormack, Edward & Wang, Yinhai. (2016). Understanding Freight Trip-Chaining Behavior Using a Spatial Data-Mining Approach with GPS Data. Transportation Research Record: Journal of the Transportation Research Board. 2596. 44-54. 10.3141/2596-06. 
Paper

COVID-19 Impacts on Online and In-Store Shopping Behaviors: Why they Happened and Whether they Will Last Post Pandemic

 
Download PDF  (2.75 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2023
Summary:

Throughout the COVID-19 pandemic, online and in-store shopping behaviors changed significantly. As the pandemic subsides, key questions are why those changes happened, whether they are expected to stay, and, if so, to what extent. We answered those questions by analyzing a quasi-longitudinal survey dataset of the Puget Sound residents (Washington, U.S.). We deployed structural equation modeling (SEM) to build separate models for food, grocery, and other items shopping to explore the factors affecting such changes. The results revealed that people’s online and in-store shopping frequencies during the pandemic were affected by their perceived health risks, attitudes toward shopping, and pre-pandemic shopping frequencies. Similarly, it was shown that how frequently people expect to shop post pandemic is influenced by their attitudes toward shopping, changes during the pandemic, and their pre-pandemic frequencies. We also classified respondents into five groups, based on their current and expected future shopping behavior changes, and performed a descriptive analysis. The five groups—Increasers, Decreasers, Steady Users, Returnees, and Future Changers—exhibited different trends across online and in-store activities for shopping different goods. The analysis results showed that, while 25% of the respondents increased their online shopping, only 8% to 13% decreased their in-store activities, implying that online shopping did not completely substitute in-store shopping. Moreover, we found that online shopping is a substitution for in-store shopping for groceries, while it complements in-store shopping for food and other items. Additionally, more than 75% of new online shoppers expect to keep purchasing online, while 63%–85% of in-store Decreasers plan to return to their pre-pandemic frequencies.

The rise of e-commerce, busy lifestyles, and the convenience of next- and same-day home deliveries have resulted in exponential growth of online shopping in the U.S., rising from 5% of the total retail in 2011 to 15% in 2020, and it is expected to grow even further in the future. Worldwide, spending on e-commerce passed $4.9 trillion in 2021 and it is projected to surge to $7 trillion by 2025.

In the past few years, there has been ongoing research on how this growth would change people’s travel patterns and whether its effect on in-person activities would be substitution, complementing, or modification. However, there is no single answer to this question, given different product types, regions, demographics, and primary travel modes.

While online purchasing had already been experiencing a growth every year before 2020, the pandemic accelerated this trend. In 2020, online shopping constituted more than 20% of total spending on consumer goods worldwide in comparison to 16.4% in 2019 and 14.4% in 2018. Before COVID-19, it was predicted that total e-commerce sales in the U.S. would grow up to $674.88 billion, yet the actual number turned out to be $799.18 billion. With a 15.9% growth, the U.S. is among the top 10 countries with the highest growth rate in online retail shopping in 2022.

Embracing digital technologies and bringing shops into homes are among the immediate impacts of the pandemic restrictions and lockdowns, with the majority of people reducing their frequency of going to stores and adopting alternative shopping approaches such as curbside pick-up and home delivery. Based on the reports by the U.S. Bureau of Transportation Statistics (BTS), in Nov–Dec 2020, when the penetration of the coronavirus reached its first peak in the U.S., the percentage of people who decided to shop online instead of going to stores increased by up to 10%. During the early pandemic, about 35% of U.S. workers switched to remote working, and from March to April 2020, the average daily number of people staying home increased by 32 million and the total number of trips decreased by 2.5B. Dining-in restaurants were also banned in half of the U.S. states for several months in 2020, which resulted in a significant drop in the restaurant dine-in demand and shifted people toward online food delivery services, and buying groceries online rather than going to store.

These changes were also influenced by socio-demographic characteristics. For instance, according to the BTS, the percentage of people with an annual income close to $125,000 who replaced their in-store shopping by online shopping in Nov–Dec 2020 was twice those with an annual income of $25,000. People in the neighborhoods with higher number of positive COVID-19 cases or higher spread rate of positive new cases were more likely to change their in-store shopping to online-shopping. Senior people were also shown to have higher tendency to shop online compared with younger generations, perhaps because of health and safety concerns. It is worth noting that these changes were not the same across all products; for example, online sales of food and beverage in the U.S. doubled in 2020, while home furniture online sales only increased by about 50%.

Another factor that is proved to have a major effect on people’s shopping behaviors and travel patterns during the pandemic is their risk perception and fears for their health. Irawan et al. found that perceiving COVID-19 as a severe disease decreased people’s tendency to do in-store grocery shopping. Similarly, Moon et al. found out that, during the pandemic, people who considered themselves less vulnerable to the infection were less likely to use online channels for shopping. Several studies have mentioned that the perceived health risk varies among different groups of population and depends on region, age, gender, education, race, and marital status.

Moreover, people’s online and in-store shopping behaviors are affected by their socio-demographic factors and their attitudes toward the activity. The advantages and disadvantages of online shopping over in-store shopping play a role in attitudes toward the activity. The advantages, such as receiving goods without leaving home, having access to a wider variety of products and information, and being able to compare them easily and efficiently, result in a positive attitude toward online shopping, especially during the pandemic given high perceived health risk, formal penalties, or both. On the other hand, online shopping has some disadvantages, such as transaction security concerns and long delivery times, and in-store shopping offers specific benefits, such as the ability to see, touch, feel, and try the products, ensuring the store’s environment quality, immediate possession of the product, social interaction, and entertainment. Therefore, even during the pandemic, some people maintained frequent in-store shopping trips.

Whether the pandemic-induced changes in online and in-store shopping are permanent is still debatable. Sheth discussed that people may find the new routine more convenient, affordable, and accessible, and therefore stick to it even after the pandemic is over. On the contrary, Dannenberg et al. argued that people’s motives to shop online only hold for the time of crisis, and online retailing will decline when circumstances change. Watanabe and Omori showed that most people used to shop online long before the pandemic, and they merely increased their frequency because of infection risk. So, the reasons behind the surge in online shopping might dissipate as COVID-19 recedes.

In this paper, we study how online and in-store shopping behaviors for different goods were affected during COVID-19, and whether those changes are expected to stay post pandemic. We analyze a quasi-longitudinal survey dataset from the Puget Sound region in Washington State, U.S., that includes data on people’s shopping behavior before and during pandemic, as well as their expected shopping behavior after pandemic. The dataset also contains information on socio-demographic characteristics, as well as psychometric questions about COVID-19 risk perception and attitudes toward shopping. Through descriptive analysis and structural equation modeling (SEM), we explore the factors that directly or indirectly affected people’s three shopping activities (online and in-store), for food, grocery, and other items (clothing, home goods, etc.), and investigate the similarities and differences amongst them.

This study is distinguished in several ways from the previous ones that investigated the impacts of COVID-19 on people’s shopping behavior: (1) it applies a unique descriptive analysis by classifying respondents based on their current and expected future shopping trends and studies how socio-demographic characteristics (directly and indirectly) influence people’s shopping behaviors by analyzing the similarities and differences between those groups; (2) it models online and in-store shopping jointly, considering covariations and dependencies between those two modes; (3) it applies the same methodology and set of variables to three different shopping activities (for food, grocery, and other items) and compares and contrasts their observed/expected trends and influencing factors; and (4) in addition to socio-demographic and attitudinal variables, it considers people’s baseline shopping behaviors (how frequently they shopped online and in-store before the pandemic) as factors affecting their expected post-pandemic shopping behaviors.

Authors: Dr. Andisheh Ranjbari, Jorge Manuel Diaz-Gutierrez (Pennsylvania State University, Helia Mohammadi-Mavi (Pennsylvania State University)
Recommended Citation:
Diaz-Gutierrez, J. M., Mohammadi-Mavi, H., & Ranjbari, A. (2023). COVID-19 Impacts on Online and In-Store Shopping Behaviors: Why they Happened and Whether they Will Last Post Pandemic. Transportation Research Record: Journal of the Transportation Research Board, 036119812311551. https://doi.org/10.1177/03611981231155169 
Paper

Data Stories from Urban Loading Bays

 
Download PDF  (1.16 MB)
Publication: European Transport Research Review
Volume: 9
Publication Date: 2017
Summary:

Freight vehicle parking facilities at large urban freight traffic generators, such as urban retail malls, are often characterized by a high volume of vehicle arrivals and a poor parking supply infrastructure. Recurrent congestion of freight parking facilities generates environmental (e.g. pollution), economic (e.g. delays in deliveries), and freight and social (e.g. traffic) negative externalities. Solutions aimed at either improving or better managing the existing parking infrastructure rely heavily on data and data-driven models to predict their impact and guide their implementation. In the current work, we provide a quantitative study of the parking supply and freight vehicle drivers’ parking behavior at urban retail malls.

We use as case studies two typical urban retail malls located in Singapore, and collect detailed data on freight vehicles delivering or picking up goods at these malls. Insights from this data collection effort are relayed as data stories. We first describe the parking facility at a mall as a queueing system, where freight vehicles are the agents and their decisions are the parking location choice and the parking duration.

Using the data collected, we analyze (i) the arrival rates of vehicles at the observed malls, (ii) the empirical distribution of parking durations at the loading bays, (iii) the factors that influence the parking duration, (iv) the empirical distribution of waiting times spent by freight vehicle queueing to access the loading bay, and (v) the driver parking location choices and how this choice is influenced by system congestion.

This characterization of freight driver behavior and parking facility system performance enables one to understand current challenges, and begin to explore the feasibility of freight parking and loading bay management solutions.

Authors: Dr. Giacomo Dalla Chiara, Lynette Cheah
Recommended Citation:
Dalla Chiara, G., Cheah, L. Data stories from urban loading bays. Eur. Transp. Res. Rev. 9, 50 (2017). https://doi.org/10.1007/s12544-017-0267-3