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A B S T R A C T

As awareness of the vulnerability of isolated regions to natural disasters grows, the demand
for efficient evacuation plans is increasing. However, isolated areas, such as islands, often
have characteristics that make conventional methods, such as evacuation by private vehicle,
impractical to infeasible. Mathematical models are conventional tools for evacuation planning.
Most previous models have focused on densely populated areas, and are inapplicable to
isolated communities that are dependent on marine vessels or aircraft to evacuate. This paper
introduces the Isolated Community Evacuation Problem (ICEP) and a corresponding mixed
integer programming formulation that aims to minimize the evacuation time of an isolated
community through optimally routing a coordinated fleet of heterogeneous recovery resources.
ICEP differs from previous models on resource-based evacuation in that it is highly asymmetric
and incorporates compatibility issues between resources and access points. The formulation
is expanded to a two-stage stochastic problem that allows scenario-based optimal resource
planning while also ensuring minimal evacuation time. In addition, objective functions with
a varying degree of risk are provided, and the sensitivity of the model to different objective
functions and problem sizes is presented through numerical experiments. To increase efficiency,
structure-based heuristics to solve the deterministic and stochastic problems are introduced
and evaluated through computational experiments. The results give researchers and emergency
planners in remote areas a tool to build optimal evacuation plans given the heterogeneous
resource fleets available, which is something they have not been previously able to do and to
take actions to improve the resilience of their communities accordingly.

. Introduction

.1. Motivation

The new model formulation presented in this paper was motivated by the rising need to prepare for and mitigate the effects of
isasters caused by natural hazards on the populations in remote communities. Particularly, small inhabited islands and similarly
solated communities such as coastal communities, remote valley hamlets, and mountain towns are vulnerable to the effects of
atural disasters because of their dependence on waterways or limited and vulnerable roads. These conditions often do not allow
he affected population to evacuate in private vehicles. Therefore, emergency management authorities often need to coordinate a
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highly heterogeneous set of recovery resources that have to alternate between the disaster area and shelter locations to evacuate the
entire population. Some disasters that require such actions are wildfires, such as the Australian bushfires, which required a marine
and air evacuation of Mallacoota in Victoria, Australia in 2020 (Australian Broadcasting Corporation, 2020), and the evacuation
of Samos Island in Greece during the wildfires of 2019 (Coffey, 2019). Storms can also require such an evacuation, such as in the
Bahamas after Hurricane Dorian in 2019 (Romero, 2019). Volcanic eruptions led to the evacuation of Vulcano Island in Italy in
2021 (Nadeau, 2021), the evacuation of St. Vincent in 2021 (Deane and Coto, 2021), and the evacuation of some islands in Tonga
in 2022 (Moussa and Rising, 2022). These events increased awareness of threats and caused remote communities to recognize the
need to develop robust and quick evacuation plans (Britten, 2019) at a time when climate change is increasing the risk of many
natural disasters (IPCC, 2012). Furthermore, communities with geographically vulnerable characteristics are not uncommon. In
fact, a geospatial data analysis conducted by StreetLight Data (StreetLight Data Inc., 2020) has highlighted the 100 most difficult
to evacuate communities in the United States, most of which are either in remote areas in the mountains or in coastal settings such
as islands or peninsulas, where road-based evacuation is not possible. No existing formulation is capable of capturing this exact
problem, and thus, a new formulation is required. This problem can be expressed through two research questions:

1. During an emergency, how can resources be optimally routed to evacuate the entire community as quickly as possible?
2. During evacuation planning, which resources need to be secured to prepare for quick evacuation over a variety of disaster scenarios?

For both questions, the compatibility between recovery resources and landing locations needs to be considered. For the second
question, any decision has to be made without exact information about the nature of the disaster or evacuation demand patterns.
Since this problem is complex when multiple pick up locations are considered, mathematical modeling is the right solution approach.

This paper refers to the problem that poses the two research question above as the Isolated Community Evacuation Problem
ICEP). The paper provides two formulations: a deterministic mixed-integer programming formulation (D-ICEP), and a two-stage
tochastic mixed integer formulation with recourse (S-ICEP). The D-ICEP can be used for optimizing the evacuation plan for an
solated community, where all parameter and set data is known in advance and corresponds to the first research question. The
ecovery resources under consideration can be, depending on the environment to which the model is applied, a heterogeneous fleet
f marine vessels, aircraft or land vehicles. The D-ICEP can therefore be used for response purposes and help decision makers and
mergency managers to make decisions on how to effectively allocate available recovery resources to different parts of the disaster
rea and how to evacuate the affected population in the fastest possible way. It will also give insights into which part of the area
ill be most difficult to evacuate and where more resources can potentially help reduce the evacuation time further.

The S-ICEP is an expansion of the D-ICEP for planning purposes, which adds a resource selection decision that is relevant to
nswer the second research question. A two-stage stochastic programming formulation with recourse makes it possible to separate
he problem into two stages, separated by a probabilistic event: the disaster causing the evacuation. The S-ICEP therefore provides
mergency planning teams with a way to plan for evacuations and to evaluate the community’s level of preparedness for evacuation
cenarios of different natures. Furthermore, decision makers can choose between multiple objective functions for the S-ICEP that
alance the conflicting objectives of time and cost in different ways. An analysis with the S-ICEP can help communities decide
hether the current infrastructure is sufficient to support a timely evacuation. For example, it will help to identify which areas are
ost vulnerable to disaster, and whether it could be helpful to reactivate a decommissioned air strip, upgrade docking infrastructure

or vessels, or whether additional recovery resources need to be held available to be prepared for a disaster. It could also help
dentify which gathering points people should travel to, to ensure evacuation can be executed as quickly as possible. Investigating
ll potential managerial insights and the resulting requirements for data inputs and disaster scenario design in practice would go
eyond the scope of this paper. Krutein et al. (2022) provide a first deep dive into how to effectively use evacuation models to gain
anagerial insights through a real-world case study. In addition to introducing the model formulations, bounds are established on

ome key parameters that illustrate the model dynamics of both formulations, and some numerical experiments are provided. For an
lternative efficient solution process, structure-based heuristics are presented for both the D-ICEP and the S-ICEP, and are evaluated
umerically.

.2. Related work

.2.1. General framework
To assess where the ICEP falls in a general evacuation framework, Tüydeş (2005) provided multiple components of a general

vacuation study. The first components are a hazard analysis, which investigates the severity of the event, and a vulnerability
nalysis, which identifies the population at risk. On the basis of the outcome of these components, disaster response actions can be
efined (Tüydeş, 2005). These include emergency operations and evacuation coordination, which both involve the aspect of traffic
anagement and coordination. Southworth (1991) further mentioned the need to conduct a behavior analysis of the population
uring an evacuation and a shelter analysis to identify where and how many shelters would be needed (Southworth, 1991). The
CEP falls into the response action component of evacuation analysis, which includes the planning and coordination of evacuation
esources. For the ICEP, it can be assumed that sufficient information has been collected about the vulnerability of the population
nd that realistic disaster scenarios can be mapped. While consideration of evacuation behavior is important if the population can
elf-evacuate (Thompson et al., 2017), which describes the process where an evacuee can leave a dangerous area by either walking
r in their personal vehicle, the ICEP does not provide the majority of the population with the option to leave the area entirely on
2

heir own.
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In considering modeling approaches for the response action component of evacuation studies, Bayram’s literature
eview (Bayram, 2016) provided a comprehensive field survey about the optimization of emergency planning. Evacuation models
an be classified on the basis of their modeling approach, whether they are static or dynamic, whether they contain multiple
evels, whether they are of stochastic or deterministic nature, whether shelter location decisions are included, and which modes of
ransportation are used.

.2.2. Network flow problems
Network problems that aim to minimize the total route completion time, also known as the network clearance time, are

articularly relevant. The simplest network flow model that describes this problem is the quickest flow model (Burkard et al., 1993).
uilding on this for evacuation applications, Lu et al. (2005) have used the time-expanded network flow model as a baseline for a
ew heuristic to achieve suboptimal solutions for the network clearance time for evacuations. To provide some recent examples, Lim
t al. (2015) considered network clearance time in the context of reliability-based evacuation routing that included uncertainty in
he link capacities caused by congestion. Pillac et al. (2016) developed a column generation-based two-level evacuating algorithm in
hich the sub-problem generates an evacuation path for each evacuation area, while the master problem resolves conflicts between

he paths. Karabuk and Manzour (2019) have developed a multi-stage stochastic program for tornado evacuation management that
onsiders the path uncertainty of a tornado to make evacuation decisions as the weather event evolves.

.2.3. Related vehicle routing problems
It is worth exploring related problem types. The general vehicle routing problem (VRP) (Dantzig and Ramser, 1959), and its

ynamic expansion (Laporte et al., 1992) (both generalizations of the Traveling Salesman Problem (TSP) Flood, 1956), are well-
tudied problems with a vast literature (Laporte, 2009; Pillac et al., 2013). Similarities to the ICEP can be found with the VRP
ith time windows (VRP-TW) (Schrage, 1981), a generalization of the VRP. Another related problem class is the location-routing
roblem (LRP), which considers both the optimization of the vehicle routes and depot locations, see for example (Belenguer et al.,
011). This is particularly the case if shelter location considerations are part of the problem. Another related problem class is that
f the multi-trip vehicle routing problem (MVRP), where vehicles can perform multiple round-trips and visit nodes multiple times
o fulfill their orders (Brandão and Mercer, 1998; Cattaruzza et al., 2016). As a variant of the MVRP, the VRP with satellite depots
an also be considered. In this problem, vehicles can take on additional orders at satellite facilities and do not have to go all the way
ack to the depot to take on additional orders (Crevier et al., 2007). Another related problem that is derived from the VRP-TW is
he Dial-a-Ride-Problem (DARP) (Cordeau, 2006), where the vehicles share their capacity between multiple customers to transport
ustomers from requested pick-up to requested drop-off points. However, this problem is strongly constrained by the time windows
nd maximum duration constraints for customers and therefore difficult to solve efficiently.

.2.4. Related evacuation transit routing problems
No previous research has developed optimization models for non-road-based evacuations. Hence, structurally related network

odels for the evacuation of populations through the use of buses, trains, or other public transit vehicles (Renne et al., 2011) are
eviewed. Mass transportation models optimize the routing of vehicles to evacuate an otherwise immobile population through a set
f nodes representing evacuation area pick-up points and shelters. These models require routing decisions for the recovery resources,
hich makes them difficult to solve, but they enable exact modeling of the resource usage. However, only a few applicable papers
n mass transit evacuation have been published.

Song et al. (2009) presented a location-routing problem (LRP) that models evacuations from an urban city network via transit
ehicles and uses different heuristic and algorithmic approaches to solve the problem. Sayyady and Eksioglu (2010) provided a
ixed-integer linear program (MILP) that optimizes the total evacuation time in urban areas for no-notice evacuation by using buses

hat collect passengers from multiple pick-up locations until the bus capacity has been reached. An et al. (2013) expanded the bus
vacuation idea and integrated it with decisions on the design of evacuation pick-up locations and furthermore considered service
vailability. Abdelgawad and Abdulhai (2010) developed a large-scale multi-modal evacuation model that combines a private vehicle
vacuation model with a VRP-based mass transit evacuation model to obtain a holistic evacuation plan for large cities (NETDC).
ulshrestha et al. (2014) expanded this problem by considering pick-up location decisions and incorporating demand uncertainty

hrough a robust optimization formulation. An additional study by Wu et al. (2020) considers evacuation by barges (BEPP) ahead
f storm events.

Bish (2011) presented a bus-based evacuation model as a variant of the general VRP, called the bus evacuation problem (BEP).
he BEP requires a significantly different formulation than the classic VRP, but it uses a network structure that is similar to that
f the ICEP. It consists of initial bus depots, pick-up points, and shelter locations. Buses are routed from an initial depot to the
ick-up points and then alternate between the pick-up points and shelter locations, sequentially evacuating the entire population.
ultiple extensions to the BEP have been published. Pereira and Bish (2015) expanded the BEP to consider the arrival rates of

eople at pick-up points. Zheng (2014) provided a similar model to optimize mass transit evacuations of urban areas with different
onstraints on arrivals of evacuees, and solved it by using a Lagrangian relaxation-based algorithm. Goerigk et al. (2013) introduced
ultiple solution approaches that use branch-and-bound procedures to solve the BEP efficiently, and presented a simplified robust

ptimization formulation of this problem (RBEP) with delayed scenario generation (Goerigk and Grün, 2014). This formulation solves
he RBEP for uncertain numbers of evacuees by using a linear and a tabu search to find near-optimal solutions. The search procedures
ake advantage of the problem’s high symmetry, caused by identical buses and symmetric travel times. Goerigk et al. (2015) further
3

eveloped a way to solve the RBEP by using two stages that sequentially add new scenarios generated from uncertainty set, solving
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Table 1
Feature evaluation of selected related models and studies.
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Flood (1956) TSP ✓ (✓) (✓)
Dantzig and Ramser (1959) VRP(-TW) ✓ ✓ ✓ (✓)
Belenguer et al. (2011), Song et al. (2009) LRP ✓ ✓ ✓ ✓

Cattaruzza et al. (2016) MVRP ✓ ✓ ✓ ✓ ✓

Cordeau (2006) DARP ✓ ✓ ✓

Sayyady and Eksioglu (2010) NETDC ✓ ✓ ✓ ✓

Wu et al. (2020) BEPP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bish (2011) BEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Goerigk and Grün (2014) RBEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dikas and Minis (2016) CEP ✓ ✓ ✓ ✓ ✓ ✓ ✓

much larger number of uncertain scenarios in a reasonable amount of time. Goerigk et al. (2014b) further improved the optimal
vacuation time of the network by combining the BEP with decisions on pick-up locations. Lastly, Goerigk et al. (2014a) integrated
he BEP into a comprehensive evacuation framework that not only considers the aspects of previous work (Goerigk et al., 2014b),
ut introduces multi-modal commodity decisions and solves the problem by using a genetic algorithm.

Dikas and Minis (2016) expanded the usage of the BEP to the recovery of casualties, such as in a ceasefire on a battlefield, and
reated a variant called the Casualty Evacuation Problem (CEP). They further provided a hybrid solution framework for the BEP that
ombines the BEP heuristic concepts (Bish, 2011) with column-generation (Dikas and Minis, 2016). Baou et al. (2018) introduced a
ariant of the BEP that can consider heterogeneous bus capacity and take into account mobility impairments among some evacuees.
astly, Wang and Wang (2019) consider re-balancing both supply and demand across the evacuation locations in the BEP to reduce
otal evacuation time.

.2.5. Gaps in literature
No previous research has provided any solutions for optimizing the evacuation of isolated communities. Table 1 visualizes a

omparison of selected related studies and structurally similar models evaluating them against the features that characterize the
CEP. Common routing problem formulations that are derived from the TSP and VRP do not contain the constraints required to
odel the network structure, the resource heterogeneity, and the objective functions that are needed for the ICEP. Furthermore,
hile structurally similar problems, particularly the BEP (Bish, 2011) and its variants (Goerigk et al., 2014b; Goerigk and Grün,
014; Dikas and Minis, 2016; Baou et al., 2018), are useful as a baseline for formulating and solving the ICEP, no other published
esearch has focused on the specific circumstances of geographically isolated areas. This includes the partial incompatibility between
esources and access points, multiple access point alternatives per location, asymmetric travel time matrices, heterogeneous speed
nd capacity capabilities of recovery resources, and, for the stochastic cases, the challenges to predict how a disaster will unfold.
he formulations presented in this paper aim to fill these gaps.

.3. Contributions

Despite the increased demand for evacuation plans for vulnerable isolated communities, the reviewed literature on optimal
vacuation modeling has focused primarily on urban evacuations on road networks. Bayram (2016) further found that most
esearchers have considered the management of emergency response resources and the evacuation of the affected populations as
eparate problems. This differs from the reality that emergency managers face when having to evacuate an isolated area, since these
roblems interact with each other. Furthermore, the solution methods presented to solve related previously developed problems
annot simply be re-used and therefore required the design of new solution approaches. Considering the research gaps mentioned in
he previous section, and the need for solutions to evacuate isolated communities, the formulation presented in this paper is novel
nd highly relevant. The contributions of this paper to the research body are as follows.

1. The ICEP is the first study that uses a resource-routing approach to model the evacuation of communities without road-based
4

evacuation routes. It takes into account the specific constraints of isolated communities, where self-evacuation is difficult
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and where evacuation resources are mostly heterogeneous in their capabilities, capacities, and compatibilities with potential
pick-up and shelter locations;

2. The expansion of the D-ICEP to a two-stage stochastic program with recourse (S-ICEP) allows planning for emergency
evacuations by incorporating uncertainty through a set of scenarios;

3. A variety of objective functions for S-ICEP allow the decision makers to prioritize between time and cost efficiency in planning
for emergency evacuations;

4. The structure-based local search heuristics presented for the D-ICEP and the S-ICEP allow the problems to be solved efficiently
despite their heterogeneous structure with limited penalty on the optimality of the results.

The remainder of this paper is structured as follows: Section 2 provides assumptions about the ICEP. Following that, the
eterministic version of the ICEP (D-ICEP) is constructed through a step-wise creation of the required network components in
ection 2.2 and its mathematical formulation is introduced in Section 2.3. The D-ICEP is then further analyzed for parameter choices.
he stochastic planning problem S-ICEP is introduced in Section 3.2. Different objective functions are also introduced that can be
sed for different policy implications and evaluated for their effects on the solution provided by the model. Section 4 presents
structure-based, two-phase heuristic to solve the primary objective function of the D-ICEP, including the results of numerical

xperiments benchmarking the heuristic against a commercial solver. On the basis of the deterministic heuristic, a heuristic to solve
he S-ICEP is presented and numerical benchmarking experiments are shown. Lastly, Section 5 provides conclusions and future
irections for research.

. Deterministic problem formulation

.1. Assumptions

The following assumptions were made to formulate the D-ICEP model.

1. All road connections out of the disaster area are considered disrupted. Therefore, the ability of people to self-evacuate is
limited to using private vehicles that do not rely on roads such as aircraft or boats. However, since the majority of people
do not own such resources, the majority share of the evacuation requires the use of external resources.

2. The evacuee populations are distributed in between different locations of the affected area.
3. The evacuee population is considered large enough to require a significant amount of resources and/or multiple trips to

evacuate.
4. A central planning entity has full authority over planning and coordination of a fleet of recovery resources, except for private

modes of transportation.
5. The central planning entity aims to minimize the total evacuation time.
6. All recovery resources considered are located within reasonable distance to the affected area and may differ in their

capabilities in terms of their contracting cost, variable operating cost, carrying capacity, loaded and unloaded travel speeds,
loading times, time to availability, initial locations, and their compatibility with potential pick-up and drop-off points in the
affected area.

7. All recovery resources start from their initial positions once they have been staffed, and travel to a pick-up location in the
affected area, and they alternate in between pick-up locations and shelter locations until the number of evacuees is zero,
ending at a shelter location.

8. For model simplicity, recovery resources visit only one evacuation pick-up point and one drop-off point per trip.
9. The sets of initial resource positions, evacuation pick-up points, and shelters are known. Shelter and pick-up point identifi-

cation is thus not part of this problem.
10. The population of evacuees will be at the pick-up locations upon arrival of resources, such that arrival rates of evacuees do

not have to be considered. This entails that the evacuees travel to the pick-up locations either by foot or other modes of
transport. It should be noted that at this point the transportation of evacuees to the pick-up points is out of scope of this
model and needs to be considered separately in future work.

11. Evacuees are considered safe once they have been dropped off at a shelter location.
12. Recovery resources are operating continuously without downtime.
13. Recovery resources are accessible and prepared for all types of evacuees, including children and mobility impaired popula-

tions.
14. The capacity of pick-up locations and shelter locations is considered infinite.

.2. Design of the deterministic ICEP

The D-ICEP minimizes the total evacuation time of a given disaster with fixed evacuee numbers and a fixed set of recovery
esources. The network presented in Fig. 1 illustrates the physical flows of evacuees. Let 𝑠 denote the source node, representing the

entire isolated community. The 𝑎s denote geographically separated evacuation areas, the 𝑏s denote the evacuation pick-up points,
the 𝑐s denote the shelters, and 𝑡 denotes the sink node. Green arcs indicate routes on which passengers can be transported. Blue arcs
show the routes of people who decide to self-evacuate using private vehicles. If it was easy to determine the capacities and transit
times for all arcs, the minimal evacuation time could be found through a quickest flow formulation (Burkard et al., 1993).
5
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Fig. 1. Illustration of population flows from evacuated to safe locations for two evacuated areas, three evacuation pick-up points, and two shelters. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Illustration of a route network among initial resource location, evacuation areas, and safe areas for two trips to the evacuation location, three evacuation
ick-up points, two shelters and two initial resource locations.

However, the capacities and time parameters for the arcs between pick-up points and shelter locations are non-linear because
or the ICEP, these depend on which resources are used on a route and how many round trips are made to evacuate the area.
urthermore, resources each have different starting points and may not be compatible with every evacuation pick-up point. For
xample, a ferry that is in regular service between an island and the mainland might be nearby, but it will only be able to dock
t a specifically designed ferry dock. This requires individual routing decisions for each resource and therefore the introduction of
inary variables for routing choices, making the problem a mixed-integer formulation. Fig. 2 illustrates the resource routing problem
or a single resource. Let ℎ denote the initial resource location. The 𝑏s and 𝑐s denote the evacuation pick-up points and shelters

respectively, as in Fig. 1. A resource travels from its initial location ℎ to a pick-up point 𝑏 and transports evacuees to a shelter 𝑐
and returns to one of the compatible evacuation pick-up points 𝑏 (not necessarily the same as the one it served in the previous trip)
for another trip. The left part of Fig. 2 illustrates this problem for a routing problem with one round trip back to the evacuation
location and back to the safe location. Breaking down the 𝑏s and 𝑐s into subnodes for each round trip, as illustrated in the right part
of Fig. 2, expands the model structure into a trip-expanded structure, which follows a logic similar to that of the time-expansion
presented by Ford and Fulkerson (1958).

With the network presented in Fig. 2, resource routes can be optimized, provided that a separate routing scheme is in place for
every considered resource, as the arc capacities and costs in this network still depend on which resource is used on each route. Using
this network structure, the arcs can determine the travel time as a function of distance in between nodes and resource speed, while
6

the arcs from 𝑏 to 𝑐 also maintain flow capacity according to the corresponding resource carrying capacity. The ℎ nodes further
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Fig. 3. Illustration of a combined max-flow and routing problem for two trips per resource with three pick-up points, two shelters, and two fully compatible
esources. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

etermine the time to availability of a resource, and the nodes 𝑏 and 𝑐, the passenger loading and unloading time respectively.
Optimizing this sub-network as a shortest path problem would provide the path with the lowest time consumption.

Integrating the passenger flows from Fig. 1 with the routing network from Fig. 2 for multiple resources produces the network
visualized in Fig. 3. Arcs with no flows are visualized in black, arcs with finite capacity in blue, and arcs with infinite capacity in
green. Each node corresponding to a specific resource is illustrated in a different color and the boxes show the frame of a round trip
for a resource. The remaining parts of the network work as described previously in Figs. 1 and 2. Note that the network as illustrated
in Fig. 3 assumes full compatibility between resources and evacuation pick-up points and shelters. For limited compatibility, arcs in
between nodes and resources that are incompatible have to be removed from the network. This network defines D-ICEP, and solving
it with the objective of minimal route completion time generates an optimal evacuation route plan for the isolated community the
provided data represents.

The D-ICEP can be considered a trip-expanded heterogeneous fleet variant of the location routing problem (LRP) with multiple
node visits, where the total route plan length is minimized. Since the LRP, a generalization of the VRP, is NP-hard, so is the D-
ICEP. The problem size and the required computational run time to find an optimal solution therefore increase exponentially when
instances are added to the problem sets. A particular structural challenge in solving this problem is the heterogeneity and limited
compatibility of the resource set. This makes the solution space more complex than for a symmetric resource set, leading to a
higher risk of difficulties in solution discrimination for the solver. It also makes it more difficult to modify an existing solution
through existing local search methods, as the routes in between different resources are not fully interchangeable. These challenges
are also heavily influenced by the provided data set. Depending on how compatible the resources considered are with the pick-up
and drop-off points, the number of route options varies a lot. A fully compatible resource set therefore has a lot more flexibility than
a set with limited compatibility in choosing routes, but also requires higher computational effort. The following section describes
the D-ICEP in mathematical terms. Table 2 introduces the notation for the formulation, followed by the problem formulation.
7
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Table 2
Notation key for D-ICEP.
Sets Set description Parameters Parameter description

𝑖 ∈ 𝐼 Recovery resources 𝑞𝑖 Passenger capacity of resource 𝑖
𝑘 ∈ 𝐾 Potential round trips per resource 𝑢𝑖 Time to availability of resource 𝑖
𝑠 Source node 𝑜𝑖 Loading time of resource 𝑖
𝑎 ∈ 𝐴 Evacuation areas 𝑝𝑖 Unloading time of resource 𝑖
𝑏 ∈ 𝐵 Pick-up points in evacuation area 𝑑𝑎 Evacuation demand at location 𝑎
𝑐 ∈ 𝐶 Drop-off points in safe locations 𝑔𝑎 Max. no. of self-evacuations from area 𝑎
𝑡 Sink node 𝑡𝑖ℎ𝑏

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ℎ→𝑏)
empty travel speed of resource 𝑖

∶ cost of arc 𝜁1𝑖ℎ𝑏
ℎ ∈ 𝐻 Initial resource locations 𝑡𝑖𝑏𝑐

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏→𝑐)
loaded travel speed of resource 𝑖

∶ cost of arc 𝛾𝑘𝑖𝑏𝑐
𝑡𝑖𝑐𝑏

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐→𝑏)
empty travel speed of resource 𝑖

∶ cost of arc 𝛿𝑘𝑖𝑐𝑏,
Only 𝑘 = 1,… , 𝐾 − 1

Arcs Arc description Variables Variable description

𝛼𝑠𝑎 ∈ �̄� Source 𝑠 to area 𝑎 𝑓𝑙𝑎𝑡 Flow on arc 𝜆𝑎𝑡
𝛽𝑘𝑖𝑎𝑏 ∈ �̄� Area 𝑎 to pick-up 𝑏 of trip 𝑘 for resource 𝑖 𝑓 𝑙𝑘𝑖𝑎𝑏 Flow on arc 𝛽𝑘𝑖𝑎𝑏
𝛾𝑘𝑖𝑏𝑐 ∈ 𝛤 Pick-up 𝑏 to drop-off 𝑐 of trip 𝑘 for resource 𝑖 𝑓 𝑙𝑘𝑖𝑏𝑐 Flow on arc 𝛾𝑘𝑖𝑏𝑐
𝛿𝑘𝑖𝑐𝑏 ∈ 𝛥 Drop-off 𝑐 to pick-up 𝑏 of trip 𝑘 to trip 𝑘 + 1 𝑓𝑙𝑘𝑖𝑐𝑡 Flow on arc 𝜖𝑘𝑖𝑐𝑡

For resource 𝑖, for 𝑘 = 1,… , 𝐾 − 1 𝑤1𝑖
ℎ𝑏 {𝟏: if route on 𝜁1𝑖ℎ𝑏 selected, 𝟎: otherwise}

𝜖𝑐𝑡 ∈ �̄� Drop-off 𝑐 to sink node 𝑡 𝑥𝑘𝑖𝑏𝑐 {𝟏: if route on 𝛾𝑘𝑖𝑏𝑐 selected, 𝟎: otherwise}
𝜁1𝑖ℎ𝑏 ∈ �̄� Initial resource location ℎ to pick-up 𝑏 𝑦𝑘𝑖𝑐𝑏 {𝟏: if route on 𝛿𝑘𝑖𝑐𝑏 selected, 𝟎: otherwise}

For resource 𝑖, on trip 1 𝑟 Total evacuation time
𝜆𝑎𝑡 ∈ �̄� Area 𝑎 to sink node 𝑡, for private evacuations 𝑠𝑖 Route completion time of resource 𝑖

2.3. Deterministic problem formulation (D-ICEP)

2.3.1. D-ICEP formulation

min 𝑟 (1)

𝑠.𝑡. 𝑟 ≥ 𝑠𝑖 ∀𝑖 ∈ 𝐼 (2)
𝑠𝑖 =

∑

𝜁1𝑖ℎ𝑏∈�̄�

(

𝑡𝑖ℎ𝑏𝑤
1𝑖
ℎ𝑏
)

+
∑

𝛾𝑘𝑖𝑏𝑐∈𝛤

(

𝑡𝑖𝑏𝑐𝑥
𝑘𝑖
𝑏𝑐
)

+
∑

𝛿𝑘𝑖𝑐𝑏∈𝛥

(

𝑡𝑖𝑐𝑏𝑦
𝑘𝑖
𝑐𝑏
)

+

∑

𝜁1𝑖ℎ𝑏∈�̄�

(

𝑢𝑖𝑤
1𝑖
ℎ𝑏
)

+
∑

𝜁1𝑖ℎ𝑏∈�̄�

(

𝑜𝑖𝑤
1𝑖
ℎ𝑏
)

+

∑

𝛿𝑘𝑖𝑐𝑏∈𝛥

(

𝑜𝑖𝑦
𝑘𝑖
𝑐𝑏
)

+
∑

𝛾𝑘𝑖𝑏𝑐∈𝛤

(

𝑝𝑖𝑥
𝑘𝑖
𝑏𝑐
)

∀𝑖 ∈ 𝐼 (3)

𝑓𝑙𝑎𝑡 ≤ 𝑔𝑎 ∀𝜆𝑎𝑡 ∈ �̄� (4)

𝑓𝑙𝑘𝑖𝑏𝑐 ≤ 𝑞𝑖(𝑥𝑘𝑖𝑏𝑐 ) ∀𝛾𝑘𝑖𝑏𝑐 ∈ 𝛤 (5)

𝑑𝑎 = 𝑓𝑙𝑎𝑡 +
∑

𝛽𝑘𝑖𝑗𝑏∈�̄�∶𝑗=𝑎

𝑓𝑙𝑘𝑖𝑎𝑏 ∀𝑎 ∈ 𝐴 (6)

∑

𝛽𝑘𝑖𝑎𝑗∈�̄�∶𝑗=𝑏

𝑓𝑙𝑘𝑖𝑎𝑏 =
∑

𝛾𝑘𝑖𝑗𝑐∈𝛤∶𝑗=𝑏

𝑓𝑙𝑘𝑖𝑏𝑐 ∀𝑏 ∈ 𝐵,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (7)

∑

𝛾𝑘𝑖𝑏𝑗∈𝛤∶𝑗=𝑐

𝑓𝑙𝑘𝑖𝑏𝑐 = 𝑓𝑙𝑘𝑖𝑐𝑡 ∀𝑐 ∈ 𝐶,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (8)

∑

𝜁1𝑖ℎ𝑏∈�̄�

𝑤1𝑖
ℎ𝑏 ≤ 1 ∀𝑖 ∈ 𝐼 (9)

∑

𝛾𝑘𝑖𝑏𝑐∈𝛤

𝑥𝑘𝑖𝑏𝑐 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (10)

∑

𝛿𝑘𝑖𝑐𝑏∈𝛥

𝑦𝑘𝑖𝑐𝑏 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ⧵ {𝑘 = 𝐾} (11)

∑

ℎ∈𝐻
𝑤1𝑖

ℎ𝑏 =
∑

𝑐∈𝐶
𝑥1𝑖𝑏𝑐 ∀𝑏 ∈ 𝐵,∀𝑖 ∈ 𝐼 (12)

∑

𝑦(𝑘−1)𝑖𝑐𝑏 =
∑

𝑥𝑘𝑖𝑏𝑐 ∀𝑏 ∈ 𝐵,∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 ⧵ {𝑘 = 1} (13)
8
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∑

𝑏∈𝐵
𝑥𝑘𝑖𝑏𝑐 ≥

∑

𝑏∈𝐵
𝑦𝑘𝑖𝑐𝑏 ∀𝑐 ∈ 𝐶,∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 ⧵ {𝑘 = 𝐾} (14)

𝑓𝑙𝑎𝑡 ≥ 0 ∀𝜆𝑎𝑡 ∈ �̄� (15)

𝑓𝑙𝑘𝑖𝑎𝑏 ≥ 0 ∀𝛽𝑘𝑖𝑎𝑏 ∈ �̄� (16)

𝑓𝑙𝑘𝑖𝑏𝑐 ≥ 0 ∀𝛾𝑘𝑖𝑏𝑐 ∈ 𝛤 (17)

𝑓𝑙𝑘𝑖𝑐𝑡 ≥ 0 ∀𝜖𝑘𝑖𝑐𝑡 ∈ �̄� (18)

𝑠𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (19)

𝑟 ≥ 0 (20)

𝑤1𝑖
ℎ𝑏 ∈ {0, 1} ∀𝜁1𝑖ℎ𝑏 ∈ �̄� (21)

𝑥𝑘𝑖𝑏𝑐 ∈ {0, 1} ∀𝛾𝑘𝑖𝑏𝑐 ∈ 𝛤 (22)

𝑦𝑘𝑖𝑐𝑏 ∈ {0, 1} ∀𝛿𝑘𝑖𝑐𝑏 ∈ 𝛥 (23)

The D-ICEP minimizes the total evacuation time 𝑟. The time constraint (2) lower bounds 𝑟 with the highest route completion
time of any resource, which is defined in (3). Capacity constraint (4) ensures that no more private self-evacuations can occur than
denoted per location 𝑎. (5) ensures that the arc capacity is limited by the capacity of the corresponding resource, if the arc is selected
as part of the resource route (5), and if no resource is selected, to be zero. Flow conservation constraints are (6) through (8), which
ensure that the inflow of evacuees equals the outflows at every node except the source, sink and initial resource location nodes.
Constraints (9) through (11) ensure that a maximum of one connection per route segment can be selected for each resource at a
time. Route adjacency constraints (12) through (14) ensure that on every leg of a trip, the resources depart from the same node
they arrived at on the previous leg. Route adjacency constraint (12) secures this for the arrival from the initial resource location
and constraint (13) does this for all other round trips. Ultimately, route adjacency constraint (14) ensures that a resource does not
have to return to an evacuation location if no potential evacuees are left. Lastly, variables (15) through (18) define all flows as
non-negative continuous variables, variables (19) and (20) define the time-related variables as non-negative continuous, variables
(21) through (23) define all route selections as binary variables.

2.3.2. Considerations on the number of round trips
The resource set 𝐼 , the number of evacuation areas 𝐴, pick-up points 𝐵, shelter drop-offs 𝐶, and initial resource locations 𝐻 are

usually fixed. Because of the heterogeneity of the resources, increasing the maximum number of round trips 𝐾 per resource 𝑖 by one
trip, increases the size of the problem by the sum of pick-up and drop-off points multiplied by the number of resources. Therefore,
choosing arbitrarily large sets will inflate the size of the problem and the computational effort, while not improving the results.
However, if the resource and round trip sets are unreasonably small, the problem will cause a penalty for D-ICEP, since only a part
of the population can be evacuated. A lower bound to the required size of the resource set 𝐼 and the number of round trips 𝐾 can
be found if the requirement presented in (24) is met.

𝐾
∑

𝑖∈𝐼
𝑞𝑖 ≥

∑

𝑎∈𝐴
𝑑𝑎 (24)

This requirement is simple to obtain. However, it would only work for a single solution that does evacuate the entire population,
that is only if every resource 𝑖 would do exactly 𝐾 round trips and if the full capacity of every resource 𝑖 can be used on every trip
𝑘. This can be far from optimal and may not even be feasible in reality. However, it is not possible to determine by how much to
increase 𝐾 exactly without solving the D-ICEP problem by itself. It is therefore recommended to choose the number of round trips
with a good safety margin in the above equation on the right hand side of the equation (RHS), e.g. through 𝐾

∑

𝑖∈𝐼 𝑞𝑖 ≥ 2
∑

𝑎∈𝐴 𝑑𝑎.
On the other end of the spectrum, an upper bound for the number of round trips can be calculated through the formula presented
in (25). The maximum number of trips can be determined by the entire evacuation demand divided by the capacity of the resource
with the smallest capacity, which represents the case if only this resource would have to complete the entire population from the
area.

max 𝐾 ≤
⌈
∑

𝑎∈𝐴 𝑑𝑎
𝑞𝑖

⌉

{𝑖 = arg min 𝑞𝑖} (25)

3. Stochastic problem formulation

3.1. Additional assumptions

As presented above, the D-ICEP problem can be used for response purposes, particularly when all disaster parameters are known.
For planning purposes, securing an optimal set of recovery resources for a possible disaster is crucial. However, a planner needs
to prepare the resources for a variety of disaster scenarios, since the exact nature of a potential disaster is unknown. Therefore, in
the following sections, the problem is expanded to a stochastic problem and the S-ICEP formulation is introduced. The following
9

assumptions in addition to the ones presented for D-ICEP have to be made for S-ICEP.
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1. The exact disaster nature and time of occurrence is unknown.
2. The evacuation population in the area is uncertain because of seasonal fluctuation.
3. Weather conditions can influence travel times for resources.
4. The planning authority aims to select an optimal set of resources that minimizes expected evacuation time for a variety of

disaster scenarios, while considering cost efficiency.

3.2. Expansion to a stochastic problem

During the planning stage, it is not possible to know how a disaster will turn out and where and how many people have to
e evacuated. The underlying uncertainty affects a variety of factors: which resources are actually useful, the route choices the
esources have to take, how many trips each of the resources have to complete, and ultimately what the resulting evacuation time
s. Based on the D-ICEP, emergency planners want to optimally select a fleet of recovery resources that can handle a variety of
vacuation scenarios, given the ability of a resource to reduce evacuation time and offer competitive cost structures. The model
akes into account the costs of choosing a resource as part of the fleet, variable operating costs, such as labor and fuel, as well
s the calculated cost of the loss of a human life. This needs to be considered to avoid minimizing evacuation time at the cost
f not evacuating the entire population. Each evacuation resource needs to be determined before a disaster occurs based on its
apabilities, given uncertainty about the location, number of evacuees, and the weather conditions at the time of the disaster.
ypical optimization approaches to incorporate uncertainty are:

1. Evaluate the uncertainty by constructing an expected-value problem
2. (Multi-stage) stochastic dynamic programming
3. Robust optimization
4. Two-stage stochastic programs with recourse

The results from deterministic models oversimplify the model since they do not consider variety in the disaster nature. Further,
he complexity of using stages of evolving knowledge that require stochastic dynamic programming solutions (Bellman, 1966) is not
onsidered to be necessary for the version of the S-ICEP presented in this paper. Therefore, these two methods are not ideal for the
-ICEP. While robust optimization offers advantages by providing a robust solution (Soyster, 1973; Gorissen et al., 2015), the high
ncertainty over the disaster nature considered for the ICEP could lead to overly conservative solutions and thus lead to a much
arger resource set than actually needed. Two-stage stochastic programs with recourse (Shapiro, 2008), on the other hand, offer
he flexibility to design problems under uncertainty distributions. As an alternative to parameter distributions, two-stage stochastic
rograms also allow for the design of specific, probability-weighted scenarios. Scenario-based planning techniques can help first
esponders to clearly separate different disaster outcomes, for example between evacuations during different seasons of the year.
ith stochastic recourse models, differences among scenarios can be simply accounted for by using scenario specific travel distance

nd incidence matrices. Therefore, two-stage stochastic programs with recourse are a good fit for S-ICEP.
When expanding the D-ICEP into a two-stage stochastic programming framework, the resource fleet selection needs to be

cenario-independent and, hence, needs to be decided in the first stage of the model. The second stage of the model must then
ind the optimal route plan for each scenario of interest, given the resource fleet selected in the first stage. Using the recourse
omponent, the S-ICEP can select the resource fleet that provides minimal expected evacuation time over multiple scenarios, while
onsidering cost imposed by the resource configuration. This results in a model structure that solves the D-ICEP in its second stage
or each scenario of interest. Once the disaster happens, and the uncertainty is revealed, the D-ICEP has to be solved, with the
esource set fixed to the decision made in the first stage of the problem. Since the S-ICEP contains the D-ICEP in its second stage,
he challenges and parameter considerations of the D-ICEP also apply to the S-ICEP. This also applies to the complexity of the
roblem, which is therefore also NP-hard.

The following section introduces the S-ICEP as an expansion of the D-ICEP. Therefore, only additional required sets, parameters,
ariables, and constraints that are not already in D-ICEP are introduced in Table 3.

.3. Stochastic problem formulation (S-ICEP)

.3.1. Problem formulation

min
∑

𝑖∈𝐼 𝑐𝑓𝑖(𝑧𝑖)
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ E[𝐶(𝑧, 𝜉)] (26)

𝑠.𝑡. 𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼 (27)
where

𝐶(𝑧, 𝜉) ∶= min 𝑟 +
∑

𝑖∈𝐼 𝑐𝑣𝑖(𝑠𝑖)
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ 𝑃

∑

𝑎∈𝐴
𝑛𝑎 (28)

𝑠.𝑡. 𝐷-𝐼𝐶𝐸𝑃 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2)–(5), (7)–(8), (12)–(23),
10

𝑟 ≤ 𝑇 (29)
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Table 3
Additional notations for S-ICEP (in addition to D-ICEP)
Sets Set description

𝜉 ∈ 𝛯 set of evacuation scenarios passed to the model

Parameters Parameter description

𝑐𝑓𝑖 Fixed cost parameter of selecting resource 𝑖 into the evacuation fleet
𝑐𝑣𝑖 Variable cost parameter for resource 𝑖
𝑇 Upper time limit for total evacuation time 𝑟
𝑃 Penalty cost for each person that is not successfully evacuated

Variables Variable description

𝑧𝑖 {𝟏: if resource 𝑖 gets selected into resource fleet, 𝟎: otherwise}
𝑛𝑎 Number of non-evacuated people at area 𝑎

𝑓𝑙𝑘𝑖𝑏𝑐 ≤ 𝑞𝑖(𝑧𝑖) ∀𝛾𝑘𝑖𝑏𝑐 ∈ 𝛤 (30)

𝑑𝑎(𝜉) = 𝑓𝑙𝑎𝑡 +
∑

𝛽𝑘𝑖𝑗𝑏∈�̄�∶𝑗=𝑎

𝑓𝑙𝑘𝑖𝑎𝑏 + 𝑛𝑎 ∀𝑎 ∈ 𝐴 (31)

∑

𝜁1𝑖ℎ𝑏∈�̄�

𝑤1𝑖
ℎ𝑏 ≤ 𝑧𝑖 ∀𝑖 ∈ 𝐼 (32)

∑

𝛾𝑘𝑖𝑏𝑐∈𝛤

𝑥𝑘𝑖𝑏𝑐 ≤ 𝑧𝑖 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (33)

∑

𝛿𝑘𝑖𝑐𝑏∈𝛥

𝑦𝑘𝑖𝑐𝑏 ≤ 𝑧𝑖 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ⧵ {𝑘 = 𝐾} (34)

𝑛𝑎 ≥ 0 ∀𝑎 ∈ 𝐴 (35)

The S-ICEP objective function (26) combines multiple objectives. It aims to minimize the expected evacuation time (𝑟(𝜉)), the
number of people not evacuated (𝑃

(
∑

𝑎∈𝐴 𝑛𝑎(𝜉)
)

), and the total cost of the evacuation plan (
∑

𝑖∈𝐼 𝑐𝑓𝑖(𝑧𝑖)∕
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))) and
(
∑

𝑖∈𝐼 𝑐𝑣𝑖(𝑠𝑖(𝜉))∕
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))). The first stage decision variable (27) determines the set of resources that will be used for
evacuation, which fixes the fixed-cost component of the evacuation plan cost. The uncertain second-stage determines the evacuation
time for every provided scenario given the evacuation fleet from the first stage. The second stage is essentially a slightly modified
version of the D-ICEP, with the objective consisting of the total evacuation time, as in the D-ICEP, plus the variable cost and a penalty
that is applied for every person that could not be evacuated. This allows for not evacuating the entire population if a scenario is
extreme and has a low probability. The ranking of objective components is ensured through normalizing the cost components, such
that their maximum influence on the objective function is 1. This ensures that an improvement by at least one time unit in evacuation
time will always dominate the cost objective so that evacuation speed is prioritized over cost. It is left to the modeler to decide
the granularity of time units – minutes or even seconds – considered in the objective. Restricting the influence of the evacuation
cost in this way is based on Sherali’s (Sherali, 1982) approaches for lexicographic multi-objective functions. This objective function
further includes a penalty that is applied for every person that could not be evacuated, which is modeled through the added decision
variable 𝑛𝑎, as indicated in constraint (35). In combination with replacing constraint (6) with constraint (31), this ensures that the
problem will still provide an evacuation plan, even if parameter 𝑇 is set so low that not everyone can be evacuated. Decision makers
can adjust the size of 𝑃 to control the desired risk level for not evacuating everyone in extreme scenarios. The remaining constraints
of the second stage are almost the same as the constraints of the D-ICEP with a few modifications. As mentioned above, an upper
time limit parameter was added (29). Constraint (30) was added to ensure that flows can only be allocated to a resource route if
the resource was also selected in the first stage. Furthermore, for D-ICEP constraints (9), (10), and (11) the RHS was replaced by 𝑧𝑖
as shown in constraints (32) through (34), to make sure that routes can only be connected if the resource was selected in the first
stage. Otherwise the S-ICEP constraints are equivalent to the D-ICEP constraints. In the following section, the S-ICEP is analyzed
for its structural challenges, sensitivity to set sizes, objective functions, and parameter choices, and their effects on the feasibility
of the model. Since the D-ICEP is essentially a subset of the S-ICEP, the same findings also apply to the D-ICEP, with the exception
of the differences in objective functions, scenario design, and resource sets.

3.3.2. Scenarios
For the S-ICEP, using a set of reasonably varied and realistic scenarios is the main challenge, as it is crucial for obtaining

meaningful results. The S-ICEP model provides the modeler with flexibility in determining which parameters they want to modify. A
modeler could, for example, investigate the effects of seasonal population fluctuation on the evacuation time for one specific disaster
case. Alternatively, for areas with stable populations, a modeler could investigate the effects on different affected populations.
Furthermore, differences in weather patterns that influence travel times or pick-up and drop-off point access can be modeled.

As mentioned in Section 3.2, once the uncertainty that the S-ICEP considers during the planning process is resolved, emergency
planners face a D-ICEP, which may be different from all the scenarios considered. The goal of the S-ICEP, therefore, is to provide a
11

resource set that can perform well in case of an actual disaster. Therefore, the number and variety of scenarios should be chosen in
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a way that approximates the underlying uncertainties without overfitting the solution. If sufficient data is available for the region
of interest, this is how scenarios should be designed. The challenge with planning for disasters is that sufficiently detailed data on
where a disaster could occur and how it would evolve is often difficult to obtain. In some cases, specific scenarios can be obtained
through collaboration with experts, such as experienced first responders or emergency planners, who can rely on experience to
identify where disasters are likely to occur and can evaluate the relative probability of the scenarios. To make the results robust,
the modeler should ensure that scenarios cover a variety of realistic cases that may include differences in the total number of
evacuees, the number of evacuation areas affected, and their distribution in between the evacuation areas. Differences in weather
patterns that may affect the accessibility of certain pick-up and drop-off points should also be considered, as well as differences in
the number of evacuees that self-evacuate. Therefore, a mix of sophisticated data sets (e.g. census data for population estimates) and
subject matter expert inputs can be used to design realistic scenarios. However, every additional scenario increases the complexity
of the model, which is why the right balance between accurately representing the underlying uncertainties and keeping the number
of scenarios limited is important.

3.3.3. Resource sets
Section 2.3.2 already discussed the importance of setting parameter 𝐾. The S-ICEP has an additional degree of freedom through

modifying the considered set of resources 𝐼 . While determining the optimal set of resources is the objective of the S-ICEP, the size
of the potential resource set 𝐼 also inflates the problem size. Table 8 illustrates the effect on the number of variables. The bounds
rom Eqs. (24) and (25) should be considered when determining the size of the potential resource set.

.3.4. Evacuation time limits
𝑇 is provided to allow emergency planners to set a desired maximum evacuation time. Reviewing the S-ICEP formulation from

ection 3.3.1, it is easy to verify that an unreasonably small 𝑇 will cause the resulting evacuation plan to not evacuate the entire
opulation in some or all scenarios. Instead of simply letting the model return infeasible in this case, this modeling choice provides
he emergency planner with additional information by how much the target 𝑇 was missed, since it is indicated through the number
f non-evacuated people. An emergency modeler may then consider requesting more evacuation resources in the area. However,
etting 𝑇 too high also has downsides from a computational perspective. Through setting 𝑇 , the solution space can be significantly
estricted. However, finding a feasible lower bound to 𝑇 is not trivial, because it can only be obtained by solving the S-ICEP problem
nd is essentially the goal of the problem.

min 𝑇 = min 𝑟 (𝑠.𝑡. ICEP constraints) (36)

owever, this property can be useful during the emergency planning process. Through experimenting with S-ICEP, modelers can
ind out how much time a route plan is expected to take. They can then use this knowledge to add constraint (29) to the D-ICEP
ormulation and set a parameter 𝑇 in the D-ICEP, thus restricting the solution space of D-ICEP and helping the solver to find the
ptimal solution more quickly. This is further investigated in Section 3.4.5 with regards to solution time. An upper bound to the
ime limit can be derived by maximizing 𝑟, although this is not of much use in solving the problem.

.3.5. Penalty parameters
The choice of the penalty parameter 𝑃 applied to the S-ICEP strongly affects the provided policy. This penalty parameter is

ostly an applied measure of calculated risk in the design of the evacuation plan instead of the true cost of not evacuating a person
rom the affected area. It is supposed to dominate the other terms in the objective function and if chosen too small, solutions may
e favored that evacuate a smaller population than possible because it might be comparably cheaper to leave people in the affected
rea than conducting an additional round trip with a subset of resources. Similarly, an unreasonably large choice of 𝑃 may result in
n impractical rule that no person can be left behind in any scenario, no matter how unlikely and extreme that scenario might be
e.g. a scenario with relative probability 0.5%, since the effect on the objective function is still very high even though the penalty
s discounted by the probability). A lower bound that ensures dominance over the time and cost components can be established as
n (37).

𝑃 ≥ 𝑇 +
∑

𝑖∈𝐼

(

𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 )
)

(37)

There are caveats to using the penalty parameter as introduced in Section 3.3. It is not possible to control how many people have
o be evacuated at minimum. Compared to requiring everyone be evacuated, the penalty parameter also increases computational
un time as the solution space increases. To find the right balance, the modeler could determine what percentage of the population
hould be guaranteed to be evacuated in any scenario and add constraint (38) to the second stage of the S-ICEP model formulation,
here 𝑚 equals the fraction of the population that is guaranteed to be evacuated in every scenario.

(1 − 𝑚)
∑

𝑎∈𝐴
𝑑𝑎 ≥

∑

𝑎∈𝐴
𝑛𝑎 (38)

o further control for how many scenarios are allowed to not evacuate the entire population, a chance constraint could be added
n the first stage of the S-ICEP. Depending on the desired probability of complete evacuation 𝑒, constraint (39) would model this.
owever, this could further complicate solving the problem as it would introduce a non-linearity.

𝑃𝑟

(

∑

𝑛𝑎(𝜉) = 0

)

≥ 𝑒, ∀𝜉 ∈ 𝛯 (39)
12

𝑎∈𝐴
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3.4. Objective functions for S-ICEP

3.4.1. Balanced objective functions
The primary objective function of the S-ICEP used in Section 3.3, further denoted as Bal_1, is a multi-objective formulation that

rioritizes evacuation time over cost. For evacuation purposes, this is a reasonable balance. Instead of focusing on minimizing the
ost time consuming route, an alternative formulation aims to minimize the overall sum of route times to generate higher efficiency

n individual route choices. This revised balanced objective function was denoted as Bal_2 (40).
∑

𝑖∈𝐼 𝑐𝑓𝑖𝑧𝑖
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ E

[

∑

𝑖∈𝐼
𝑠𝑖 +

∑

𝑖∈𝐼 𝑐𝑣𝑖𝑠𝑖
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ 𝑃

∑

𝑎∈𝐴
𝑛𝑎

]

(40)

.4.2. Conservative objective functions
More conservative but simpler objective functions can be considered that solely aim to minimize the expected evacuation time,

gnoring the fixed and variable cost imposed by the resource usage. Depending on whether to minimize for 𝑟 or for ∑

𝑖∈𝐼 𝑠𝑖, these
an optimize total evacuation time or the sum of all route times. Eq. (41) denotes Cons_1. Alternatively, Eq. (42) provides Cons_2.

min E

[

𝑟 + 𝑃
∑

𝑎∈𝐴
𝑛𝑎

]

(41)

min E

[

∑

𝑖∈𝐼
𝑠𝑖 + 𝑃

∑

𝑎∈𝐴
𝑛𝑎

]

(42)

.4.3. Economic objective functions
Economic objective functions can also be considered that minimize the expected evacuation cost. The expected variable cost

s calculated as the sum of each variable cost rate multiplied by the time consumption of each selected route segment over all
elected resources, plus the penalty cost for leaving a person behind. This objective therefore automatically ensures cost efficient
oute choices. This objective function was denoted Econ_1 (43).

min
∑

𝑖∈𝐼
𝑐𝑓𝑖𝑧𝑖 + E

[

∑

𝑖∈𝐼
𝑐𝑣𝑖𝑠𝑖 + 𝑃

∑

𝑎∈𝐴
𝑛𝑎

]

(43)

If Econ_1 is considered to be too budget focused and if a non-dominant incorporation of evacuation time is desired, then the total
vacuation time can be discounted by its upper bound, as shown in the multi-objective objective function (44), which is denoted
s Econ_2.

min
∑

𝑖∈𝐼
𝑐𝑓𝑖𝑧𝑖 + E

[

∑

𝑖∈𝐼
𝑐𝑣𝑖𝑠𝑖 +

𝑟
𝑇

+ 𝑃
∑

𝑎∈𝐴
𝑛𝑎

]

(44)

3.4.4. Discretization of objective functions
All objective functions can further be discretized into a deterministic equivalent if the number of scenarios is finite. Eq. (45)

provides an example for the objective function 𝐵𝑎𝑙_1 with two scenarios with probabilities 𝑝1 and 𝑝2, where ∑

𝜉∈𝛯 𝑝𝜉 = 1.

min
∑

𝑖∈𝐼 𝑐𝑓𝑖(𝑧𝑖)
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ 𝑝1

(

𝑟(𝜉1) +
∑

𝑖∈𝐼 𝑐𝑣𝑖(𝑠𝑖(𝜉1))
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ 𝑃

∑

𝑎∈𝐴
𝑛𝑎(𝜉1)

)

+

𝑝2

(

𝑟(𝜉2) +
∑

𝑖∈𝐼 𝑐𝑣𝑖(𝑠𝑖(𝜉2))
∑

𝑖∈𝐼 (𝑐𝑓𝑖 + 𝑐𝑣𝑖(𝑇 ))
+ 𝑃

∑

𝑎∈𝐴
𝑛𝑎(𝜉2)

)

(45)

.4.5. Effects of S-ICEP objective functions
To investigate the effect of the objective functions further, the three test data sets presented in Table 4 were used to investigate

odel sensitivity. All computational runs were made on a Mac with a 2.6 GHz Dual-Core Intel Core i5 CPU, using an implementation
f S-ICEP in the Pyomo interface for Python on the Gurobi 9.0 commercial solver, with a run-time limit of 3600 s As recommended
y the Gurobi environment, the deterministic equivalent of the S-ICEP was solved. The settings chosen for Gurobi 9.0 were to solve
he problem using the root node model of the MIP as it delivered the best performance. Using the concurrent version of the solver
id not provide improvements in run time for this model.

By applying the objective functions introduced in Section 3.4 to the data sets from Table 4, the results displayed in Table 5 were
btained. The table presents the key parameters of the solution for each data set and each objective function, and the expected
vacuation time for each scenario.

Table 5 shows that for all data sets, conservative objective functions generally led to short evacuation times. The solutions
rovided by the balanced objective functions provided almost the same solutions with regards to total evacuation time, but with
ore efficient resource choices. This shows that adding the cost component to the objective function helps in reducing expected cost
hile maintaining quick evacuation plans, though the 𝐵𝑎𝑙_1 objective, that includes the minimization of the total evacuation time,
as more reliable. The results for data set 𝐼2 show that 𝐵𝑎𝑙_2 does not lead to the same type of evacuation time as 𝐶𝑜𝑛𝑠_2, although
13

both include the sum of route times objective. It can furthermore be observed that objective functions that minimized the sum of
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Table 4
Test data sets for Objective Function Evaluation.

I1 I2 I3

Sets Set size

Scenarios 2 3 4
Potential resources 6 6 8
Initial storage locations 1 2 3
Evacuation locations 3 4 5
Evacuation pick-up points 5 6 8
Safe drop-off points 2 3 3
Round trips 6 8 8

Parameters Setting

Penalty 5,000 5,000 5,000
Evacuation time limit (min) 120 240 500

Variable type Quantity

Continuous variables 832 2,718 6,640
Binary variables 858 3,328 8,352

Table 5
Results for different objective functions.

Data set Objective Objective Exp. time (min) Cost ($) Run-time Resources

I1

Cons_1 100.32 (72, 119) 5,671.67 2.05 s 6/6
Cons_2 327.04 (90, 120) 5,552.13 0.93 s 6/6
Bal_1 101.83 (72, 119) 5,671.67 5.15 s 6/6
Bal_2 327.98 (90, 120) 5,052.13 0.75 s 5/6
Econ_1 2,955.64 (102, 120) 2,955.64 1.09 s 4/6
Econ_2 2,956.58 (102, 120) 2,956.58 1.25 s 4/6

I2

Cons_1 118.22 (132, 159, 82) 6,255.75 31.14 s 6/6
Cons_2 233.62 (232, 190, 82) 5,573.58 1.71 s 6/6
Bal_1 119.6 (132, 159, 82) 5,155.77 725.32 s 5/6
Bal_2 234.56 (232, 229, 82) 5,073.58 4.30 s 5/6
Econ_1 2,522.19 (228, 228, 226) 2,522.19 48.13 s 3/6
Econ_2 2,522.19 (219, 229, 169) 2,522.19 29.8 s 3/6

I3

Cons_1 117.72 (132, 313, 88, 91) 6,989.66 7.80 s 8/8
Cons_2 290.92 (282, 495, 142, 182) 6,384.41 3.88 s 8/8
Bal_1 118.82 (132, 313, 88, 91) 6,821.52 3,600.00 sa 8/8
Bal_2 291.79 (282, 495, 142, 182) 5,384.41 4.36 s 6/8
Econ_1 2,614.04 (374, 495, 321, 317) 2,614.04 61.34 s 4/8
Econ_2 2,614.04 (374, 495, 270, 242) 2,614.04 6.52 s 4/8

aResults were aborted after 3600 s; the best available solution is displayed.

route times (𝐶𝑜𝑛𝑠_2, 𝐵𝑎𝑙_2) did not provide the same solution quality with regards to total evacuation time. In fact, minimizing the
um of route times produced results that were closer to solutions of economic objective functions, since the variable cost term was
function of time. Economic objective functions can find reasonably quick solutions, but only if decision makers define tight upper

ime limits. This is visible in the results for 𝐼1, where the upper time limit 𝑇 was set to 120, which is close to the lowest feasible
ime of 119 of the second scenario. Modelers should therefore carefully consider their priorities when applying these functions to
he problem and consider the settings of parameter 𝑇 .

In addition, any objective function that involved minimizing the total evacuation time instead of the sum of route times showed
significantly larger computational run-time, particularly for 𝐼3. This indicates the commercial solver’s solution discrimination was
ore difficult when minimizing the total evacuation time. The effect appears amplified by how far away 𝑇 is set from the optimal

olution of each scenario. This is illustrated by the differences between 𝐵𝑎𝑙_1 and 𝐵𝑎𝑙_2. For data set 𝐼1, the second scenario had a
inimum total evacuation time of 119, but the upper time limit was set to 120, which corresponds to just 0.8% above the optimal

olution. Here, 𝐵𝑎𝑙_1 showed a run time approximately 6.9 times as high as 𝐵𝑎𝑙_2. In 𝐼2, this factor is increased to approximately
68.7. The time limit was set to 240, which is 81 (50.9%) more than the longest minimum total evacuation time reached for this
cenario. In 𝐼3, while the run for 𝐵𝑎𝑙_1 was aborted at 3600𝑠, the factor is already 825.7 times the run time of 𝐵𝑎𝑙_2. In this case,

was set to 500, which is 187 (59.7%) above the longest minimum evacuation time for this scenario.

.4.6. Learnings from experiments
This illustrates two main findings: the difficulties of the solver to perform effective solution discrimination for minimum

vacuation time objective functions, and the sensitivity of the solver to the setting of parameter 𝑇 in comparison to the minimum
otal evacuation time for these functions. This makes these objective functions particularly challenging to use for large problems, as
he problem cannot easily be decomposed into a problem for each resource. This gives the modeler multiple options when aiming
o reduce the computational run time of 𝐵𝑎𝑙_1 when it is unclear how to set 𝑇 :
14
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1. Start with low settings for 𝑇 and perform algorithm runs, which will likely result in high penalties due to people left behind
but short computational run times. Based on the results, gradually increase 𝑇 and re-run the algorithm until a solution with
no one left behind can be obtained.

2. Start with any setting for 𝑇 and run 𝐵𝑎𝑙_2 instead of 𝐵𝑎𝑙_1 and gradually decrease 𝑇 and perform additional runs until a
plan is returned that leaves people behind. Choose the previous setting for 𝑇 and run again with 𝐵𝑎𝑙_1. This should return a
reasonably short run time for 𝐵𝑎𝑙_1 as the gap between the minimum total evacuation time and 𝑇 should be small enough.
This approach takes advantage of the fact that the minimum possible total evacuation time using 𝐵𝑎𝑙_2 is equivalent to the
optimal solution of 𝐵𝑎𝑙_1. Thus if 𝑇 = min 𝑟, 𝐵𝑎𝑙_2 would deliver the same solution as 𝐵𝑎𝑙_1.

3. Consider alternative approximate solution methods, such as heuristics, metaheuristics and decomposition methods.

This has further implications on how to solve D-ICEP during emergency response. If planing with S-ICEP has been performed
and a variety of realistic scenarios have been considered, a estimate on a reasonable upper time limit may have been achieved. The
D-ICEP can then be executed during an emergency response situation with 𝑇 added as an upper time limit, thus accelerating the
solution time. Another strategy is to use the solution for the scenario obtained from S-ICEP that is closest to the situation D-ICEP
faces, and provide it as a warm start to the solver. Considering that particularly the primary multi-objective function of S-ICEP
(𝐵𝑎𝑙_1) is challenging to solve with a commercial solver in a timely manner, details on a heuristic approach to solving the problem
are provided in Section 4.

4. Heuristic solution approaches

4.1. Heuristic for D-ICEP

As the computational results from Section 3.4.5 showed, for the objective functions that included the minimization of total
evacuation time in the second stage, the S-ICEP seems to be much harder to solve for a commercial solver than with the sum of
route times. As a consequence, commercial solvers are only able to solve relatively small instances in a reasonable amount of time.
This paper aims to provide a first attempt to solve this problem in a fast and efficient way by using a structure-based heuristic to
solve the D-ICEP and S-ICEP. This is motivated by the fact that, during an emergency situation, time is so valuable that it is crucial
to obtain results quickly, and approximately optimal results are acceptable.

Bish (2011) provided a problem for bus evacuation with two heuristics that aim to solve the BEP efficiently. To solve D-ICEP
efficiently, it was first attempted to solve the problem using the heuristics for the BEP. However, significant modifications were
necessary. The compatibility between recovery resources and pick-up and drop-off nodes needs to be modeled, as well as the
heterogeneity of the fleet in terms of capability and capacity. However, even with these modifications, these heuristics did not
deliver solutions in any way close to the optimum, because the heuristic for the BEP takes advantage of the symmetry of the
resource fleet, where all resources are considered identical and direct route swaps between resources are possible.

For the D-ICEP, the heterogeneity of the fleet and limited compatibility between nodes and resources make the problem a lot more
complex and therefore require a different algorithm structure. While a structure that first generates an initial feasible solution first
and then applies a local search to improve this solution can still be used, every step needs to include a feasibility check. In contrast
to the BEP, the number of movements per resource does not play a large role; because of the fleet heterogeneity, a movement by
one resource does not necessarily have the same impact as a movement by another resource. Hence, the expected evacuation time
of a resource, along with its passenger capacity, have to be used as an allocation argument. This requires an inherently different
structure of the local search heuristic. Algorithm 1, available in Appendix, is the first phase of the newly developed heuristic. It
takes as inputs the fleet of resources, the evacuation locations, pick-up and drop-off nodes, number of evacuees, a travel distance
matrix, and an upper bound to the evacuation time. It returns an evacuation plan that provides a good starting point for a local
search that minimizes the total evacuation time.

Algorithm 1 uses a step-wise greedy structure that starts with the initial set-up at the beginning of an evacuation and greedily
adds additional trips for each resource until all people are allocated to a trip to safety. It considers the initial time to availability
of each resource in the initial route time of each resource. While there are still people left, the algorithm generates a potential next
trip to the evacuation area and back for each resource, based on where there is demand, and which additional trip would result in
the shortest expected total route time. The heuristic then selects the resource with the lowest expected total route time and makes
the addition of this trip to its route permanent if its expected route time does not exceed the maximum evacuation time given
as an input. Note that this is in accordance with the added upper time limit to D-ICEP considered in Section 3.3.4. The evacuees
are then allocated based on the capacity of the resource. If the trip cannot be added without violating the maximum route time,
then the while loop is interrupted and the route plan is returned without evacuating all the population. The provided route plan
gives a feasible solution to the D-ICEP. The computational complexity can be identified as 𝑂(𝑚𝑛(𝑗 + 𝑘)) in the worst case, where 𝑚
epresents the number of evacuees, 𝑛 represents the number of resources, 𝑗 represents the number of pick-up nodes, and 𝑘 represents
he number of drop-off nodes. However, this worst case only applies if the capacity of a resource is 1. In the real world, resources
an hold multiple passengers, so using a real-world data set reduces the time complexity significantly.

Because this first phase is a greedy algorithm, the solution is not guaranteed to be optimal. A local search heuristic was developed
hat tries to find better solutions by allocating remaining evacuees, reallocating evacuees to additional trips of other resources, and
wapping entire trips between resources. Algorithm 2 can be reviewed in the Appendix and describes this second phase of the
15
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Algorithm 2 uses multiple strategies sequentially to improve the solution generated by Phase 1. It consists of a three-step structure
hat continues iterating through these steps until no improvement can be found. It considers the differences in speed profile, dock
ompatibility, and passenger capacity among resources to find solutions. The initialization starts with the route plan generated
y Algorithm 1 and the maximum time limit. If remaining evacuation demand exists that could not be accommodated with the
oute plan from Algorithm 1, then Algorithm 2 at first tries to allocate the remaining evacuees. It does this by exploring, for every
ick-up node with remaining evacuees, whether there is extra capacity on other resources that visit this pick-up node and whether
hese remaining evacuees can be reallocated while the plan still conforms to the maximum time limit. In its second and third steps,
he algorithm tries to shorten the total evacuation time. The second step starts with the last trip of the resource with the longest
vacuation time, here called the limiting resource, and tries to reallocate its passengers. For the chosen trip of the limiting resource,
t first tries to allocate the passengers to excess capacity on existing trips of alternative resources. If this is not sufficient, it checks
hether an alternative resource can perform an additional trip to the corresponding location and pick up some of the passengers,

f this will not increase the current evacuation time. The algorithm continues iterating through the alternative resources until all
assengers have been reallocated and the total evacuation time has been improved. If this is not the case after checking all alternative
esources, the reallocation is canceled, and step 2 is repeated on another trip of the limiting resource.

If the second step does not lead to an improvement, the third step tries to swap trips between the limiting resource and alternative
esources to reduce the overall evacuation time. For example, if resource 1 was serving route 𝐵1 → 𝐶1 → 𝐵1 → 𝐶2, and resource 2
as serving 𝐵2 → 𝐶2 → 𝐵1 → 𝐶3, a successful trip switch of the first trip would result in resource 1 performing 𝐵2 → 𝐶2 → 𝐵1 → 𝐶2
nd resource 2 performing 𝐵1 → 𝐶1 → 𝐵1 → 𝐶3. Again starting with the last trip of the limiting resource, the algorithm stops once
n improvement is found or once all trips of all alternative resources have been tested.

After every iteration, the list of resources gets updated. If, after an improvement, a different resource contains the most time-
onsuming route, this one will become the limiting resource. The algorithm keeps iterating until none of the steps lead to an
mprovement of the solution. The theoretical run time complexity of this algorithm will be assessed for each step at first. For step 1,
he worst case run-time complexity is 𝑂(𝑚𝑛𝑗), where 𝑚 is the number of evacuees, 𝑛 is the number of resources, and 𝑗 the number
f pick-up nodes. For step 2, the approximate worst case run-time complexity is 𝑂(𝑚2𝑛𝑘), where 𝑘 is the number of pick-up nodes.
or the worst case, step 3 provides an approximate computational complexity of 𝑂(𝑚2𝑛𝑗). This results in a run time of 𝑂(𝑚2𝑛𝑗), or
(𝑚2𝑛𝑘) per iteration of the outer while loop, depending on whether set 𝑗 or set 𝑘 is larger. Similarly to phase 1 of the heuristic, note

hat the algorithm does not scale 1:1 with the number of evacuees, since resources generally have more than a passenger capacity
f 1 and thus the number of trips is a fraction of the evacuee number. Furthermore, the fact that each step stops as soon as a valid
mprovement has been found makes the algorithm much faster in the average case. It is also not trivial to determine the complexity
f the outer while loop, since it iterates until no more improvements can be found. Because the run time complexity is difficult to
stimate theoretically, the next section provides numerical experiments on some test data sets.

.2. Numerical experiments on the heuristic for D-ICEP

The two-phase heuristic introduced in the previous section was benchmarked against an implementation of the D-ICEP in the
yomo interface with the Gurobi 9.0 commercial solver. Table 6 illustrates some key characteristics that describe the size of the test
ata sets. A variety of small to medium-sized data examples that reflect realistic scenarios for emergency evacuations of isolated
reas were chosen for the benchmark. Table 7 describes the results of the computational tests. To account for the effect of the local
earch in the second phase of the heuristic, separate tests were conducted using only phase 1 and using both phase 1 and 2. All
omputational runs were completed on a MacBook Pro with a 2.6 GHz Dual-Core Intel Core i5 CPU. A run time limit of 3600 s was
nforced. The settings were otherwise identical to the ones chosen in Section 3.4.5.

Table 7 shows that the presented D-ICEP heuristic was able to produce reasonable solutions for all but the smallest data sets,
nd, in several cases, also reached the optimal solution. Given that the presented heuristic is greedy, it could explore all areas of

Table 6
Key characteristics of the test data sets for the D-ICEP.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Sets Set size

Resources 6 6 6 6 8 8 20 20 20 20 20 20
Resource loc. 1 1 3 3 3 3 3 3 3 3 3 3
Evac. locations 2 2 2 2 3 3 2 2 1 1 5 5
Pick-up points 4 2 3 3 4 4 4 3 2 2 8 8
Drop-off points 2 2 3 3 3 3 3 3 3 3 3 3
Round trips 6 6 8 8 8 8 20 20 20 20 20 20

Parameters Setting

Penalty 5,000
Max route time 600

Variable type Quantity

Continuous var. 303 157 446 446 783 785 4,829 3,628 1,124 1,124 9,639 9,639
Binary var. 312 156 450 450 800 800 4,880 3,660 1,220 1,220 9,760 9,760
16
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Table 7
Result summary data experiments for the D-ICEP.

Data set Implementation Objective Run-time Iterations Optimality gap Run-time gap

D1
Gurobi 72 2.24 s – – –
Heuristic Phase 1 100 0.95 s – 28.00% −57.49%
Heuristic Phase 1&2 90 2.34 s 1 20.00% 4.70%

D2
Gurobi 120 2.49 s – – –
Heuristic Phase 1 153.33 1.24 s – 21.74% −50.32%
Heuristic Phase 1&2 153.33 3.92 s 1 21.74% 57.43%

D3
Gurobi 131.66 3.17 s – – –
Heuristic Phase 1 133.66 1.81 s – 1.50% −42.90%
Heuristic Phase 1&2 131.66 3.18 s 2 – 0.32%

D4
Gurobi 81.67 4.38 s – – –
Heuristic Phase 1 81.67 0.63 s – – −85.62%
Heuristic Phase 1&2 81.67 0.89 s 1 – −79.68%

D5
Gurobi 88.33 7.35 s – – –
Heuristic Phase 1 88.33 1.02 s – – −86.12%
Heuristic Phase 1&2 88.33 1.48 s 1 – −79.86%

D6
Gurobi 93.6 5.32 s – – –
Heuristic Phase 1 93.6 1.86 s – – −65.04%
Heuristic Phase 1&2 93.6 2.07 s 1 – −61.09%

D7
Gurobi 96 98.27 s – – –
Heuristic Phase 1 97.59 8.83 s – 1.63% −91.01%
Heuristic Phase 1&2 96 17.85 s 2 – −81.84%

D8
Gurobi 153.33 125.75 s – – –
Heuristic Phase 1 170.33 20.24 s – 9.98% −83.90%
Heuristic Phase 1&2 164.24 17.85 s 2 6.64% −70.74%

D9
Gurobi 77.2 50.53 s – – –
Heuristic Phase 1 77.2 2.96 s – – −94.14%
Heuristic Phase 1&2 77.2 4.61 s 2 – −90.88%

D10
Gurobi 81.6 235.95 s – – –
Heuristic Phase 1 81.6 20.44 s – – −91.34%
Heuristic Phase 1&2 81.6 32.72 s 2 – −86.13%

D11
Gurobi 252.24a 3600 sa – (lb 245.93) 2.64% –
Heuristic Phase 1 275.6 113.45 s – 10.7%b −96.85%c

Heuristic Phase 1&2 275.6 209.95 s 1 10.7%b −94.17%c

D12
Gurobi 276.24a 3600 sa – (lb 262.99) 4.80% –
Heuristic Phase 1 300.66 134.83 s – 12.56%b −96.25%c

Heuristic Phase 1&2 282.56 249.42 3 6.95%b −93.07%c

aResults were aborted after 3600 s; the best available solution, optimality gap and lower bound are displayed.
bOptimality gap estimated based on lower bound provided by Gurobi 9.0.

cRun-time reduction compared to run time limit of 3600 s.

he solution space, and was not guaranteed to find the global optimum. In cases D4, D5, D6, D9, and D10, the first phase was able
o reach the optimal solution. In cases D3 and D7, the first phase was not able to generate an optimal solution by itself, and the
ptimal solution could be found when the local search algorithm from phase 2 was also used. In cases D1, D8, D11, and D12, neither
sing only phase 1, nor both phase 1 and 2 was sufficient to reach the optimal solution, but phase 2 improved the solution quite
ignificantly and reduced the optimality gap for D1, D8, and D12. Using only the first phase of the heuristic led to considerably
aster run times, and, in many cases, better solutions. With regards to algorithm run time, observe that for most smaller problems
D1–D3), the heuristic did not lead to significant improvements in run time, and the desire for a good solution quality makes solving
roblems of this size with a commercial solver more attractive. However, the run time of Gurobi 9.0 increased significantly over a
rowing problem size, as the larger test cases showed. While the heuristic run time increased, too, its growth rate was much smaller
n practice than the worst case theoretical run time from the previous section hinted. Note also that the experiment results show
hat the local search procedure only ran for a few iterations until it could not find a better solution, which demonstrated a problem
rom the previous question that the number of iterations of phase 2 of the heuristic was non-trivial to estimate. This showed that,
or larger problem sizes, while the presented heuristic is not guaranteed to find a global optimum, it produces a solution much more
uickly than a commercial solver does.

Therefore, when solving a larger instance of the D-ICEP, the decision whether to use a commercial solver or the presented
euristic should be based on whether the solution quality or the run time is more important. In emergency situations having a good
olution quickly is often preferable to waiting for a better solution. In the experiments, none of the steps in either phase 1 or phase
of the heuristic were parallelized in execution, but rather executed sequentially. Hence, there is still potential for improvement
hen using multi-core processors that can execute process steps in parallel. Nevertheless, it is not possible to establish a reliable
ound on how close the heuristic will get to the optimal solution, because that is dependent on the exact problem instance and
17
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could only be approximated by conducting additional experiments with various data sets. When it tackles bigger problem sizes,
the heuristic’s run time increases, but it is able to handle larger problem sizes in reasonable time with the trade-off that the global
optimal solution might not be found. Further expanding the heuristic to explore additional parts of the solution space might lead to
a better solution quality, but will also increase the run time further, thus resulting in a trade-off. An alternative approach to finding
the global optimum in approximation without increasing run time could be to use a metaheuristic.

When there is no emergency, and the model is being used for planning, there is less need for speed, but larger instances can still
enerate problems for commercial solvers, as the studies in Section 3.4.5 show. The following section therefore explores how to use
he D-ICEP heuristic presented above to solve the S-ICEP.

.3. Heuristic for the S-ICEP

The analysis in Section 3.4.5 showed that the primary objective function Bal_1 is most difficult to solve for a commercial solver.
Since it is also the primary objective function of the S-ICEP, this section focuses on solving the S-ICEP with this objective function
efficiently. Using the heuristic developed for the D-ICEP, a framework that can find a solution to the S-ICEP is introduced. It consists
of a greedy heuristic search framework that starts with an empty resource set and adds a resource to the fleet on every iteration,
depending on whether adding it improves the total evacuation plan cost. The algorithm terminates if no additional resource improves
the solution or if all available resources have been added to the resource fleet. Algorithm 3 in the Appendix describes this algorithm.

Algorithm 3 is structured similarly to the D-ICEP heuristic in that it greedily selects a resource to be part of the solution set if
that resource improves the solution in expectation. However, to reduce algorithm run time, the algorithm always adds a resource
into the set if it provides an improvement and does not consider whether another resource would have provided a larger gain.
Alternatively, a more involved approach could be chosen in which the impact of adding every possible resource is tested before
any are selected. But this would greatly increase the run time, because there is no simple way to determine which resource will
provide the biggest improvement. Taking into account the results of the experiments on the D-ICEP heuristic showing that the local
search heuristic does not iterate much until it cannot find further improvements, a theoretical run time from the D-ICEP of 𝑂(𝑚2𝑛𝑗)
s obtained. If the algorithm were to test the addition of each potential resource every iteration, this would result in a theoretical
un time of 𝑂(𝑛3𝑚2𝑡𝑗) for the entire algorithm, where 𝑛 is the number of resources, 𝑚 is the number of evacuees, 𝑡 is the number of

scenarios and 𝑗 is the number of pick-up nodes. Therefore, the solution described in Algorithm 3 was chosen, which returns a worst
case theoretical run time of 𝑂(𝑛2𝑚2𝑡𝑗), if both phases of the D-ICEP heuristic are run. If only the first phase is run, the worst case
run time is 𝑂(𝑛2𝑚(𝑗 +𝑘)), where 𝑘 is the number of drop-off nodes. While this approach reduces the share of the solution space that
s explored, it allows us to find a solution more quickly.

The run time can also be reduced by providing the algorithm with an initial resource set instead of starting with an empty set.
he risk of missing the global optimum through this approach is low if parameter 𝑄 is not too large, since a small resource set

generally leads to longer evacuation times. The rule for determining the initial resource set is presented in Algorithm 4, available
in Appendix.

Algorithm 4 selects the initial resource set on the basis of (1) whether, for every scenario, every pick-up node that has evacuation
demand can be served and (2) whether it is possible to cover at least a certain percentage of evacuation demand at each pick-up
node if it is visited by only one trip of each resource. The worst case theoretical run time of this algorithm is 𝑂(𝑗𝑛) or 𝑂(𝑡𝑗), where
𝑗 is the set of evacuation pick-up points, 𝑛 is the set of potential resources, and 𝑡 is the set of scenarios, depending on whether
𝑡𝑗 or 𝑗𝑛 are larger. A warm start can be considered, where the problem is provided with an initial resource set that is capable of
evacuating all scenarios, instead of starting from an empty resource set. In the following section, the variants of the S-ICEP heuristic
are discussed regarding their run time and solution quality, on the basis of four test instances, similar to the experimental results
presented for the D-ICEP in the previous section.

4.4. Numerical experiments on the heuristic for the S-ICEP

This section describes tests of the developed S-ICEP heuristic in comparison to those of the Gurobi 9.0 commercial solver. Four
est data sets were used, which are presented in Table 8, to illustrate the performance of the S-ICEP heuristic in comparison to
urobi 9.0.

Because the S-ICEP heuristic makes use of the D-ICEP heuristic, the structural challenges that the D-ICEP faces also apply to this
lgorithm. However, testing the algorithm showed whether to use both phase 1 and 2 of the D-ICEP. It also showed the effect of a
arm start. Table 9 provides the results of the computational tests with the data sets in Table 8 for Gurobi 9.0, the greedy S-ICEP
euristic discussed in Section 4.3 using only the first stage, or both the first and second stages of the D-ICEP heuristic, and the
-ICEP heuristic, starting with an initial route set defined by the warm start rule (indicated by ‘‘+ WS’’) introduced in Algorithm 4
ith parameter 𝑄 set to 20 percent.

Table 9 shows that in contrast to the D-ICEP, no tested configuration allowed the S-ICEP heuristic to reach the global optimum of
he Bal_1 objective function of the S-ICEP. This is caused by the fact that the D-ICEP does not guarantee to find the global optimum,

and the assumptions generated for the S-ICEP heuristic on resource selection also further simplify the problem. In some cases, using
both phase 1 and phase 2 of the D-ICEP reduced the optimality gap. The run time of the algorithm, especially for larger problems,
could also be significantly reduced through using the warm start for the initial resource set without sacrificing the solution quality of
the S-ICEP heuristic. It is therefore recommended that the warm start feature be used if larger problems are investigated. In future
18

research, additional numerical experiments can be conducted to investigate ideal parameter settings for parameter 𝑄. Given the
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Table 8
Test data sets for the S-ICEP.

S1 S2 S3 S4

Sets Set size

Scenarios 2 3 4 6
Potential resources 6 6 8 20
Initial storage locations 1 2 3 6
Evacuation locations 3 4 5 8
Evacuation pick-up points 5 6 8 15
Safe drop-off points 2 3 3 6
Round trips (only for commercial solver) 6 8 8 20

Parameters Setting

Penalty 5,000 5,000 5,000 5,000
Evacuation time limit (min) 120 240 500 600

Variable type Quantity (for commercial solver)

Continuous variables 832 2,718 6,640 109,668
Binary variables 858 3,198 8,324 178,740

Table 9
Result summary data experiments for the S-ICEP.

Data set Implementation Objective Run-time Optimality gap Run-time gap

S1

Gurobi 102.21 10.93 s – –
S-ICEP (incl. D-ICEP Ph. 1) 148.77 7.56 s 31.30% −30.83%
S-ICEP (incl. D-ICEP Ph. 1&2) 148.77 10.7 s 31.30% 2.10%
S-ICEP (incl. D-ICEP Ph. 1 + WS) 148.77 4.91 s 31.30% −55.08%
S-ICEP (incl. D-ICEP Ph. 1&2 + WS) 148.77 8.61 s 31.30% −21.23%

S2

Gurobi 119.65 3600 s (bb 119.6) 0.04% –
S-ICEP (incl. D-ICEP Ph. 1) 155.6 11.39 s 23.13% −99.68%
S-ICEP (incl. D-ICEP Ph. 1&2) 142.04 30.3 s 15.80% −99.16%
S-ICEP (incl. D-ICEP Ph. 1 + WS) 155.6 5.63 s 23.14% −99.78%
S-ICEP (incl. D-ICEP Ph. 1&2 + WS) 142.04 27.91 s 15.80% −99.22%

S3

Gurobi 120.19 144.83 s – –
S-ICEP (incl. D-ICEP Ph. 1) 162.6 51.65 s 26.08% −64.34%
S-ICEP (incl. D-ICEP Ph. 1&2) 162.32 151.39 s 25.95% 4.53%
S-ICEP (incl. D-ICEP Ph. 1 + WS) 162.6 13.35 s 26.08% −90.78%
S-ICEP (incl. D-ICEP Ph. 1&2 + WS) 162.32 31.07 s 25.95% −78.55%

S4

Gurobi 143.30a 3600 sa (bb 109.77) 23.4% –
S-ICEP (incl. D-ICEP Ph. 1) 169.02 1937.11 s 35.06%b −46.19%c

S-ICEP (incl. D-ICEP Ph. 1&2) 172.48 2954.66 s 36.36%b −17.93%c

S-ICEP (incl. D-ICEP Ph. 1 + WS) 169.64 576.87 s 35.29%b −83.97%c

S-ICEP (incl. D-ICEP Ph. 1&2 + WS) 167.42 1011.9 s 34.43%b −71.89%c

aResults were aborted after 3600 s; the best available solution, optimality gap and best bound are displayed.
bOptimality gap estimated based on lower bound provided by Gurobi 9.0.

cRun-time reduction compared to run time limit of 3600 s.

xperiments presented in Table 9, it is evident that the S-ICEP heuristic is able to reduce the run time to find a reasonable solution
or larger problems in comparison to an implementation of a commercial solver. However, the solution quality suffers significantly
nd to a much higher degree than for the D-ICEP heuristic. The reason is that the gaps in the second stage add up for each scenario
nd that the resource selection in the first stage of the heuristic is not reliable in finding the best resource set.

Despite the possibility of reducing the algorithm’s run time through these tweaks, two main caveats of the logic-based heuristic
or the S-ICEP remain. First, the algorithm run time of the S-ICEP heuristic still increases significantly with the problem size. While
he increase does not happen at the same rate as that of the commercial solver, the solution quality is sacrificed significantly because
he optimality of the solution cannot be guaranteed. Second, the complexity of the ICEP makes it difficult to efficiently explore the
olution space if a structure-based approach is used. It is possible to add additional improvement checks to phase 2 of the D-ICEP
euristic, but additional features and layers increase the run-time complexity and thus also reduce the usability of the algorithm for
arger problem sizes. The S-ICEP heuristic should therefore only be used if a solution needs to be obtained as quickly as possible.
or planning purposes, the commercial solver is thus preferred, until an alternative solution method is available.

. Conclusions

This paper introduced the ICEP and its variants D-ICEP and S-ICEP, which aim to improve emergency planning by optimizing
outing and fleet selections for the evacuation of isolated communities. The special considerations of D-ICEP on heterogeneous
19
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fleets, limited compatibility between nodes and resources, and alternative ways of evacuation make the ICEP models more difficult
to solve efficiently than previous models, but they enable emergency planners to develop an evacuation plan that is applicable to
remote areas. This is the first routing model developed for planning the evacuation of isolated communities with a coordinated set of
resources and therefore delivers an important contribution for research and practice on this topic. The S-ICEP allows scenario-based
planning by optimizing the evacuation resource set over multiple disaster scenarios that differ in evacuee numbers, locations, and
weather. This makes the model framework compatible with common evacuation planning practices. Alternative objective functions
of varying risk levels were presented and explored by conducting numerical experiments. In addition, guidance on the use of both
models and its parameter settings was provided. Moreover, heuristic solution approaches were presented to solve the problems
quickly. A two-phase structure-based greedy search heuristic was presented for the D-ICEP. Computational experiments showed
that this heuristic is able to significantly reduce the run time of the algorithm and it found the optimal solution in some cases or
got reasonably close, but this was not the case for all test data sets. Building on the D-ICEP heuristic, a greedy search heuristic
was developed to select evacuation resources for the S-ICEP. Experiments showed that this heuristic also reduced the algorithm run
time significantly in comparison to a commercial solver, but it did not reach the global optimum in any test case and showed large
optimality gaps.

Future research could focus on the following model extensions:

• Relaxing the constraints that allow resources to visit only a single evacuation pick-up point per trip.
• A manual prioritization feature that allows the modeler to specify a specific region to be evacuated first. This can be helpful

if a certain region is closer to the danger zone and needs to be prioritized during evacuation.
• Expanding the model to include the transportation of evacuees to the pick-up nodes.

There are several possible strategies for modeling the movement of evacuees to pick-up locations. The D-ICEP could be integrated
ith a flow network that either reconfigures the demand at each location, similar to Wang and Wang (2019), or simulates an arrival

ate. Or, rolling horizon implementations of D-ICEP could be used that model the arrival of evacuees through sequential updates,
esolving the remaining, not yet executed, part of the solution, every time new information is obtained. Robust optimization could
e another approach.

As mentioned in the Introduction section (Section 1), a real-world case study can be helpful to investigate the value of the model
or practitioners and derive managerial insights in detail, and to learn more about the evacuation of isolated communities and explore
ow this model can best be applied. As mentioned in the discussion about scenario generation (Section 3.3.2), it can be challenging
o obtain reliable data to solve the S-ICEP problem using existing data sets. Thus, subject matter experts should be included in the
ata design process, and close collaboration with first responders is necessary to make sure that the data assumptions provided to
he model as inputs are realistic. Krutein et al. (2022) provide such a case study for an isolated island. Applications to other types
f isolated communities can be promising for more insights. Future research could further focus on additional algorithmic solutions.
ne option is to expand the presented heuristic algorithm to search a larger share of the solution space, while balancing out the

rade-off with computational complexity. Alternative solution methods on how to solve the ICEP models to a more reliable solution
uality could consider metaheuristic frameworks or decomposition methods.
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Appendix. Algorithms

Algorithm 1: D-ICEP Heuristic Phase 1: Initial Feasible Solution Generation
Result: A feasible evacuation route plan

1 initialize all resources 𝑛, evacuees 𝑚 as the remaining evacuees, pick-up nodes 𝑗, drop-off nodes 𝑘;
2 set a maximum time for the route plan;
3 while remaining evacuees > 0 do
4 for n in resources do
5 for j in pick-up nodes do
6 Calculate the distance to the current location of 𝑛;
7 end
8 Select the closest pick-up node to 𝑛 as the next potential pick-up node;
9 for k in drop-off nodes do
10 Calculate the distance to the next potential pick-up node of 𝑛;
11 end
12 Select the closest drop-off node to the next potential pick-up node of 𝑛 as the next potential drop-off node;
13 Expected route time [𝑛] := current route time[𝑛] + time to next potential pick-up node + load time + time to next potential drop-off node +

unload time
14 end
15 Select the resource 𝑎 with the lowest expected route time;
16 if expected route time [𝑎] ≤ max route time then
17 Next pick-up node [𝑎]:= Next potential pick-up node[𝑎];
18 Next drop-off node [𝑎]:= Next potential drop-off node[𝑎];
19 if remaining demand at next pick-up node > capacity of resource 𝑎 then
20 load evacuees according to max capacity;
21 else
22 load evacuees according to remaining demand;
23 end
24 Update current route time [𝑎];
25 else
26 break and return incomplete route plan;
27 end
28 end
21
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Algorithm 2: D-ICEP Heuristic Phase 2: Improvement through Local Search
Result: An improved feasible evacuation route plan

1 Input a feasible route plan, max route time;
2 Initialize resources 𝑛 and pick-up nodes 𝑗 and drop-off nodes 𝑘 accordingly;
3 Extra demand added := re-allocation added := swap added := True;
4 while Extra demand added = True OR re-allocation added = True OR swap added = True do
5 1. Try allocating extra demand;
6 Extra demand added := False;
7 for 𝑗 in pick-up nodes with remaining demand do
8 Sort resources by current route time in ascending order; 𝑛 ∶= 1;
9 while extra demand left AND not all resources checked do
10 if any trip of resource 𝑛 serves 𝑗 and has excess capacity then
11 Allocate extra demand until capacity of 𝑛 is exhausted; Extra demand added := True;
12 end
13 𝑛 ∶= 𝑛 + 1;
14 end
15 end
16 2. Try re-allocating passengers from the longest route;
17 Select the resource 𝑙 with the longest evacuation time as the limiting resource;
18 Re-allocation added := False; 𝑛 ∶= 1; 𝑧 ∶= no. of trips on resource 𝑙;
19 while Re-allocation added = False AND 𝑧 ≥ no. of trips on resource 𝑙 do
20 while Trip 𝑧 of 𝑙 has remaining passengers AND n ≤ no. of alternative resources do
21 if any trip of alternative resource 𝑛 serves 𝑗 and has excess capacity then
22 Re-allocate passengers; if no more passengers then break loop;
23 end
24 if Trip 𝑧 of 𝑙 has remaining passengers AND an additional trip of resource 𝑛 serving pick-up node 𝑗 and the closest drop-off node 𝑘 can

be added without exceeding the current evacuation time then
25 Re-allocate passengers; if no more passengers then break loop;
26 end
27 𝑛 ∶= 𝑛 + 1;
28 end
29 if trip 𝑧 of resource 𝑙 has no more passengers AND the total route time through this change < current route time then
30 Re-allocation added := True; make re-allocation permanent; break loop;
31 else
32 Reverse the re-allocation of trip 𝑧;
33 𝑧 ∶= 𝑧 − 1;
34 end
35 end
36 3. Try swapping routes between resources to decrease evacuation time;
37 if Re-allocation added = False then
38 Swap added := False; 𝑛 ∶= 1; 𝑧 ∶= no. of trips on resource 𝑙;
39 while Swap added = False AND 𝑧 ≥ no. of trips on resource 𝑙 do
40 while 𝑛 ≤ no. of alternative resources do
41 if any trip of alternative resource 𝑛 can be swapped with trip 𝑧 of 𝑙 then
42 Perform the swap; Swap added := True; break loop;
43 else
44 𝑛 ∶= 𝑛 + 1;
45 end
46 𝑧 ∶= 𝑧 − 1;
47 end
48 end
49 end
50 end
22
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Algorithm 3: S-ICEP Heuristic: Optimal resource fleet
Result: A cost- and time-efficient evacuation plan

1 initialize the best cost as the penalty cost inflicted by not evacuating any person;
2 initialize the current resource fleet as an empty set;
3 initialize 𝑛 ∶= 0;
4 while current cost < best cost AND not all resources are in the resource fleet do
5 best cost = current cost;
6 sort the list of candidate resources by maximum capacity, time to availability and maximum speed;
7 Add the 𝑛th entry of the list of candidate resources to the set of resources;
8 for t in scenarios do
9 Run D-ICEP Heuristic Phase 1 with set of resources;
10 Run D-ICEP Heuristic Phase 2 with set of resources;
11 end
12 proposed cost = total cost of the S-ICEP evacuation plan considering scenario probabilities and cost parameters;
13 if proposed cost < current cost then
14 current cost = proposed cost;
15 delete the 𝑛th resource from the list of candidate resources;
16 else
17 delete the 𝑛th resource from the resource set again;
18 𝑛+ = 1;
19 if 𝑛 equals the length of the candidate resource set then
20 break the loop;
21 end
22 end
23 end

Algorithm 4: S-ICEP Heuristic: Initial resource set selector
Result: A set of resources usable as a warm start to the S-ICEP heuristic

1 input the set of potential resources and the set of evacuation pick-up points including the evacuation demand for each scenario;
2 provide a minimum percentage of evacuation demand that needs to be covered by resources if only one trip to each evacuation location by every

resource is completed and initialize as 𝑄;
3 initialize the initial resource set as an empty set;
4 initialize the set of total pick-up points as an empty set;
5 for t in scenarios do
6 for j in evacuation pick-up points do
7 if j has evacuation demand and is not yet in the set of total pick-up points then
8 Add 𝑗 to the set of total pick-up points
9 end
10 end
11 end
12 for i in total evacuation pick-up points do
13 Order the list of potential resources compatible with 𝑖 by maximum capacity, time to availability and maximum speed;
14 𝑛 ∶= 0 while total evacuation capacity at node 𝑖 in scenario 𝑗 < Q(evacuation demand at 𝑖) do
15 if 𝑛th resource not in set of initial resources yet then
16 add the 𝑛th resource to the initial resource set;
17 else
18 𝑛 ∶= 𝑛 + 1
19 end
20 end
21 end
23



Transportation Research Part E 161 (2022) 102710K.F. Krutein and A. Goodchild

B

B

B
B
B
B
B
C
C
C
C
D
D
D
F
F
G
G
G
G
G
G
I

K

K

K

L
L
L
L

M
N
P
P
P
R
R
S
S
S
S
S
S
S
S
T
T
W
W

Z

References

Abdelgawad, H., Abdulhai, B., 2010. Managing large-scale multimodal emergency evacuations. J. Transp. Saf. Secur. 2 (2), 122–151.
An, S., Cui, N., Li, X., Ouyang, Y., 2013. Location planning for transit-based evacuation under the risk of service disruptions. Transp. Res. B 54, 1–16.
Australian Broadcasting Corporation, 2020. Mallacoota evacuations begin as thousands trapped by bushfires are transported to navy ships. ABC News, 2 Jan.
Baou, E., Koutras, V.P., Zeimpekis, V., Minis, I., 2018. Emergency evacuation planning in natural disasters under diverse population and fleet characteristics. J.

Humanit. Logist. Supply Chain Manage. 8 (4), 447–476.
ayram, V., 2016. Optimization models for large scale network evacuation planning and management: A literature review. Surv. Oper. Res. Manag. Sci. 21 (2),

63–84.
elenguer, J.M., Benavent, E., Prins, C., Prodhon, C., Wolfler Calvo, R., 2011. A branch-and-cut method for the capacitated location-routing problem. Comput.

Oper. Res. 38 (6), 931–941.
ellman, R., 1966. Dynamic programming. Science 153 (3731), 34–37.
ish, D.R., 2011. Planning for a bus-based evacuation. OR Spectrum 33 (3), 629–654.
randão, J.C.S., Mercer, A., 1998. The multi-trip vehicle routing problem. J. Oper. Res. Soc. 49 (8), 799–805.
ritten, L., 2019. How do you evacuate all of Bowen Island? Municipality seeks plan to find out. CBC News, 31 Mar.
urkard, R.E., Dlaska, K., Klinz, B., 1993. The quickest flow problem. ZOR, Methods Models Oper. Res. 37, 31–58.
attaruzza, D., Absi, N., Feillet, D., 2016. The multi-trip vehicle routing problem with time windows and release dates. Transp. Sci. 50 (2), 676–693.
offey, H., 2019. Greece wildfires: Hundreds of tourists evacuated from hotels and beaches. The Independent, 27 Aug.
ordeau, J.-F., 2006. A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res. 54 (3), 573–586.
revier, B., Cordeau, J.F., Laporte, G., 2007. The multi-depot vehicle routing problem with inter-depot routes. European J. Oper. Res. 176 (2), 756–773.
antzig, G.B., Ramser, J.H., 1959. The truck dispatching problem. Manage. Sci. 6 (1), 80–91.
eane, K., Coto, D., 2021. ‘Huge’ explosion rocks St. Vincent as volcano keeps erupting. Associated Press, 12 Apr.
ikas, G., Minis, I., 2016. Solving the bus evacuation problem and its variants. Comput. Oper. Res. 70, 75–86.
lood, M.M., 1956. The travelling-salesman problem. Oper. Res. 4 (1), 61–75.
ord, L.R., Fulkerson, D.R., 1958. Constructing maximal dynamic flows from static flows. Oper. Res. 6 (3), 419–433.
oerigk, M., Deghdak, K., Heßler, P., 2014a. A comprehensive evacuation planning model and genetic solution algorithm. Transp. Res. E 71, 82–97.
oerigk, M., Deghdak, K., T’Kindt, V., 2015. A two-stage robustness approach to evacuation planning with buses. Transp. Res. B 78, 66–82.
oerigk, M., Grün, B., 2014. A robust bus evacuation model with delayed scenario information. OR Spectrum 36 (4), 923–948.
oerigk, M., Grün, B., Heßler, P., 2013. Branch and bound algorithms for the bus evacuation problem. Comput. Oper. Res. 40 (12), 3010–3020.
oerigk, M., Grün, B., Heßler, P., 2014b. Combining bus evacuation with location decisions: A branch-and-price approach. Transp. Res. Procedia 2, 783–791.
orissen, B.L., Yanikoglu, I., den Hertog, D., 2015. A practical guide to robust optimization. Omega 53, 124–137.

PCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation a special report of working groups I and II of the
intergovernmental panel on climate change [C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D.]. Intergovernmental Panel on Climate
Change, p. 582.

arabuk, S., Manzour, H., 2019. A multi-stage stochastic program for evacuation management under tornado track uncertainty. Transp. Res. E 124 (February),
128–151.

rutein, K.F., McGowan, J., Goodchild, A., 2022. Evacuating isolated Islands with marine resources: A Bowen Island case study. Int. J. Disaster Risk Reduct. 72
(102865).

ulshrestha, A., Lou, Y., Yin, Y., 2014. Pick-up locations and bus allocation for transit-based evacuation planning with demand uncertainty. J. Adv. Transp. 48,
721–733.

aporte, G., 2009. Fifty years of vehicle routing. Transp. Sci. 43 (4), 408–416.
aporte, G., Louveaux, F., Mercure, H., 1992. Vehicle routing problem with stochastic travel times. Transp. Sci. 26 (3), 161–170.
im, G.J., Rungta, M., Baharnemati, M.R., 2015. Reliability analysis of evacuation routes under capacity uncertainty of road links. IIE Trans. 47 (1), 50–63.
u, Q., George, B., Shekhar, S., 2005. Capacity constrained routing algorithms for evacuation planning: A summary of results. In: SSTD’05: Proceedings of the

9th International Conference on Advances in Spatial and Temporal Databases, Vol. 5644. pp. 291–307.
oussa, M., Rising, D., 2022. Three of Tonga’s smaller islands badly damaged by tsunami. Associated Press, 19 Jan.
adeau, B.L., 2021. Residents evacuated from Italian island Vulcano over carbon dioxide levels. p. 1, CNN, 21 Nov.
ereira, V.C., Bish, D.R., 2015. Scheduling and routing for a bus-based evacuation with a constant evacuee arrival rate. Transp. Sci. 49 (4), 853–867.
illac, V., Gendreau, M., Guéret, C., Medaglia, A.L., 2013. A review of dynamic vehicle routing problems. European J. Oper. Res. 225 (1), 1–11.
illac, V., Van Hentenryck, P., Even, C., 2016. A conflict-based path-generation heuristic for evacuation planning. Transp. Res. B 83, 136–150.
enne, J.L., Sanchez, T.W., Litman, T., 2011. Carless and special needs evacuation planning: A literature review. J. Plan. Lit. 26 (4), 420–431.
omero, D., 2019. Over 1,000 Bahamas residents evacuated after Dorian as food, supplies are brought in. NBC News, 7 Sep.
ayyady, F., Eksioglu, S.D., 2010. Optimizing the use of public transit system during no-notice evacuation of urban areas. Comput. Ind. Eng. 59 (4), 488–495.
chrage, L., 1981. Formulation and structure of more complex/realistic routing and scheduling problems. Networks 11 (2), 229–232.
hapiro, A., 2008. Stochastic programming approach to optimization under uncertainty. Math. Program. 112, 183–220.
herali, H.D., 1982. Equivalent weights for lexicographic multi-objective programs: Characterizations and computations. European J. Oper. Res. 11 (4), 367–379.
ong, R., He, S.W., Zhang, L., 2009. Optimum transit operations during the emergency evacuations. J. Transp. Syst. Eng. Inf. Technol. 9 (6), 154–160.
outhworth, F., 1991. Regional Evacuation Modeling: A State-of-the-Art Review. Oak Ridge National Laboratory.
oyster, A.L., 1973. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (5), 1154–1157.
treetLight Data Inc., 2020. National map of communities with limited evacuation routes.
hompson, R.R., Garfin, D.R., Silver, R.C., 2017. Evacuation from natural disasters: A systematic review of the literature. Risk Anal. 37 (4), 812–839.
üydeş, H., 2005. Network Traffic Management under Disaster Conditions (Ph.D. thesis). Northwestern University.
ang, Y., Wang, J., 2019. Integrated reconfiguration of both supply and demand for evacuation planning. Transp. Res. 130 (August), 82–94.
u, L., Yang, D., Wang, S., Yuan, Y., 2020. Evacuating offshore working barges from a land reclamation site in storm emergencies. Transp. Res. 137 (January),

101902.
heng, H., 2014. Optimization of bus routing strategies for evacuation. J. Adv. Transp. 48, 734–749.
24

http://refhub.elsevier.com/S1366-5545(22)00101-6/sb1
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb2
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb3
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb4
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb4
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb4
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb5
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb5
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb5
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb6
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb6
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb6
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb7
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb8
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb9
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb10
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb11
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb12
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb13
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb14
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb15
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb16
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb17
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb18
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb19
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb20
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb21
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb22
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb23
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb24
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb25
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb26
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb27
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb27
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb27
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb27
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb27
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb28
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb28
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb28
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb29
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb29
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb29
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb30
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb30
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb30
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb31
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb32
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb33
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb34
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb34
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb34
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb35
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb36
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb37
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb38
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb39
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb40
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb41
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb42
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb43
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb44
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb45
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb46
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb47
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb48
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb49
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb50
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb51
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb52
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb53
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb53
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb53
http://refhub.elsevier.com/S1366-5545(22)00101-6/sb54

	The isolated community evacuation problem with mixed integer programming
	Introduction
	Motivation
	Related work
	General framework
	Network flow problems
	Related vehicle routing problems
	Related evacuation transit routing problems
	Gaps in literature

	Contributions

	Deterministic problem formulation
	Assumptions
	Design of the deterministic ICEP
	Deterministic problem formulation (D-ICEP)
	D-ICEP formulation
	Considerations on the number of round trips


	Stochastic problem formulation
	Additional assumptions
	Expansion to a stochastic problem
	Stochastic problem formulation (S-ICEP)
	Problem formulation
	Scenarios
	Resource sets
	Evacuation time limits
	Penalty parameters

	Objective functions for S-ICEP
	Balanced objective functions
	Conservative objective functions
	Economic objective functions
	Discretization of objective functions
	Effects of S-ICEP objective functions
	Learnings from experiments


	Heuristic solution approaches
	Heuristic for D-ICEP
	Numerical experiments on the heuristic for D-ICEP
	Heuristic for the S-ICEP
	Numerical experiments on the heuristic for the S-ICEP

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Algorithms
	References


