Skip to content
Chapter

New Urban Freight Developments and Land Use

Publication: Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change
Volume: Chapter 22
Pages: 383-397
Publication Date: 2023
Summary:

Urban freight denotes vehicle and commodity flows in an urban environment. These flows depend on a complex set of relationships among various stakeholders. In the last decades, urban freight has experienced an incredible pace of evolution, which has occurred due to various technological factors. One example is the ubiquity of internet access and the advance in information technology, leading to e-commerce adoption. Another is the development of algorithms to forecast demand, design and maintain supply chains and plan vehicle routes. In this chapter, we summarize critical changes in urban freight developments and land use. We highlight the interactions between passenger and freight travel, the recent shifts in freight flows and associated planning needs.

Authors: Dr. Giacomo Dalla Chiara, André Alho, Takanori Sakai
Recommended Citation:
Alho, André, Takanori Sakai, and Giacomo Dalla Chiara. "New urban freight developments and land use." Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change (2023): 383.
Chapter

Overview on Stakeholder Engagement

Publication: Handbook on City Logistics and Urban Freight
Publication Date: 2023
Summary:

Until recently, urban transport authorities often overlooked freight, concentrating their attention on the movement of people. Even when motivated to tackle urban freight, many city authorities find it difficult to mobilize their own resources, and address the complex set of differing views of a large variety of stakeholders.

Historically, the role of city authorities, or local authorities within cities, has been confined largely to one of regulation as opposed to collaborative planning. Correspondingly, until recently there has been limited engagement of private companies in the local-authority transport-planning process.

Engaging stakeholders is very important as without their involvement it is very difficult to motivate changes in the urban freight and logistics system or design policies that might be mutually beneficial; successful implementation of effective urban logistics initiatives demands a solid understanding of both freight activity and the supply chains serving the urban area.

This chapter examines these issues and addresses how cities can more effectively engage with stakeholders. There is a strong need to identify obstacles, propose solutions and define implementation paths that consider the concerns of all stakeholders involved. This sounds rather straightforward but in practice there are many conflicts among and within public and private-interest groups and these often result in obstacles to success.

This chapter will address the range of complex issues involved and establish a framework for understanding the options related to stakeholder engagement to improve urban freight sustainability.

Authors: Dr. Anne Goodchild, Michael Browne (University of Gothenburg)
Recommended Citation:
Michael Browne & Anne Goodchild, 2023. "Overview on stakeholder engagement," Chapter in: Edoardo Marcucci & Valerio Gatta & Michela Le Pira (ed.), Handbook on City Logistics and Urban Freight, chapter 15, pages 311-326, Edward Elgar Publishing.
Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.
Chapter

Guide for Identifying, Classifying, Evaluating, and Mitigating Truck Freight Bottlenecks

 
Download PDF  (0.78 MB)
Publication: Transportation Research Board - NCHRP Research Report
Volume: 854
Publication Date: 2017
Summary:

The demand for truck transportation increases alongside growth in population and economic activity. As both truck and passenger traffic outstrip roadway capacity, the result is congestion, which the freight community experiences as truck bottlenecks. This NCHRP project produced a Guidebook that provides state-of-the-practice information to transportation professionals on practices and measures for identifying, classifying, evaluating, and mitigating truck freight bottlenecks. The intent is to help decision-makers in developing cost-effective solutions to address different types of truck freight bottlenecks.

The Guidebook is designed for use by transportation planners and research and operational staff. Its contents

  • Define a common language related to truck freight bottlenecks
  • Classify truck freight bottleneck categories based on causal and contributing factors
  • Describe truck bottleneck state of the practice
  • Provide highlights from several case studies related to truck bottlenecks
  • Describe data sources used for truck bottleneck analysis
  • Provide a spatially scalable methodology for identifying truck freight bottlenecks
  • Describe quantitative measures for truck freight bottleneck categories for determining bottleneck severity, impact, and ranking and subsequent decision-making
  • Describe mitigation options for truck freight bottlenecks
  • Describe how to integrate freight bottleneck analysis into the planning process.

The Guidebook embraces a broad term for “truck freight bottlenecks” as any condition that acts as an impediment to efficient truck travel, thereby leading to travel times in excess of what would normally occur. This definition encompasses a wide range of events and conditions, all of which add time to the delivery of truck freight shipments, from the time those shipments leave their origin to the time they arrive at their destination.

The Guidebook describes two methodologies for identifying truck freight bottlenecks:

  • A travel speed-based delay methodology, and
  • A process or operation delay-based methodology.

The bottleneck analysis described in the Guidebook focuses on utilizing truck probe data rather than traditional travel demand models. Truck probe speed data can be used in conjunction with other data sources (e.g., crash data, weather data, volume data) to identify the causes of bottlenecks. The methodologies are scalable in multiple ways, and this will allow agencies to use their available data resources regardless of the source or size of those resources. In addition, the same analytical approach will work whether the analysis is performed for an entire state highway network, a regional network, or even a specific city. The recommended approach can also be applied to a single road segment, multiple roads within a geographic corridor, an entire region, to all roads in the state, or to all roads in a multistate region. Finally, the methodology can be used to demonstrate the benefit of bottleneck improvements to truckers, policy decision-makers, and the general public. This is particularly true for bottlenecks based on operational restrictions (such as geometric or height restrictions or truck bans).

Authors: Dr. Anne GoodchildDr. Ed McCormack, Dike Ahanotu, Richard Margiotta, Bill Eisele, Mark Hallenbeck
Recommended Citation:
Ahanotu, Dike, Richard Margiotta, Bill Eisele, Mark Hallenbeck, Anne Goodchild, and Ed McCormack. (2017) Guide for Identifying, Classifying, Evaluating, and Mitigating Truck Freight Bottlenecks. Transportation Research Board. Project 08-98. 2017.
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Chapter

Comparison of Vehicle Miles Traveled and Pollution from Three Goods Movement Strategies

Publication: Sustainable Logistics: Transport and Sustainability (Emerald Group Publishing Limited)
Volume: Volume 6
Pages: 63-82
Publication Date: 2014
Summary:

This chapter provides additional insight into the role of warehouse location in achieving sustainability targets and provides a novel comparison between delivery and personal travel for criteria pollutants.

Purpose: To provide insight into the role and design of delivery services to address CO2, NO x , and PM10 emissions from passenger travel.Methodology/approach: A simulated North American data sample is served with three transportation structures: last-mile personal vehicles, local-depot-based truck delivery, and regional warehouse-based truck delivery. CO2, NO x , and PM10 emissions are modeled using values from the US EPA’s MOVES model and are added to an ArcGIS optimization scheme.Findings: Local-depot-based truck delivery requires the lowest amount of vehicle miles traveled (VMT), and last-mile passenger travel generates the lowest levels of CO2, NO x , and PM10. While last-mile passenger travel requires the highest amount of VMT, the efficiency gains of the delivery services are not large enough to offset the higher pollution rate of the delivery vehicle as compared to personal vehicles.

Practical implications: This research illustrates the clear role delivery structure and logistics have in impacting the CO2, NO x , and PM10 emissions of goods transportation in North America.

Social implications: This research illustrates the tension between goals to reduce congestion (via VMT reduction) and CO2, NO x , and PM10 emissions.

Originality/value: This chapter provides additional insight into the role of warehouse location in achieving sustainability targets and provides a novel comparison between delivery and personal travel for criteria pollutants.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. "Comparison of vehicle miles traveled and pollution from three goods movement strategies." Sustainable Logistics, pp. 63-82. Emerald Group Publishing Limited, 2014. 
Chapter

Pacific Highway Commercial Vehicle Operations: Border Policy and Logistical Efficiency in a Regional Context (TRR)

 
Download PDF  (2.62 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2238
Pages: 15-23
Publication Date: 2014
Summary:

Activities of commercial vehicles just before or just following international border crossings are not well understood. Logistical responses to border crossings are believed to increase miles traveled empty, total travel times, and total vehicle emissions. Analysis of observational data and surveys taken by commercial carriers at the Cascade Gateway border crossings (between Whatcom County, Washington, in the United States and lower British Columbia in Canada) improves understanding of how the border and associated policies and regulations affect logistics operations, both in manner and in scope. Findings suggest that the border creates logistical incentives for trucks to deadhead (cross the border without carrying goods as part of a cross-border round-trip journey) and to make staging stops near the border for border-related transloading. The Free and Secure Trade program, as observed in the Cascade Gateway region, unintentionally amplifies the existing negative logistical incentives created by the border.

Authors: Dr. Anne Goodchild, Matt Klein
Recommended Citation:
Klein, Matthew, and Anne Goodchild. "Pacific highway commercial vehicle operations: border policy and logistical efficiency in a regional context." Transportation Research Record 2238, no. 1 (2011): 15-23.