Skip to content
Paper

Ecommerce and Logistics Sprawl: A Spatial Exploration of Last-Mile Logistics Platforms

 
Download PDF  (3.64 MB)
Publication: Journal of Transport Geography
Volume: 112
Publication Date: 2023
Summary:

The rise of ecommerce helped fuel consumer appetite for quick home deliveries. One consequence has been the placing of some logistics facilities in proximity to denser consumer markets. The trend departs from prevailing discussion on “logistics sprawl,” or the proliferation of warehousing into the urban periphery. This study spatially and statistically explores the facility- and region-level dimensions that characterize the centrality of ecommerce logistics platforms. Analyzing 910 operational Amazon logistics platforms in 89 U.S. metropolitan statistical areas (MSAs) between 2013 and 2021, this study estimates temporal changes in distances to relative, population centroids and population-weighted market densities. Results reveal that although some platforms serving last-mile deliveries are located closer to consumers than upstream distribution platforms to better fulfill time demands, centrality varies due to facility operating characteristics, market size, and when the platform opened.

Ecommerce has transformed the “consumption geography” of cities. These transformations have major implications for shopping behaviors and retail channels, last-mile operations and delivery mode choice, the management and pricing of competing uses for street and curb space, and the spatial ordering and functional role of logistics land uses. In the latter case, researchers have observed a diversification of logistics platforms to more efficiently serve home delivery demand. These platforms range from “dark stores” and “microfullfilment centers” that fulfill on-demand deliveries and omni-channeled retail without a consumer facing storefront, multi-use urban distribution centers that convert unproductive sites (e.g., abandoned rail depots) to more lucrative land uses, and “microhubs” that stage transloading between cargo vans and e-bicycles suited for dense urban neighborhoods.

Logistics spaces play an important role in improving urban livability and environmental sustainability. Planning decisions scale geographically from the region-level to the curb. Facilities such as urban consolidation centers and loading zones can mitigate common delivery inefficiencies, such as low delivery densities and “cruising” for parking, respectively. These inefficiencies generate many negative externalities including climate emissions, air and noise pollution, congestion, and heightened collision risks, especially for vulnerable road users such as pedestrians and bicyclists. Limited commercial data has made it difficult, however, to observe spatial patterns with regards to ecommerce logistics platforms.

Using detailed proprietary data, this paper explores the evolving spatial organization of ecommerce logistics platforms. Given the company’s preeminence as the leading online retailer in the U.S., the paper presents Amazon as a case study for understanding warehousing and distribution (W&D) activity in the larger ecommerce space. Utilizing proprietary data on Amazon logistics facilities between 2013 and 2021, this research explores the geographic shape and explanatory dimensions of ecommerce within major U.S. metropolitan areas. In the following section, this study defines the state of research related to broader W&D land use and its implications to ecommerce’s distinct consumption geography. Afterwards, two methodologies for measuring logistics centrality are tested: a temporally relative barycenter-based metric, the prevailing method in literature, and another GIS-based, population-weighted service distance metric. The two measurements reveal nuances between facility- and region-level differences in the spatial organization of ecommerce platforms, which has yet to be fully researched. After presenting results from an exploratory regression analysis, this study discusses implications for future urban logistics land use and transport decisions.

Recommended Citation:
Fried, T., & Goodchild, A. (2023). E-commerce and logistics sprawl: A spatial exploration of last-mile logistics platforms. Journal of Transport Geography, 112, 103692. https://doi.org/10.1016/j.jtrangeo.2023.103692
Paper

Seeking Equity and Justice in Urban Freight: Where to Look?

 
Download PDF  (2.37 MB)
Publication: Transport Reviews
Publication Date: 2023
Summary:

What do equity and social justice mean for urban freight planning and management? New Urban Freight Lab paper reviews transportation and mobility justice theory and finds that urban freight issues are absent from these discussions, which primarily concern passenger and personal mobility. When urban freight is considered, authors usually discuss topics such as emissions, pollution, congestion, noise, and collisions. This paper looks more in-depth at urban freight justice, including access to essential goods, community governance, employment opportunities and barriers, and regional and global perspectives.

Urban freight systems embed and reflect spatial inequities in cities and imbalanced power structures within transport decision-making. These concerns are principal domains of “transportation justice” (TJ) and “mobility justice” (MJ) scholarship that have emerged in the past decade. However, little research exists situating urban freight within these prevailing frameworks, which leaves urban freight research on socio-environmental equity and justice ill-defined, especially compared to passenger or personal mobility discussions. Through the lens that derives from TJ and MJ’s critical dialogue, this study synthesizes urban freight literature’s engagement with equity and justice.

Namely, the review evaluates:

  • How do researchers identify equitable distributions of urban freight’s costs and benefits?
  • At what scale do researchers evaluate urban freight inequities?
  • And who does research consider entitled to urban freight equity and how are they involved in urban freight governance?

The findings help inform researchers who seek to reimagine urban freight management strategies within broader equity and justice discourse.

Decades-long growth in urbanization and the more recent surge in e-commerce have spurred concerns around the uneven impacts of freight’s swelling urban footprint. Transport scholars note increasing conflicts between freight vehicles and vulnerable road users, like bicyclists and pedestrians in dense urban areas. Meanwhile, environmental justice (EJ) scholars have long measured unequal exposure to freight traffic pollution along socio-economic and ethnic lines.

However, relatively few urban freight studies engage with social equity. Those that do usually avoid critical discussions contained in justice-oriented theory, instead portraying the movement of goods as an “apolitical science of circulation”. In the U.S., for instance, politicizing urban freight overlooks a history of city industrial zoning practices, infrastructure construction, exclusionary decision-making, and consequent path dependency that placed key logistics facilities including highways, manufacturing plants, warehouses and distribution centers disproportionately near low-income households and non-white, populations of color. The longitudinal effects of these institutional decisions are still largely visible today.

Transportation research also inconsistently defines and measures equity. In a review of equity in transportation literature, Lewis et al. describe equity as an empty conceptual space that “authors then fill … either explicitly with clearly defined arguments or implicitly with whatever idea of justice intuitively comes to mind” (p. 2). Arbitrarily engaging with equity concepts, the authors argue, creates confusion that is both normative (e.g. what does an equitable urban freight system look like?) and positive (e.g. what measurable thresholds determine whether an urban freight outcome is inequitable?). Consequently, most equity research measure unequal distributions of burdens and/or benefits but spend less time identifying when and why unequal distributions are unjust.

Therefore, this paper synthesizes prevailing discourse around equity and, by extension, justice in transportation research and urban freight literature.

Authors: Travis FriedDr. Anne Goodchild, Ivan Sanchez Diaz (Chalmers University), Michael Browne (Gothenburg University)
Recommended Citation:
Travis Fried, Anne Goodchild, Michael Browne & Ivan Sanchez-Diaz (2023). Seeking Equity and Justice in Urban Freight: Where to Look? Transport Reviews, DOI: https://doi.org/10.1080/01441647.2023.2247165
Chapter

Overview on Stakeholder Engagement

Publication: Handbook on City Logistics and Urban Freight
Publication Date: 2023
Summary:

Until recently, urban transport authorities often overlooked freight, concentrating their attention on the movement of people. Even when motivated to tackle urban freight, many city authorities find it difficult to mobilize their own resources, and address the complex set of differing views of a large variety of stakeholders.

Historically, the role of city authorities, or local authorities within cities, has been confined largely to one of regulation as opposed to collaborative planning. Correspondingly, until recently there has been limited engagement of private companies in the local-authority transport-planning process.

Engaging stakeholders is very important as without their involvement it is very difficult to motivate changes in the urban freight and logistics system or design policies that might be mutually beneficial; successful implementation of effective urban logistics initiatives demands a solid understanding of both freight activity and the supply chains serving the urban area.

This chapter examines these issues and addresses how cities can more effectively engage with stakeholders. There is a strong need to identify obstacles, propose solutions and define implementation paths that consider the concerns of all stakeholders involved. This sounds rather straightforward but in practice there are many conflicts among and within public and private-interest groups and these often result in obstacles to success.

This chapter will address the range of complex issues involved and establish a framework for understanding the options related to stakeholder engagement to improve urban freight sustainability.

Authors: Dr. Anne Goodchild, Michael Browne (University of Gothenburg)
Recommended Citation:
Michael Browne & Anne Goodchild, 2023. "Overview on stakeholder engagement," Chapter in: Edoardo Marcucci & Valerio Gatta & Michela Le Pira (ed.), Handbook on City Logistics and Urban Freight, chapter 15, pages 311-326, Edward Elgar Publishing.
Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.

Dr. Giacomo Dalla Chiara

Dr. Giacomo Dalla Chiara
Dr. Giacomo Dalla Chiara
  • Research Associate, Urban Freight Lab
giacomod@uw.edu  |  206-685-0567  |  Wilson Ceramics Lab 111
  • Urban transportation
  • Urban logistics
  • Operations research
  • Effectiveness of ebikes for last-mile delivery
  • Ph.D., Engineering Systems and Design, Singapore University of Technology and Design (SUTD) (2018)
    Dissertation: Commercial Vehicles Parking in Congested Urban Areas
  • M.S., Statistics, Swiss Federal Institute of Technology (ETH) (2012)
    Thesis: Factor Approach to Forecasting with High-Dimensional Data
  • B.S., Economics and Business, Libera Università Internazionale degli Studi Sociali (LUISS) (2010)
    Thesis: A Monopolistic State in Competitive Markets

Dr. Giacomo Dalla Chiara is a Post-Doctoral Research Associate at the Urban Freight Lab. Before moving to Seattle, he was postdoctoral research fellow at the Singapore University of Technology and Design in 2018 and visiting scholar at the Massachusetts Institute of Technology in 2017. He holds a PhD in Engineering Systems from the Singapore University of Technology and Design (Singapore), a MSc in Statistics from ETH Zurich (Switzerland) and a BSc in Economics from LUISS University (Italy).

His research focuses on statistical methods applied to urban mobility problems. His work involves developing models and simulations to study and develop new sustainable urban logistics practices.

  • Guest Editor, Transportation Research Part A: Policy and Practice (Elsevier) (2021)
Presentation

Ecommerce and Environmental Justice in Metro Seattle U.S.

 
Publication: Laboratoire Ville Mobilite Transport (City Transportation Mobility Laboratory), Paris
Publication Date: 2022
Summary:

The central research question for this project explores the distributional impacts of ecommerce and its implications for equity and justice.

The research aims to investigate how commercial land use affects people and communities. In 2018, U.S. warehouses surpassed office buildings as the primary form of commercial and industrial land use, now accounting for 18 billion square feet of floor space. Warehouses have experienced significant growth in both number and square footage, becoming the predominant land use in the U.S. Warehouse expansion has strategically sprawled from port areas to suburbs in order to get closer to populations and transportation access.

The research findings reveal a correlation between warehouse locations and lower-income communities, resulting in increased exposure to air pollution and triple the traffic associated with ecommerce. Conversely, higher-income populations experience the least exposure, despite making more than half of their purchases online compared to their lower-income counterparts.

Factors such as race and proximity to highways and warehouse locations emerge as stronger predictors of the volume of freight activity through ecommerce than individuals’ income levels or the number of orders placed. Going forward, there is an opportunity for retailers and distributors to take into account the health implications of warehouse placement, and governments can provide best practices to facilitate municipal coordination, particularly where local authorities may be unaware of the impacts.

Authors: Travis Fried
Presentation

Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation

 
Download PDF  (0.09 MB)
Publication: U.S. House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials
Volume: 5-Dec-19
Publication Date: 2019
Summary:

Written Testimony of
Anne Goodchild
Professor in Civil and Environmental Engineering
Director of the Supply Chain Transportation and Logistics Center
University of Washington

Joint Hearing on:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation”
before the United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials.

December 5, 2019

Good morning, Chairs Norton and Lipinski and Ranking Members Davis and Crawford as well as distinguished Members of the Committee. Thank you for the opportunity to speak to you about this important topic. My name is Anne Goodchild and I am a professor and the Director of the Supply Chain Transportation and Logistics Center at the University of Washington. I am an urban freight expert.  The freight system, ultimately, allows for economic specialization; it supports city living, provides markets to producers, and strengthens competition.  On its own, the transportation and logistics sector represents approximately 10% of the US gross domestic product – a larger sector than either retail, or financial services.  The freight system is more than interstates, ports, pipelines and rail facilities.  The freight system is city streets, local highways, sidewalks, bike lanes, and front steps – the last mile of where these supply chains is carried out. It is the delivery man walking to your door or mailbox.  When we talk about freight infrastructure investment and building a better freight system, we must remember to include the last mile and particularly the Final Fifty Feet to the final delivery destination.  Without completing this final step, supply chains fail to deliver the economic and social benefits they promise.

Last mile costs businesses a disproportionate amount of time and money

The last mile is essential, and expensive; the most difficult and costly mile of all.  While estimates vary, the cost of the last mile has been estimated at between 25% and 50% of total supply chain transportation costs.

The last mile is costly because:

  1. It relies more on human labor than the other segments of supply chain transportation with drivers going door-to-door to drop off packages.  In cities, drivers can spend 80 or 90% of their time outside the vehicle
  2. Goods are more fragmented the farther you travel down the supply chain.  Upstream, goods are moved in large, consolidated shipments such as single commodities but the closer goods get to the consumer the more they are broken down into shipments for individual customers
  3. 80% of Americans live in congested regions  where travel speeds are slower and less reliable.  This increases the number of vehicles and drivers required to do the same work
  4. There can be high rates of failed deliveries requiring repeated delivery attempts and resulting in ballooning costs. Failed delivery attempts can mean that two or three additional trips are require to accomplish the same task.

While the high cost of the last mile is in part due to the distributed nature of deliveries, the cost is inflated by congestion, a lack of reasonable parking options, and other constraints put on commercial vehicle operations such as specific street or time of day bans.

Online shopping growing and speeding

Online shopping rates are growing and this is increasing demand for last mile delivery.  UPS, the world’s largest package delivery company, experienced 23% revenue growth from 2014 to 2018 (5.5% annually ).  With one-click shopping and free home delivery it is now often cheaper and easier to order something online than it is to go to the store.  Retail e-commerce sales as a percent of total retail sales in United States rose to 9% in 2017 and this figure is expected to reach 12.4% in 2020.  With store-based shopping, most Americans use their personal vehicles for shopping trips; driving to the store alone, purchasing a few items, and returning home in their car.  With an online purchase, the trip – now a delivery – is made with a commercial vehicle, extending the supply chain from the store or warehouse and bringing increasing numbers of commercial vehicles into towns and neighborhoods.  The volume of daily deliveries to homes has soared – from fewer than 360,000 a day in New York City in 2009 to more than 1.5 million today .  Households now receive more deliveries than businesses; and this, with online retail representing only 10% of all retail.  Imagine how many more trips there will be when online retail hits 20% or 50%.

In addition to growth in the number of deliveries, the pace of delivery of speeding.  Amazon, which currently holds about a 50% share of the online market in the US has, in the last 3 years, halved their average click-to-door speed from about 6 days to about 3 days .  Other retailers are attempting to keep pace.  Just this week I received an email from Amazon notifying me that Amazon Fresh would now deliver at “ultrafast speeds” in my area: “You can schedule same-day deliveries from 6:00am – 10:00pm and get FREE 2-hour scheduled delivery windows on orders over $35”.  Free two-hour delivery.  This was not in response to a request, rather this is being rolled out to all Prime members.  Depending on your location, you can also get 1-hour delivery for a small additional fee.  This is also available in DC and Northern VA.  There has also been a proliferation of on-demand delivery services, particularly in the food delivery sector, where online platforms now serve close to 30% of the market.

The US leads the world in online shopping activity and speed of delivery .  Supply chains have spent decades investing in technology and building the information systems required to deliver on home delivery and service promises.  More recently, venture capital has also invested in transportation and logistics, with PitchBook reporting $14.4 billion invested globally in privately owned freight, logistics, shipping, trucking, transportation management system (TMS), and supply chain tracking startups since 2013 . Not only do these changes affect transportation and logistics companies, but these changes affect peripheral sectors as companies reorganize their operations to service these new demands.

As customers are offered, and accept, shorter and shorter click-to-delivery times, delivery companies have less opportunity to make consolidated, efficient deliveries.  Instead of waiting for more orders and sending out full trucks, vehicles are sent out to meet their quick delivery promise; reducing vehicle utilization.  This increases the number of vehicles on the road, increases the cost per delivery, and increases vehicle emissions.

Significant impact on cities

It is the roads and sidewalks built by American cities and towns that enable this last mile delivery. In Seattle, 87% of buildings in greater downtown rely solely on the curb for freight access.  These buildings have no off-street parking or loading bays.

Our cities were not built to handle the nature and volume of current freight activity and are struggling to accommodate growth .  At the same time, delivery of goods is just one of the many functions of our transportation networks.  The same roads and sidewalks are also used by pedestrians, cyclists, emergency vehicles, taxis, ride hailing services, buses, restaurants, and street vendors, to name a few.

Capacity on our transportation networks is increasingly scarce.  Texas Transportation Institute’s 2019 Urban Mobility Report, a summary of congestion in America, is titled “Traffic is Bad and Getting Worse”.  Over the past 10 years, the total cost of delay in our nation’s top urban areas has grown by nearly 47%.  It is on top of this already congested network, that we add this growing last mile traffic. American cities have yet to make any headway with congestion, and delivery traffic both adds to, and suffers from, this condition.

To address congestion, many state Departments of Transportation are working to provide safe and competitive alternatives to single occupancy vehicle travel such as transit, bicycling, and walking. Other federal agencies are also working on addressing this issue, such as the Department of Energy, which has awarded UW and Seattle an EERE grant.  In building dedicated bicycle facilities, one common solution is to convert the curb lane to a bike lane, removing commercial vehicle load and unload space.  At the same time, American’s are increasingly using ride-hailing services such as Uber and Lyft .  This also increases the demand for curb space as passengers request pickup and drop-off instead of parking their own vehicle off-street.

The result is too much demand for too little space, and there is ample evidence of a poorly functioning system.  From a study in Seattle, 52% of vehicles parked in commercial vehicle load zones were passenger cars, and 26% of all commercial vehicles parked in passenger load zones.  In New York City, UPS and Fedex received 471,000 parking violations in 2018.  Everyone has seen an image of a truck parked in a bike lane, or been stuck behind a delivery truck occupying an entire residential street.  While we might expect a small percentage of violations, these levels reflect a failure of planning and design to deliver reasonable alternatives to commercial vehicles, and a city that has not caught-up with the changes in supply chain and shopping patterns.

In addition to these operational challenges, commercial vehicles have impacts on American’s health and safety.  Per mile, trucks produce disproportionately more carbon dioxide and local pollutants (NOx, PM) than passenger vehicles so a substitution of delivery trucks for passenger vehicles has the potential to increase emissions.  However, delivery services also present an opportunity to reduce emissions per package as they can consolidate many packages into one vehicle; the same way transit or carpooling can be an emissions advantage over single occupancy vehicle trips.  Research shows that in most cases a well-run delivery service would provide a carbon dioxide reduction over typical car-based shopping behavior.  While there is the opportunity for delivery services to provide this emissions benefit, the move towards very fast delivery erodes that benefit as delivery services are unable to achieve the same level of consolidation and begin to look more like butler services.

Diesel powered vehicles, often used for the movement of freight, produce disproportionately more particular matter and NOx pollution than gasoline engines, so the use of these vehicles in urban areas, where human exposure levels are higher, has significant negative outcomes for human populations in terms of asthma and heart disease.  This is particularly true for the very young, elderly, or immunosuppressed.

While it may seem intuitive that replacing a car trip to the store with a truck delivery would be bad for the city, in fact, delivery services can reduce carbon emissions and total vehicle miles travelled.  This is because the truck is not just delivering to one home, but to many.  In this sense, the truck delivery behaves like a transit vehicle or very large carpool.  This can reduce congestion by reducing the number of vehicles on the road.  Delivery trucks can be an asset when performing in this efficient manner because they consolidate many goods into a single vehicle reducing per package cost, emissions, and congestion impacts.

Banning trucks and requiring or encouraging the use of smaller vehicles INCREASES the number of vehicles and the vehicle miles travelled; exacerbating traffic and parking problems.

Growth in two and one-hour delivery INCREASES the number of vehicles and vehicle miles travelled; exacerbating traffic and parking problems.

The Urban Freight Lab as a Public and Private Sector Collaboration

Businesses are challenged by the high cost of the last mile, and the increasing time pressure for deliveries.  Cities are working to manage congestion, the competing demands of many users, emissions, and intense pressure for curb space.  This presents a complex set of problems, where:

  • private carriers are struggling to comply with city regulations and remain financially competitive while meeting customer expectations
  • customers are benefiting from high levels of convenience but also experiencing high levels of congestion and suffering from the effects of growing emissions
  • cities and towns are struggling to meet demands of multiple stakeholders and enforce existing rules

All of this, in a context where there are very limited data regarding truck or commercial vehicle activity, numbers of deliveries, or other measures of efficiency.  The Freight Analysis Framework , which compiles the nation’s most significant freight datasets such as the Commodity Flow Survey, breaks the country into 153 zones, so that most states can only see what came into or out of the state, not how vehicles move around within cities and towns.  The more recently developed National Performance Management Research Data Set (NPMRDS) , presents truck specific data, and allows for highway speeds to be monitored at a county level, but does not show vehicle volumes, or give any insights into origin-destination patterns.  At the national level, mode-specific datasets provide more spatial, temporal, and activity detail.   For example, the Carload Waybill sample  provides important data on rail cargo movements and the Air Operators Utilization Reports  provide important data on airplane activity.  Unfortunately, the Vehicle Inventory and Use Survey, which provided detailed data on truck and goods movements, was discontinued in 2002.  This leaves cities and towns have no nationally consistent sources of or guidelines for collecting truck activity data.

The most economically efficient solutions to these challenges will be identified through collaboration between cities and private partners.  One particularly successful and innovative solution can be found in the Urban Freight Lab at the University of Washington (https://urbanfreightlab.com/urban-freight-lab-0).  As the director of the Urban Freight Lab, I have built a coalition of private companies and public agencies who work together to identify and measure problems, and develop and pilot-test solutions that will provide benefits for a diverse group of public and the private sector stakeholders.  The goal is to find win-win solutions for businesses and city dwellers, and to avoid short-sighted solutions like blanket truck bans.

The Urban Freight Lab is successful because:

  • All participants have skin in the game.  Private sector contributions elevate public sector research funding and ensure that all participants fully engage.  This is fundamentally different from an advisory board or oversight committee because members must report back to their leadership and justify participation with measurable returns on investment.  This participation from the private sector improves relevance and timeliness of public sector support.
  • Collaboration amongst the private and public sector ensures that products of the lab are as mutually beneficial as possible.
  • Problems, evaluation metrics, and research ideas come from the group and are connected directly to real-world challenges faced, not the research directors, the public, or private sector alone.
  • Private- and public-sector participants are senior executives who have the authority to make decisions in quarterly meetings.  They do not need to return to the organization for approval.
  • Cities need freight planning capacity but currently don’t have any.  The work of the Urban Freight Lab fills gaps in problem definition, data collection, solution generation, orchestration and evaluation of pilot tests.
  • Robust analysis is conducted by University researchers – they serve an important role in taking an unbiased view and base their analysis on data.
  • Quarterly meetings are working meetings with detailed agendas and exit criteria.  The focus is on making progress, making decisions, and moving forward, not simply information sharing.
  • Private sector partners are operational and technical staff with knowledge of operations.
  • Public sector partners represent a breadth of functions including planning, engineering, curb management, mobility, and innovation.
  • University research focusses on practical outcomes and does not hide in theoretical concepts.
  • Solutions are tested on the ground through pilots and real tests.  The slow work of collaboration building and overcoming obstacles to implementation is part of the research.

Current private-sector lab members include Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno Realty Corporation, US Pack, UPS, and  the United States Postal Service (USPS).  The Seattle Department of Transportation represents the public-sector.

Seattle is a growing City and has now been ranked in the top 4 for growth among major cities for five consecutive years.  It is a geographically constrained city surrounded by water and mountains, and boasts some of the highest rates of bike, walk, and transit commuting in the country ; with less than a quarter of City Center commuters now driving alone to work. It is a technologically oriented City; with the region serving as the home to many technology companies such as Amazon, Convoy, Facebook, Google, Microsoft, and Tableau.  The City was one of the first to launch PayByPhone, electronic toll tags, weigh-In-motion, high-occupancy-toll lanes, passive bicycle counters, real-time transit monitoring, bike and car share programs, and most recently, an Open Data Portal .  In this sense, the City provides an excellent example for experimentation where the public and private sector face intense pressure to look for new solutions and approaches; and levels of congestion and pressure that other US Cities can anticipate in their future as populations grow and infrastructure construction does not keep pace.

With this private- and public-sector funding the Urban Freight Lab has:

  • produced foundational research on the Final Fifty Feet of the supply chain
    developed and applied approaches to quantify urban freight infrastructure
    developed and applied approaches to measure infrastructure
    generated and tested approaches to reducing dwell time and failed deliveries in urban areas including common lockers
    developed and implemented an approach to measuring the volume of vehicles entering and exiting the City of Seattle.

Ongoing work is supported in large part by a grant from the Department of Energy U.S. Department of Energy: Energy Efficiency & Renewable Energy (EERE) titled Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption.  This project, funded by DOE, provides $1.5 million over 3 years with matching funds from the City of Seattle, Sound Transit, King County Metro, Kroger, the City of Bellevue, and CBRE.  The project will evaluate the benefit of integrated technology applications on freight efficiency.  Within the scope of this grant, Urban Freight Lab members and the Seattle DOT will be involved in developing and testing applications of technology in the Belltown area of Seattle that will increase commercial efficiency and reduce impact of freight activity on city residents .

Moving Forward

Shopping patterns have evolved, but our infrastructure has not.  We need to rethink how we use our streets, curbs, and sidewalks if we want to maintain and grow our current shopping and delivery habits.

By consolidating many goods into a single route, delivery services could be an asset to communities; growing economic activity, reducing total vehicle miles travelled and associated carbon emissions, and supporting communities  less dependent on cars.  However, the current trend towards faster and faster deliveries; and businesses subsidizing delivery costs means we see lower vehicle utilization, higher numbers of vehicles and congestion, and increased emissions.

While some town and city governments have invested measuring the state of urban freight in their communities and developed improvements, most have limited resources and no guidance from the state or federal level.  For example, they do not know how many trucks operate in the region, what they carry, whether the current curb allocation is satisfactory, or what benefit might result from improvements.

New modes, technologies, and operational innovations provide opportunities for win-win solutions.  These new conditions may allow new modes such as electric assist cargo bikes  to outcompete existing modes. Electric and hybrid vehicles can reduce both global and local pollutants.  New technologies such as robotics, artificial intelligence, and electronic curbs may fundamentally shift the existing infrastructure paradigms.  Private companies are ready to test these innovations, and the US and state DOTs can play a role in supporting these tests and conducting evaluations.

Investments in the freight system must include the last mile, and in particular the final fifty feet of the delivery route as a consideration to ensure economic vitality and support quality of life.  This includes supporting towns and cities in investigating and understanding the current state of goods movement at the municipal scale, identifying and evaluating new solutions for cities and towns to adapt to changing supply chains, integrating freight planning and passenger planning, and ultimately providing healthy environments for businesses to thrive and great places to live.

Recommended Citation:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation." United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials (2019). (Anne Goodchild).
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov
Report

Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities

 
Download PDF  (1.27 MB)
Publication Date: 2023
Summary:

Freight load and unload facilities located off the public right-of-way are typically not documented in publicly available databases. Without detailed knowledge of these facilities, i.e. private freight load and unload infrastructure, cities are limited in their ability to complete system-wide freight planning and to comprehensively evaluate the total supply of load and unload spaces in the city. To address this challenge, this research describes the development and application of a data collection methodology and a typology of private freight load/unload facilities for their inventory and documentation in dense urban centers.

The tools developed in this research are practice-ready and can be implemented in other cities to support research, policy and planning approaches that aim to improve the urban freight system. Assessment of the degree of harmonization between the current delivery vehicle dimensions and infrastructure they service is a crucial step of any policy that addresses private freight load/unload infrastructures. This includes providing: the adequate access dimensions, capacity to accommodate the volume and vehicle type, and an effective connecting design between the facilities and the public right-of-way.

A case study in Downtown Seattle found more than 337 private freight facilities for loading/unloading of goods but that translates into only 5% of the buildings in the densest areas of the city had these facilities. Alleys were found to play a critical role since 36% of this freight infrastructure was accessed through alleys.

This research results in the first urban inventory of private freight load/unload infrastructure, which has been shown to be a valuable resource for the City of Seattle that can be used to better understand and plan for the urban freight system.

Recommended Citation:
Machado León, J., Girón-Valderrama, G., Goodchild, A., & McCormack, E. Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities (2023).
Paper

Evacuating Isolated Islands with Marine Resources: A Bowen Island Case Study

 
Download PDF  (9.41 MB)
Publication: International Journal of Disaster Risk Reduction
Volume: 72
Publication Date: 2022
Summary:

Inhabited islands are susceptible to natural hazards, such as wildfires. To avoid disasters, preventative measures and guidelines need to be in place to strengthen community resilience. If these fail, evacuation is often the only choice. However, island evacuation is a vastly understudied problem in both research and practice, particularly for islands without permanent road connections to the mainland that require marine evacuation. Multiple vessel trips are necessary to evacuate the population from suitable access points, which previous studies did not entertain. Furthermore, most existing studies either focus on evacuations from an academic, or from a government perspective. Instead, this paper presents a collaborative approach. It applies a recently developed evacuation routing model that optimizes the evacuation plan for Bowen Island in Canada through minimizing the expected evacuation time across disaster scenarios. These were designed with the participation of a broad range of stakeholders, from local residents and volunteer groups to agencies from all levels of government and companies, which integrates both academic and practical perspectives to maximize solution quality. Different options for fleet sizes, staging locations and scenarios were considered. The results show that the optimized evacuation time for Bowen Island varies between 1 and 8 h, as it strongly depends on the disaster scenario, the evacuation fleet, and can be accelerated by temporary staging areas. The suitability of the approach for evacuation studies can be confirmed through the identification of key improvements for increased community resilience and the inclusion of the results in the official Bowen Island evacuation plan.

Authors: Fiete KruteinDr. Anne Goodchild, Jennifer McGowan
Recommended Citation:
Krutein, K. F., McGowan, J., & Goodchild, A. (2022). Evacuating isolated islands with marine resources: A Bowen island case study. International Journal of Disaster Risk Reduction, 72, 102865. https://doi.org/10.1016/j.ijdrr.2022.102865.