Skip to content
Paper

Data Stories from Urban Loading Bays

 
Download PDF  (1.16 MB)
Publication: European Transport Research Review
Volume: 9
Publication Date: 2017
Summary:

Freight vehicle parking facilities at large urban freight traffic generators, such as urban retail malls, are often characterized by a high volume of vehicle arrivals and a poor parking supply infrastructure. Recurrent congestion of freight parking facilities generates environmental (e.g. pollution), economic (e.g. delays in deliveries), and freight and social (e.g. traffic) negative externalities. Solutions aimed at either improving or better managing the existing parking infrastructure rely heavily on data and data-driven models to predict their impact and guide their implementation. In the current work, we provide a quantitative study of the parking supply and freight vehicle drivers’ parking behavior at urban retail malls.

We use as case studies two typical urban retail malls located in Singapore, and collect detailed data on freight vehicles delivering or picking up goods at these malls. Insights from this data collection effort are relayed as data stories. We first describe the parking facility at a mall as a queueing system, where freight vehicles are the agents and their decisions are the parking location choice and the parking duration.

Using the data collected, we analyze (i) the arrival rates of vehicles at the observed malls, (ii) the empirical distribution of parking durations at the loading bays, (iii) the factors that influence the parking duration, (iv) the empirical distribution of waiting times spent by freight vehicle queueing to access the loading bay, and (v) the driver parking location choices and how this choice is influenced by system congestion.

This characterization of freight driver behavior and parking facility system performance enables one to understand current challenges, and begin to explore the feasibility of freight parking and loading bay management solutions.

Authors: Dr. Giacomo Dalla Chiara, Lynette Cheah
Recommended Citation:
Dalla Chiara, G., Cheah, L. Data stories from urban loading bays. Eur. Transp. Res. Rev. 9, 50 (2017). https://doi.org/10.1007/s12544-017-0267-3
Student Thesis and Dissertations

Examining the Effects of Common Carrier Lockers on Residential Delivery

 
Download PDF  (0.22 MB)
Publication Date: 2021
Summary:
In recent years, e-commerce has dramatically increased deliveries to residential areas. The rise in delivery vehicle activity creates externalities for the transportation system, including congestion, competition for parking space, and emissions. Common carrier lockers have emerged as a way to manage these effects by consolidating deliveries, but they remain largely untested in the United States. This thesis examines the effects of a common carrier locker placed in a residential building in downtown Seattle, Washington. An experimental design with on-street data tests the effect of the locker on dwell times and time that delivery people spend in the building. Data collected by the locker provider gives insight into the e-commerce behavior patterns of residents. Finally, a simulation model was constructed to obtain the optimal configuration of box sizes in similar lockers. The results show that the locker had a statistically significant effect on time spent within the building, but not on dwell times or curb productivity. However, dwell times for similar vehicles in this sample decreased somewhat. The simulation demonstrated that time-based policies and flexible locker designs can prove to be effective strategies for managing demand.

 

 

 

 

Authors: Caleb Diehl
Recommended Citation:
Diehl, Caleb. (2021). Examining the Effects of Common Carrier Lockers on Residential Delivery. http://hdl.handle.net/1773/47716. University of Washington Master's Thesis.
Report

The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle

 
Download PDF  (4.54 MB)
Publication Date: 2019
Summary:

Vehicles of all kinds compete for parking space along the curb in Seattle’s Greater Downtown area. The Seattle Department of Transportation (SDOT) manages use of the curb through several types of curb designations that regulate who can park in a space and for how long. To gain an evidence-based understanding of the current use and operational capacity of the curb for commercial vehicles (CVs), SDOT commissioned the Urban Freight Lab (UFL) at the University of Washington Supply Chain Transportation & Logistics Center to study and document curb parking in five selected Greater Downtown areas.

This study documents vehicle parking behavior in a three-by-three city block grid around each of five prototype Greater Downtown buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were part of the UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the final 50 feet.

The areas around these five prototype buildings were intentionally chosen for this curb study to deepen the city’s understanding of the Greater Downtown area.

Significantly, this study captures the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs). The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces.

Four key findings, shown below, emerged from the research team’s work:

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs, and passenger vehicles are parking in CVLZs. Passenger vehicles made up more than half of all vehicles observed parking in CVLZs (52%). More than one-quarter of commercial vehicle drivers parked in PLZs (26 %.) This fact supports more integrated planning for all curb space, versus developing standalone strategies for passenger vehicle and for commercial vehicle parking.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes. Across the five locations, more than half (54%) of all CVs parked for 15 minutes or less in all types of curb spaces. Nearly three-quarters of all CVs (72%) parked for 30 minutes or less. When considering just the delivery CVs, an even higher percentage, 60%, parked for 15 minutes or less. Eighty-one percent of the delivery CVs parked for 30 minutes or less.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes. In contrast to delivery CVs that predominately parked for 30 minutes or less, service CVs’ parking behavior was bifurcated. While 56% of them parked for 30 minutes or less, 44% parked for more than 30 minutes. And more than one quarter (27%) of the service CVs parked for an hour or more. Because service vehicles make up such a big share of total CVs at the curb, this may have an outsize impact on parking space turn rates at the curb.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominately office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

The occupancy study documents that each building and the built environment surrounding it has unique features that impact parking operations. As cities seek to more actively manage curb space, the study’s findings illuminate the need to plan a flexible network with capacity for distinct types (time and space requirements) of CV parking demand.

This study also drives home that the curb does not function in isolation, but instead forms one element of the Greater Downtown’s broader, interconnected load/unload network, which includes alleys, the curb, and private loading bays and docks. (1,2,3) SDOT commissioned this work as part of its broader effort with the UFL to map—and better understand—the entire Greater Downtown area’s commercial vehicle load/unload space network. Cities and other parties interested in the details of how to conduct a commercial vehicle occupancy study can see a step-by-step guide in Appendix C.

In this study, researchers deployed six data collectors to observe each curb study area for three days over roughly six weeks in October and December 2017. To make the data produced in this project as useful as possible, the research team designed a detailed vehicle typology to track specific vehicle categories consistently and accurately. The typology covers 10 separate vehicle categories, from various types of trucks and vans to passenger vehicles to cargo bikes. Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.

The five prototype Seattle buildings studied are Seattle Municipal Tower (also the site of a common carrier parcel locker pilot), Dexter Horton, Westlake Center, and Insignia Towers. (4) The study shows how different building and land uses interact with the broader load/unload network. By collecting curb occupancy data in the same locations as their earlier work, the research team added a new layer of information to help the city evaluate—and manage—the Greater Downtown area load/unload network more comprehensively.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload spaces as a coordinated network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project. (5) The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

The UFL is a living laboratory made up of retailers, truck freight carriers and parcel companies, technology companies supporting transportation and logistics, multifamily residential and retail/commercial building developers and operators, and SDOT. Current members are Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno, USPack, UPS, and the United States Postal Service (USPS).

Recommended Citation:
Urban Freight Lab (2019). The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle.
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21

A Holistic Data-Driven Framework for Curb Space Use and Policy-Making

The curb space is the portion of the public rights-of-way that demarcates the roadway from the sidewalk, separating pedestrian flow from moving vehicles. It is a scarce public resource that has been traditionally used for storing private passenger vehicles. However, the past decade has seen not only a surge in demand but also the rise of new demands for curb space, driven by new forces of change: the rise in online shopping has driven up the demand for delivery vehicle loading and unloading spaces; the increasing use of ride-hailing vehicles such as Uber and Lyft has exacerbated curb space congestion; the rapid adoption of micromobility modes has increased their parking demand, among others. The pandemic has only exacerbated the issue due to greater demand for home delivery services and novel use cases such as curbside cafes.

The mismatch between the increase in demand and the lack of curb space supply represents a bottleneck in the urban transportation system, increasing the cruising for parking time — the time drivers spend searching for parking — as well as the occurrence of unauthorized parking. Both consequences heavily impact urban traffic congestion, increasing emissions and lowering the quality of life for urban dwellers, as well as can potentially create unsafe conditions. More broadly, the curb is a major linchpin in city operations: beyond congestion, it also affects business district vitality, residential access, and even policy decisions about new constructions.

To address these challenges, cities need greater access to data science and machine learning tools to have better insights into the overall use of and demand for curb space, with the final objective to be able to effectively manage the limited amount of curb space available. This includes the need for tools to aid in optimizing pricing mechanisms and to adaptively learn the most efficient and sustainable allocation of space to the different types of users.

Two research groups at the University of Washington have taken different but complementary approaches to study the curb and build tools to help cities understand different curb demands and better manage the limited curb space available.

The Urban Freight Lab, led by Prof. Anne Goodchild, approaches the study of the curb from the perspective of commercial vehicles, including delivery and ridehailing vehicles. The group has collected data and derived statistical models of curb users’ behaviors for commercial vehicles. Furthermore, the group has piloted on-the-ground technologies and policies to improve curb access. In a recent project, Prof. Goodchild’s group deployed 300 in-ground occupancy sensors at commercial vehicle load zones (CVLZs) and passenger load zones (PLZs) — curb spaces dedicated to commercial and ridehailing vehicles — in a 10-block study area in the Belltown neighborhood of Seattle, WA, collecting more than a year of fine-grained curb-use data.

The research group led by Prof. Lilian Ratliff approaches the study of the curb primarily from the perspective of private passenger vehicles, applying innovative machine learning and game theory tools to study curb management policies. In a recent project, Prof. Ratliff’s group developed a new modeling framework to estimate on-street paid parking occupancies — spaces dedicated for private passenger vehicle parking — from parking transaction data and sparse ground truth occupancy data obtained via manual counts and timelapse camera images.

The research in Goodchild’s and Ratliff’s groups has been impactful. Yet, load zone and paid parking curb-uses are highly interdependent given that the zones dedicated to the different use cases are often on the same curb. Hence, a more holistic approach to learning curb use behaviors is needed in order to effectively manage the whole curb.

For this project, the two groups will collaborate to integrate different data streams currently being collected separately and in an uncoordinated way, including data from in-ground curb sensors at CVLZs and PLZs, paid parking transactions at paid parking spaces, and data obtained from timelapse camera recordings. With such a complete dataset, the groups will create a holistic framework to analyze not only the curb behaviors of different users but also how different users interact in the competition for limited curb space.

The proposed collaboration will advance the state of the art in environmental sciences by providing the most complete dataset and creating innovative tools to inform policymaking on curb parking pricing and curb allocation to reduce cruising for parking and unauthorized parking events, therefore tackling the climate crisis by reducing urban vehicle emissions and traffic congestion.

The proposed collaboration will also advance the state of the art in data science by developing a new statistical framework and machine learning algorithms to analyze curb space use behaviors from different curb space users and develop much-needed recommendations for cities on how to better allocate curb space to different competing demands.

The project will have a direct impact on the City of Seattle as both groups are currently collaborating with the Seattle Department of Transportation to create a more data-driven decision-making framework for curb space policies, as well as an impact on the fields of urban transportation and logistics by merging two separate kinds of literature, the more traditional transport theory taking private passenger vehicles as the main actor in urban transportation and the urban logistics field that focuses on commercial vehicles operations in urban areas.

Concrete outcomes of the projects obtained during the year of collaboration will include a joint seminar series of the two groups, presenting their ongoing research projects that focused on the curb, a join effort to collect data in Seattle, and integrating data streams to generate a complete dataset of curb use for the Seattle downtown area. Additionally, the groups will jointly write a scientific paper proposing a holistic framework to analyze the curb from the different users’ perspectives. The proposed collaboration will expand upon the projects Prof. Goodchild’s and Prof. Ratliff’s groups are currently working on, and develop a new set of data and tools that will enable future joint grant proposals by the two groups.

Common Microhub (Seattle Neighborhood Delivery Hub)

Background

The importance of efficient urban logistics has never been greater. The response to COVID-19 has put new constraints and demands on the urban freight system but also highlighted the essential and critical nature of delivery and distribution. New requirements for reducing human contact only add weight to many of the strategies such as neighborhood kitchens, locker deliveries, and autonomous driverless delivery vehicles, already envisioned before the coronavirus pandemic. Social distancing and virus vector management also add new requirements and metrics for evaluating and managing logistics that are catalyzing innovation and motivating change in the urban logistics space.

What is a Common Microhub?

Also known as an urban consolidation center or a delivery transfer point, a microhub is a central drop-off/pick-up location for goods and services, which can be used by multiple delivery providers, retailers, and consumers. Microhubs can reduce energy consumption, noise pollution, congestion, and cost, and increase access, sustainability, and livability in cities, by allowing the final mile of delivery to be shifted to low-emission vehicles or soft transportation modes (cargo bike or walking), In addition to allowing for consolidation or deconsolidation of shipments, the design also enables neighbors to engage with additional services.

Microhubs provide:

  • access points for shared mobility
  • touchless pick-up and drop-off points
  • a home base for zero-emissions last-mile delivery, autonomous, and modalities
  • a shared public space
  • charging infrastructure
  • increased delivery density, reducing traffic and delivery vehicle dwell time
  • trip chaining capability

Urban Freight Lab’s Common Microhub Pilot: The Seattle Neighborhood Delivery Hub

The Urban Freight Lab’s Common Microhub project—the Seattle Neighborhood Delivery Hub—provides an opportunity for members to test and evaluate urban logistics strategies on the ground in Seattle’s Uptown neighborhood. As third-party logistics companies entering the last-mile space and more cities committing to environmental focus and zero-emissions vision, the interest in creating logistics places in urban proximity is growing. The outcomes of this research can guide the development of future microhub implementations in other cities. Participating stakeholders, while collaborative, operate with relative independence within the hub space. Data collection and analysis are ongoing; key indicators being measured include both operator performance and expected local impacts. In addition, lessons learned are encountered continuously and shared with UFL members as the project progresses.

Participants and Products

Product: Common Carrier Parcel Lockers
Host: Urban Freight LabDescription: The Urban Freight Lab is operating a common carrier parcel locker — a secure, automated, self-service storage system designed to accommodate deliveries from multiple transportation providers delivering a range of parcel sizes and open to all neighbors and commuters. Such lockers create delivery density, enabling vehicles to transport many packages to a single stop, rather than making multiple trips to accomplish the same task. This new approach reduces dwell time and failed first deliveries, both of which produce congestion and emissions, and increase costs. During the COVID-19 pandemic, the lockers also provide a no-contact solution for customers.

REEF neighborhood kitchen

Product: Neighborhood Kitchen and Infrastructure
Host: REEF

Description: Neighborhood kitchens are non-customer-facing modular vessels where food is prepared for mobile app or delivery orders. Removing front-of-house operations reduces a restaurant’s footprint, increases sustainability, and gives food entrepreneurs a platform by reducing overhead costs.

REEF is also the infrastructure partner, leveraging their parking lot holdings for the Seattle Neighborhood Delivery Hub location.

Coaster Cycles bike

Product: Electric-Assist Cargo Bike Fleet
Host: ​​Coaster Cycles

Description: Montana-based Coaster Cycles is providing an electric-assist cargo trikes fleet. These trikes are customized to carry BrightDrop EP1s, providing an agile, sustainable last-mile delivery solution in dense urban areas, reducing the emissions, congestion, and noise produced by traditional truck delivery.
(Watch the Coaster Cycle / EP1 deployment: https://vimeo.com/528552173)

Screenshot of Axlehire app

Product: Last-Mile Delivery Routing Software
HostAxleHire

Description: Berkeley-based logistics startup Axlehire provides last-mile delivery routing software that creates the fastest, most efficient routes possible. AxleHire is using the Seattle Neighborhood Delivery Hub site as a transshipment point, where trucks will transfer packages transported from a suburban depot to smaller, more nimble Coaster Cycle electrically-assisted bicycles, which are driven by Axlehire operators to a final customer.

Brightdrop's EP1 electric pallet

Product: Electric Pallet (EP1)
Host: ​BrightDrop (General Motors)

Description: BrightDrop (a subsidiary of General Motors) focuses on electrifying and improving the delivery of goods and services. BrightDrop’s first product to market is the EP1, a propulsion-assisted electric pallet designed to easily move goods over short distances. Because the pallet is electric-powered, it supports sustainability efforts, improves driver safety and freight security, lowers labor costs, and reduces errors and package touches.

Product: MUST Devices and Data Collection
Host: University of Washington Smart Transportation Application & Research (STAR) Lab

Description: To assess performance, researchers have deployed a multitude of sensors, including STAR Lab’s Mobile Unit for Sensing Traffic (MUST) sensors, cameras with vehicle recognition technology, GPS tracking sensors, and parking occupancy sensors. Researchers can gain a comprehensive understanding of delivery operations (such as miles traveled, infrastructure usage, speed, battery usage, interaction with other vehicles, bikes, and pedestrians) and activities at the site itself (such as parking occupancy, duration and, mode distribution of vehicle types at the site).

Location

The Seattle Neighborhood Delivery Hub is located at 130 5th Ave. N. in Seattle’s Uptown neighborhood.

Goals

The goals of the Common Microhub Research Project are to:

    1. Conduct a research scan of published reports that provide data-based evidence of the results of projects that have elements that are similar to Common Microhubs.
    2. Identify and characterize informal microhub activities observed in cities worldwide.
    3. Solicit input from UFL members as to the perceived benefits of microhubs and  the desired physical characteristics of a microhub
    4. Compare and contrast the priorities of UFL members with established metrics in the literature.
    5. Seek agreement from UFL members as to the microhub characteristics and location that would be feasible and desirable to operate in the Seattle region. Priority will be given to current UFL members, but should a third party external to UFL be necessary to run the microhub, proposals to host the microhub would be sought.
    6. Collect and analyze field data to measure both operator performance (including VMT, parking demand, fuel, and energy consumption) and expected local impacts (including travel and parking activity) before and after implementation. Data collection will rely on VMT, GPS, and travel time sources where available, but we expect to develop and implement customized methods to collect additional traffic and travel time data as needed. We may also interview the microhub operator and users to obtain qualitative data on the operations. The following tasks will be completed by the Urban Freight Lab in the two-year project.

Project Tasks

The following tasks will be completed by the Urban Freight Lab in the two-year project.

Task 1: Research Scan

Subtasks:

  1. Conduct a research scan of published reports that provide data-based evidence of the results of projects that have elements that are similar to Common MicroHubs.
  2. Identify and characterize informal microhub activities observed in cities worldwide.
  3. Write a summary of the results.

Task 2: Develop MicroHub Priorities

Subtasks:

  1. Solicit input from UFL members as to:
    • the perceived benefits of microhubs
    • the desired physical characteristics of a microhub
  2. Compare and contrast the priorities of UFL members with priorities demonstrated in the literature.

Task 3: Select Operator and Define Operational Model

Subtasks:

  1. With the help of a microhub operator, seek agreement from UFL members as to the microhub characteristics, services, operational goals and location that would be feasible and desirable to operate in the Seattle region.
    • Priority will be given to current UFL members to operate the Hub, but should a third party external to UFL be necessary to run the microhub, proposals to host the microhub would be sought.
  2. Go/No Go decision by researchers, UFL members, and microhub operator as to whether a pilot test will move forward.
    • Sufficient interest amongst participating UFL members and an understanding of the operating model and participants’ business objectives will be necessary to move forward as per the operator’s approval.
    • The operator will work independently with participants and/or the University of Washington to establish operating model(s) under separate agreement(s).

Task 4: Select Operator and Define Operational Model

Subtasks:

  1. Define key metrics for evaluation and data collection plan.
  2. With the support of UFL members participating in the pilot, collect “before” data to contrast with data collected during pilot operations.

Task 5: Implementation

Subtasks:

  1. Support the implementation of a microhub with UFL partners that have agreed to the terms of the pilot.
  2. Project schedule will allow for 6 months of operations, followed by 3 months for analysis.
  3. Collect and analyze field data to measure both operator performance (including VMT, parking demand, fuel, and energy consumption) and expected local impacts (including travel and parking activity) after implementation. Data collection will rely on VMT, GPS, and travel time sources where available, but we expect to develop and implement customized methods to collect additional traffic and travel time data as needed. We may also interview the operator and users to obtain qualitative data on the operations.

Task 6: Evaluate Operations

Subtasks:

  1. Provide progress reports at quarterly UFL meetings.
  2. Final report with key project findings.
Paper

Modeling the Competing Demands of Carriers, Building Managers, and Urban Planners to Identify Balanced Solutions for Allocating Building and Parking Resources

 
Download PDF  (5.20 MB)
Publication: Transportation Research Interdisciplinary Perspectives
Volume: 15
Publication Date: 2022
Summary:

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between supply and demand, preventing the current resources from meeting the future needs of urban freight activities.

This study aimed to discover the future delivery rates that would overflow the current delivery systems and find the optimal number of resources. To achieve this objective, we introduced a multi-objective, simulation-based optimization model to define the complex freight delivery cost relationships among delivery workers, building managers, and city planners, based on the real-world observations of the final 50 feet of urban freight activities at an office building in downtown Seattle, Washington, U.S.A.

Our discrete-event simulation model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and parking resources. The optimal numbers of resources that would minimize the costs for all three parties were then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary algorithm based on decomposition (MOEA/D).

Our study sheds new light on a data-driven approach for determining the best combination of resources that would help the three entities work as a team to better prepare for the future demand for urban goods deliveries.

Authors: Haena KimDr. Anne Goodchild, Linda Boyle
Recommended Citation:
Kim, H., Goodchild, A., & Boyle, L. N. (2022). Modeling The Competing Demands Of Carriers, Building Managers, And Urban Planners To Identify Balanced Solutions For Allocating Building And Parking Resources. In Transportation Research Interdisciplinary Perspectives (Vol. 15, p. 100656). Elsevier BV. https://doi.org/10.1016/j.trip.2022.100656
Paper

Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making

 
Download PDF  (1.85 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2675 (9)
Publication Date: 2021
Summary:

As e-commerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries. In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices.

The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times. We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers. The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.

In recent years, cities have changed their approach toward managing urban freight vehicles. Passive regulations, such as limiting delivery vehicles’ road and curb use to given time windows or areas (1), have been replaced by active management through designing policies for deploying more commercial vehicle (CV) load zones, pay-per-use load zone pricing, curb reservations, and parking information systems.

The goal is to reduce the negative externalities produced by urban freight vehicles, such as noise and emissions, traffic congestion, and unauthorized parking while guaranteeing goods flow in dense urban areas. To accomplish this goal, planners need to have an understanding of the fundamental parking decision-making process and behaviors of CV drivers.

Two main difficulties are encountered when CV driver behaviors are analyzed. First, freight movement in urban areas is a very heterogeneous phenomenon. Drivers face numerous challenges and have to adopt different travel and parking behaviors to navigate the complex urban network and perform deliveries and pick-ups. Therefore, researchers and policymakers find it harder to identify common behaviors and responses to policy actions for freight vehicles than for passenger vehicles. Second, there is a lack of available data. Most data on CV movements are collected by private carriers, who use them to make business decisions and therefore rarely release them to the public (2). Lack of data results in a lack of fundamental knowledge of the urban freight system, inhibiting policy makers’ ability to make data-driven decisions (3).

The urban freight literature discusses research that has employed various data collection techniques to study CV driver behaviors. Cherrett et al. reviewed 30 UK surveys on urban delivery activity and performed empirical analyses on delivery rates, time-of-day choice, types of vehicles used to perform deliveries, and dwell time distribution, among others. The surveys reviewed were mostly establishment-based, capturing driver behaviors at specific locations and times of the day. Allen et al. (5) performed a more comprehensive investigation, reviewing different survey techniques used to study urban freight activities, including driver surveys, field observations, vehicle trip diaries, and global positioning system (GPS) traces.

Driver surveys collect data on driver activities and are usually performed through in-person interviews with drivers outside their working hours or at roadside at specific locations. In-person interviews provide valuable insights into driver choices and decisions but are often limited by the locations at which the interviews occur or might not reflect actual choices because they are done outside the driver work context. Vehicle trip diaries involve drivers recording their daily activities while field observations entail observing driver activities at specific locations and establishments; neither collects insights into the challenges that drivers face during their trips and how they make certain decisions.

The same limitations hold true for data collected through GPS traces. Allen et al. (5) mentioned the collection of travel diaries by surveyors traveling in vehicles with drivers performing deliveries and pick-ups as another data collection technique that could provide useful insights into how deliveries/pick-ups are performed. However, they acknowledged that collecting this type of data is cumbersome because of the difficulty of obtaining permission from carriers and the large effort needed to coordinate data collection.

This study aims to fill that gap by collecting data on driver decision-making behaviors through observations made while riding along with CV drivers. A systematic approach was taken to observe and collect data on last-mile deliveries, combining both qualitative observations and quantitative data from GPS traces. The ridealongs were performed with various delivery companies in Seattle, Washington, covering a range of vehicle types (cars, vans, and trucks), goods types (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail).

The data collected will not only add to the existing literature by providing estimates of trip times, parking choice types, time and distance spent cruising for parking, and parking dwell times but will also provide insights into why those decisions are made and the factors affecting driver choices. The objectives of this study are to provide a better understanding of CV driver behaviors and to identify common and unique challenges they experience in performing the last mile. These findings will help city planners, policy makers, and delivery companies work together better to address those challenges and improve urban delivery efficiency.

The next section of this paper describes the relevant literature on empirical urban freight behavior studies. The following section then introduces the ridealongs performed and the data collection methods employed. Next, analysis of the data and qualitative observations from the ridealongs are described, and the results are discussed in five overarching categories: the time spent in and out of the vehicle, parking location choice, the reasons behind those choices, parking cruising time, and factors affecting dwell time.

Recommended Citation:
Dalla Chiara, G., Krutein, K. F., Ranjbari, A., & Goodchild, A. (2021). Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making. Transportation Research Record: Journal of the Transportation Research Board, 036119812110035. https://doi.org/10.1177/03611981211003575.
Paper

Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint

 
Download PDF  (2.13 MB)
Publication: Cities
Volume: 105
Publication Date: 2020
Summary:

There is growing pressure in cities to unlock the potential of every public infrastructure element as density and demand for urban resources increase. Despite their historical role as providing access to land uses for freight and servicing, alleys have not been studied as a resource in modern freight access planning.

The authors developed a replicable data collection method to build and maintain an alley inventory and operations study focused on commercial vehicles. A Seattle Case study showed that 40% of the urban center city blocks have an alley. 90% of those alleys are wide enough to accommodate only a single lane for commercial vehicles. 437 parking operations were recorded in seven alleys during business hours and found that all alleys were vacant 50% of the time.

This confirms that, in its alleys, Seattle has a valuable resource as both space for freight load/unload; and direct access to parking facilities and business entrances for commercial, private, and emergency response vehicles.

However, alley design features and the prevalence of parking facilities accessed through the alley may restrict the freight load/unload space in the alley. Future efforts should investigate how to better manage these infrastructures.

Recommended Citation:
Machado-León, Girón-Valderrama, G. del C., & Goodchild, A. (2020). Bringing Alleys to Light: An Urban Freight Infrastructure Viewpoint. Cities, 105. https://doi.org/10.1016/j.cities.2020.102847 

Analysis of Parking Utilization Using Curb Parking Sensors (Task Order 10)

In a Department of Energy-funded project led by the Urban Freight Lab, a network of parking occupancy sensors was installed in a 10-block study area in the Belltown neighborhood of Seattle, Washington. The study aimed at improving commercial vehicle delivery efficiency generating and providing real-time and future parking information to delivery drivers and carriers. This project will build upon the existing sensor network and the knowledge developed to explore how historical parking occupancy data can be used by urban planners and policymakers to better allocate curb space to commercial vehicles. The proposed project will use data from the existing sensor network and explore the relationship between the built environment (location and characteristics of establishments and urban form) and the resulting occupancy patterns of commercial vehicle load zones and passenger load zones in the study area.

Task 1 – Gather public data sources

Using public data sources (e.g. SDOT open data portal and Google Maps Places) the research team will obtain data on buildings and business establishments located in the Belltown study area (1st to 3rd Ave and Battery to Stewart Street). Data will include the location of business establishments, building height, land use, and estimates of the number of residents per building.

Task 2 – Analyze sensor data and estimate parking events

The research team will retrieve and process 1-year historical sensor data from the sensor network deployed in the study area. Sensor data is not directly usable as sensors are placed every 10 feet and a vehicle parking in a curb space might activate more than one sensor. Therefore, the research team will develop an algorithm that takes as input raw sensor data and gives as output estimate individual parking events, each consisting of a start time, curb space, and parking dwell time. The algorithm will be validated and algorithm performance will be reported.

Task 3 – Estimate parking utilization for each curb parking space

Using the estimated parking events obtained from task 2, the research team will analyze parking patterns and estimate total parking utilization for each curb parking space over time.

Task 4 – Design and perform an establishment survey

The research team will design an establishments survey to gather data on opening times, number of employees, type of business, and number of trips generated by business establishments in the study area. The survey will then be deployed and data will be collected for the business establishments in the study area. Descriptive statistics will be obtained characterizing the demand of freight trips generated by business type in the study area.

Task 5 – Analysis of parking utilization

The research team will perform statistical modeling to understand factors affecting curb space utilization in relationship with the location and characteristics of individual buildings and business establishments. The output of this effort is twofold: first, the analysis will obtain the factors that best explain the observed variability in curb parking demand, second, the analysis will obtain a model that can be used to predict future curb space demand.

Task 6 – Dissemination of findings and recommendations

A final report containing the result from the collection, processing, and analysis of the sensors data and establishment survey data will be drafted and published.

Expected outcomes

  • Descriptive time and spatial analysis of commercial vehicle load zone and passenger load zone utilization
  • Understand the impact of different establishments’ location and characteristics on commercial vehicle load zone and passenger load zone utilization
  • Discussion of policy implications for commercial vehicle load zones and passenger load zones allocation and time restrictions