Skip to content
Report

Cargo E-Bike Delivery Pilot Test in Seattle

 
Download PDF  (2.98 MB)
Publication Date: 2020
Summary:

This study performed an empirical analysis to evaluate the implementation of a cargo e-bike delivery system pilot tested by the United Parcel Service, Inc. (UPS) in Seattle, Washington. During the pilot, a cargo e-bike with a removable cargo container was used to perform last-mile deliveries in downtown Seattle. Cargo containers were pre-loaded daily at the UPS Seattle depot and loaded onto a trailer, which was then carried to a parking lot in downtown.

Data were obtained for two study phases. In the “before-pilot” phase, data were obtained from truck routes that operated in the same areas where the cargo e-bike was proposed to operate. In the “pilot” phase, data were obtained from the cargo e-bike route and from the truck routes that simultaneously delivered in the same neighborhoods. Data were subsequently analyzed to assess the performance of the cargo e-bike system versus the traditional truck-only delivery system.

The study first analyzed data from the before-pilot phase to characterize truck delivery activity. Analysis focused on three metrics: time spent cruising for parking, delivery distance, and dwell time. The following findings were reported:

  • On average, a truck driver spent about 2 minutes cruising for parking for each delivery trip, which represented 28 percent of total trip time. On average, a driver spent about 50 minutes a day cruising for parking.
  • Most of the deliveries performed were about 30 meters (98 feet) from the vehicle stop location, which is less than the length of an average blockface in downtown Seattle (100 meters, 328 feet). Only 10 percent of deliveries were more 100 meters away from the vehicle stop location.
  • Most truck dwell times were around 5 minutes. However, the dwell time distribution was right-skewed, with a median dwell time of 17.5 minutes.

Three other metrics were evaluated for both the before-pilot and the pilot study phases: delivery area, number of delivery locations, and number of packages delivered and failed first delivery rate. The following results were obtained:

  • A comparison of the delivery areas of the trucks and the cargo e-bike before and after the pilot showed that the trucks and cargo e-bike delivered approximately in the same geographic areas, with no significant changes in the trucks’ delivery areas before and during the pilot.
  • The number of establishments the cargo e-bike delivered to in a single tour during the pilot phase was found to be 31 percent of the number of delivery locations visited, on average, by a truck in a single tour during the before-pilot phase, and 28 percent during the pilot phase.
  • During the pilot, the cargo e-bike delivered on average to five establishments per hour, representing 30 percent of the establishments visited per hour by a truck in the before-pilot phase and 25 percent during the pilot.
  • During the pilot, the number of establishments the cargo e-bike delivered to increased over time, suggesting a potential for improvement in the efficiency of the cargo e-bike.
  • The cargo e-bike delivered 24 percent of the number of packages delivered by a truck during a single tour, on average, before the pilot and 20 percent during the pilot.
  • Both before and during the pilot the delivery failed rate (percentage of packages that were not delivered throughout the day) was approximately 0.8 percent. The cargo e-bike experienced a statistically significantly lower failed rate of 0.5 percent with respect to the truck fail rate, with most tours experiencing no failed first deliveries.

The above reported empirical results should be interpreted only in the light of the data obtained. Moreover, some of the results are affected by the fact that the pilot coincided with the holiday season, in which above average demand was experienced. Moreover, because the pilot lasted only one month, not enough time was given for the system to run at “full-speed.”

Recommended Citation:
Urban Freight Lab (2020). Cargo E-Bike Delivery Pilot Test in Seattle.
Article, Special Issue

Urban Logistics: From Research to Implementation

 
Download PDF  (0.30 MB)
Publication: Research in Transportation Business & Management (RTBM)
Volume: 45 (A)
Publication Date: 2022
Summary:

To address the accessibility and sustainability challenges of urban logistics it is important to consider urban logistics from a number of perspectives.

This includes considering:

  • spatial context i.e. not focusing solely on the urban center or core but also in terms of actions taken in broader logistics and supply chain management.
  • stakeholders i.e. including all key decision makers and constituents.
  • complexity and heterogeneity of activities (range of vehicles used, the products carried, location of distribution centers, and the variety found in city size, form, and governance).

This diversity of perspectives, and their influence on the urban freight system, makes it challenging to identify simple solutions to problems.

A number of forces are also at work impacting change in the urban logistics system. Technological innovation affecting urban logistics includes digitalization, e.g. the Internet of Things (important in terms of connected objects) and big data. These developments are already established and beginning to have an impact or at least implications in the field of urban logistics and freight transport. However, problems will not be solved by technology alone and it is essential to understand how behavior (at the individual and corporate level) influences outcomes and needs to change. Research needs to address interactions between stakeholders and the role of city authorities in promoting innovation and change.

Cities are complex environments and urban logistics has to adapt to these demands. The complexity of cities also gives rise to a debate about the extent to which problems (and their possible solutions) may be considered context-specific. This leads to questions relating to how initiatives should be scaled up to gain greater traction in dealing with challenges now and in the future. It is important to learn as much as possible from the high number of projects and new services that have been implemented in cities over the past ten years. These range from initiatives related to electric vehicles, through locker box systems and the role of the receiver in making change happen. How to learn and then apply the lessons from projects is an important question. In many cases it has been argued that the underlying business model has not been addressed successfully leading to the problem of projects lasting only as long as some form of project funding is available.

Authors: Dr. Anne Goodchild, Michael Browne (University of Gothenburg)
Recommended Citation:
Michael Browne, Anne Goodchild. Urban Logistics: From Research to Implementation, Research in Transportation Business & Management, Volume 45 (A) 2022, 100913, ISSN 2210-5395, https://doi.org/10.1016/j.rtbm.2022.100913.
Technical Report

Common MicroHub Research Project: Research Scan

 
Download PDF  (2.95 MB)
Publication Date: 2020
Summary:

This research scan revealed a lack of an established and widely accepted definition for the concept of consolidation centers or microhubs. Many recent implementations of urban freight consolidation have focused on bundling goods close to the delivery point by creating logistical platforms in the heart of urban areas. These have shared a key purpose: to avoid freight vehicles traveling into urban centers with partial loads.

To establish definitions of micro-consolidation and its typologies, it is important to review previous efforts in the literature that have explained and evaluated urban consolidation centers and lessons that have led to the search for new alternatives. Starting in 1970s, the urban consolidation center (UCC) concept was implemented in several European cities and urban regions. These were mostly led by commercial enterprises with temporary or even structural support from the government to compensate for additional transshipment costs. Allen et. al. defined the UCC as a “logistic base located in the vicinity of the place of performing services (e.g., city centers, whole cities, or specific locations like shopping malls) where numerous enterprisers deliver goods destined for the serviced area from which consolidated deliveries as well as additional logistic and retailed services are realized”.

Many of these implementations failed to operate in the long term because of low throughput volumes, the inability to operate without financial support from government, and dissatisfaction with service levels. The cost of having an additional transshipment point often prevented the facilities from being cost-effective, and they could not operate when governmental subsidies were removed (4). From a commercial perspective, experiences with publicly operated UCCs were mostly negative, and centers that have operated since 2000 are often run single-handedly by major logistics operators.

Although it appears that many UCCs were not successful, that does not mean that the idea of an additional transshipment point should be sidelined completely (4). Several studies have mentioned the micro-consolidation concept as a transition from the classic UCC. Learning from previous experiences, Janjevic et. al. defined micro-consolidation centers as facilities that are located closer to the delivery area and have a more limited spatial range for delivery than classic UCCs. Similarly, Verlinde et. al., referred to micro-consolidation centers as “alternative” additional transshipment points that downscale the scope of the consolidation initiative further than a UCC.

In this project, a delivery microhub (or simply a microhub) was defined as a special case of UCC with closer proximity to the delivery point and serving a smaller range of service area. A microhub is a logistics facility where goods are bundled inside the urban area boundaries, that serves a limited spatial range, and that allows a mode shift to low-emission vehicles or soft transportation modes (e.g., walking or cargo bikes) for last-mile deliveries.

Recommended Citation:
Urban Freight Lab (2020). Common MicroHub Research Project: Research Scan.
Report

Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (7.07 MB)
Publication Date: 2022
Summary:

This three-year project supported by the U.S. Department of Energy Vehicle Technologies Office has the potential to radically improve the urban freight system in ways that help both the public and private sectors. Working from 2018-2021, project researchers at the University of Washington’s Urban Freight Lab and collaborators at the Pacific Northwest National Laboratory have produced key data, tested technologies in complex urban settings, developed a prototype parking availability app, and helped close major knowledge gaps.

All the fruits of this project can be harnessed to help cities better understand, support and actively manage truck load/unload operations and their urban freight transport infrastructure. Project learnings and tools can be used to help make goods delivery firms more efficient by reducing miles traveled and the time it takes to complete deliveries, benefitting businesses and residents who rely on the urban freight system for supplies of goods. And, ultimately, these project learnings and tools can be used to make cities more livable by minimizing wasted travel, which, in turn, contributes to reductions in fuel consumption and emissions.

Cities today are challenged to effectively and efficiently manage their infrastructure to absorb the impacts of ever-increasing e-commerce-fueled delivery demand. All delivery trucks need to park somewhere to unload and load. Yet today’s delivery drivers have no visibility on available parking until they arrive at a site, which may be full. That means they can wind up cruising for parking, which wastes time and fuel and contributes to congestion. Once drivers do find parking, the faster they can unload at the spot, the faster they free up space for other drivers, helping others avoid circling for parking. This makes the parking space—and thus the greater load/unload network—more productive.

To this end, the research team successfully met the project’s three goals, developing and piloting strategies and technologies to:

  • Reduce parking-seeking behavior in the study area by 20%
  • Reduce parcel truck dwell time (the time a truck spends in a spot to load/unload) in the study area by 30%
  • Increase curb space, alley space, and private loading bay occupancy rates in the study area

The research team met these goals by creating and piloting on Seattle streets OpenPark, a first-of-its-kind real-time and forecasting curb parking app customized for commercial delivery drivers—giving drivers the “missing link” in their commonly used routing tools that tell them how best to get to delivery locations, but not what parking is available to use when they get there. Installing in-ground sensors on commercial vehicle load zones (CVLZs) and passenger load zones (PLZs) in the 10-block study area in Seattle’s downtown neighborhood of Belltown let researchers glean real-time curb parking data. The research team also met project goals by piloting three parcel lockers in public and private spaces open to any delivery carrier, creating a consolidated delivery hub that lets drivers complete deliveries faster and spend less time parked. Researchers collected and analyzed data to produce the first empirical, robust, statistically significant results as to the impact of the lockers, and app, on on-the-ground operations. In addition to collecting and analyzing sensor and other real-time and historical data, researchers rode along with delivery drivers to confirm real-world routing and parking behavior. Researchers also surveyed building managers on their private loading bay operations to understand how to boost usage.

Key findings that provide needed context for piloting promising urban delivery solutions:

  • After developing a novel model using GPS data to measure parking-seeking behavior, researchers were able to quantify that, on average, a delivery driver spends 28% of travel time searching for parking, totaling on average one hour per day for a parcel delivery driver. This project offers the first empirical proof of delivery drivers’ cruising for parking.
  • While many working models to date have assumed that urban delivery drivers always choose to double-park (unauthorized parking in the travel lane), this study found that behavior is rare: Double parking happened less than 5% of the times drivers parked.
  • That said, drivers do not always park where they are supposed to. The research team found that CVLZ parking took place approximately 50% of the time. The remaining 50% included mostly parking in “unauthorized” curb spaces, including no-parking zones, bus zones, entrances/exits of parking garages, etc.
  • Researcher ride-alongs with delivery drivers revealed parking behaviors other than unauthorized parking that waste valuable time and fuel: re-routing (after failing to find a desired space, giving up and doubling back to the delivery destination later in the day) and queuing (temporarily parking in an alternate location and waiting until the desired space becomes available).
  • Some 13% of all parking events in CVLZ spaces were estimated as overstays; the figure was 80% of all parking events in PLZ spaces. So, the curb is not being used efficiently or as the city intended as many parking events exceed the posted time limit.
  • Meantime, there is unused off-street capacity that could be tapped in Seattle’s Central Business District. Estimates show private loading bays could increase area parking capacity for commercial vehicles by at least 50%. But surveys show reported use of loading bays is low and property managers have little incentive to maximize it. Property managers find curb loading zones more convenient; it seems delivery drivers do, too, as they choose to park at the curb even when loading bay space is available.

Key findings from the technology and strategies employed:

Carriers give commercial drivers routing tools that optimize delivery routes by considering travel distance and (often) traffic patterns—but not details on parking availability. Limited parking availability can lead to significant driver delays through cruising for parking or rerouting, and today’s drivers are largely left on their own to assess and manage their parking situation as they pull up to deliver.

The project team worked closely with the City of Seattle to obtain permission to install parking sensors in the roadway and communications equipment to relay sensor data to project servers. The team also developed a fully functional and open application that offers both real-time parking availability and near-time prediction of parking availability, letting drivers pick forecasts 5, 15, or 30 minutes into the future depending on when the driver expects to arrive at the delivery destination. Drivers can also enter their vehicle length to customize availability information.

After developing, modeling, and piloting the real-time and forecasting parking app, researchers conducted an experiment to determine how use of the app impacted driver behavior and transportation outcomes. They found that:

  • Having access to parking availability via the app resulted in a 28% decrease in the time drivers spent cruising for parking. Exceeding our initial goal of reducing parking seeking behavior by 20%. In the study experiment, all drivers had the same 20-foot delivery van and the same number of randomly sampled delivery addresses in the study area. But some drivers had access to the app; others did not.
  • Preliminary results based on historic routing data show that the use of such a real-time curb parking information and prediction app can reduce route time by approximately 1.5%. An analysis collected historic parking occupancy and cruising information and integrated it into a model that was then used to revise scheduling and routing. This model optimally routed vehicles to minimize total driving and cruising time. However, since the urban environment is complex and consists of many random elements, results based on historic data underly a high amount of randomness. Analysis on synthetic routes suggests including parking availability in routing systems is especially promising for routes with high delivery density and with stops where the cruising time delays vary a lot along the planned time horizon; here, route time savings can reach approximately 20.4% — conditions outlined in the report.
  • The central tradeoff among four approaches to parking app architecture going forward is cost and accuracy. The research team found that it is possible to train machine learning models using only data from curb occupancy sensors and reach a higher than 90% accuracy. Training of state-space models (those using inputs such as time of day, day of the week, and location to predict future parking availability) is computationally inexpensive, but these models offer limited accuracy. In contrast, deep-learning models are highly accurate but computationally expensive and difficult to use on streaming data.

Common carrier lockers create delivery density, helping delivery people complete their work faster. The driver parks next to the locker system, loads packages into it, and returns to the truck. When delivery people spend less time going door-to-door (or floor-to-floor inside a building), it cuts the time their truck needs to be parked, increasing turnover and adding parking capacity in crowded cities. This project piloted and collected data on common carrier lockers in three study area buildings.

From piloting the common carrier parcel lockers, researchers found that:

  • The implementation of the parcel locker allowed delivery drivers to increase productivity: 40%-60% reduction in time spent in the building and 33% reduction in vehicle dwell time at the curb.
Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraFiete KruteinDr. Andisheh RanjbariDr. Ed McCormackElizabeth Guzy, Dr. Vinay Amatya (PNNL), Ms. Amelia Bleeker (PNNL), Dr. Milan Jain (PNNL)
Recommended Citation:
Urban Freight Lab (2022). Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.

Urban Delivery Companies’ Needs and Preferences for Green Loading Zones’ Implementation: A Case Study of NYC

 
Download PDF  (0.43 MB)
Publication: International Conference on Transportation and Development 2022
Publication Date: 2022
Summary:

Green loading zones (GLZs) are curb spaces dedicated to the use of electric or alternative fuel (“green”) delivery vehicles. Some US cities have begun piloting GLZs to incentivize companies to purchase and operate more green vehicles. However, there are several questions to be answered prior to a GLZ implementation, including siting, potential users, and their willing to pay. We reviewed best practices for GLZs around the world and surveyed goods delivery companies operating in New York City to collect such information for a future GLZ pilot. The findings suggest the best candidate locations are areas where companies are currently subject to the most parking fines and double parking. Companies expressed willingness to pay for GLZs, as long as deploying green vehicles in the city can offset other cost exposures. Respondents also selected several single-space GLZs spread throughout a neighborhood as the preferred layout.

Technical Report

Cost, Emissions, and Customer Service Trade-Off Analysis In Pickup and Delivery Systems

Publication: Oregon Department of Transportation, Research Section
Publication Date: 2011
Summary:

This research offers a novel formulation for including emissions into fleet assignment and vehicle routing and for the trade-offs faced by fleet operators between cost, emissions, and service quality. This approach enables evaluation of the impact of a variety of internal changes (e.g. time window schemes) and external policies (e.g. spatial restrictions), and enables comparisons of the relative impacts on fleet emissions. To apply the above approach to real fleets, three different case studies were developed. Each of these cases has significant differences in their fleet composition, customers’ requirements, and operational features that provide this research with the opportunity to explore different scenarios.

The research includes estimations of the impact on cost and CO2 and NOX emissions from fleet upgrades, the impact on cost, emissions, and customer wait time when demand density or location changes, and the impact on cost, emissions, and customer wait time from congestion and time window flexibility. Additionally, it shows that any infrastructure use restriction increases cost and emissions. A discussion of the implications for policymakers and fleet operators in a variety of physical and transportation environments is also presented.

Authors: Dr. Anne Goodchild, Felipe Sandoval
Recommended Citation:
Goodchild, A., & Sandoval, F. (2011). Cost, Emissions, and Customer Service Trade-Off Analysis In Pickup and Delivery Systems (No. OR-RD 11-13). Oregon Department of Transportation Research Section.
Presentation

Roadblocks to Sustainable Urban Freight

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

While several stakeholders in the private and public sectors are taking actions and drafting roadmaps to achieve sustainable urban freight goals, the urban freight ecosystem is a complex network of stakeholders, achieving such sustainability goals requires the collaboration and coordination between multiple agents. Researchers collected and synthesized views from both the private and public sectors on what is needed to sustainably deliver the last mile and identify roadblocks towards this goal.

Recommended Citation:
Thomas Maxner, Giacomo Dalla Chiara, Anne Goodchild (2022). Roadblocks to Sustainable Freight. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022. 
Paper

Evaluating The Efficacy Of Shared-Use Vehicles For Reducing Greenhouse Gas Emissions: A U.S. Case Study Of Grocery Delivery

 
Download PDF  (1.19 MB)
Publication: Transportation Research Forum
Volume: 51 (2)
Pages: 111-126
Publication Date: 2012
Summary:

This paper compares the CO2 emissions from the use of personal vehicles to shared-use vehicles for grocery shopping in Seattle, Washington. The research builds on existing literature by considering the importance of modeling the logistical details of routing and scheduling, and by comparing the results of an American case study to existing European case studies. We find the US and European case studies to provide consistent results, that low customer density provides greater opportunities for emissions reductions, and that logistical efficiencies can account for approximately 50% of CO2 reductions.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. "Evaluating the efficacy of shared-use vehicles for reducing greenhouse gas emissions: a US case study of grocery delivery." In Journal of the Transportation Research Forum, vol. 51, no. 2. 2012.
Presentation

Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries

 
Publication: 9th International Urban Freight Conference, Long Beach, May 2022
Publication Date: 2022
Summary:

Micro-consolidation implementations and pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools.

Recommended Citation:
Şeyma Güneş and Anne Goodchild (2022). Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.