Skip to content

Where’s My Package? Common Carrier Freight Lockers Can Ease City Traffic and Prevent Failed Deliveries

Publication: The Conversation
Publication Date: 2018

Online shopping is a big convenience for many Americans, but porch piracy can ruin the experience. For example, Mikaela Gilbert lived in a row house in West Philadelphia while she studied systems engineering at the University of Pennsylvania. By her junior year, Gilbert had lost enough packages to thieves that she devised an elaborate three-pronged security strategy.

Her first line of defense was having online purchases shipped to a friend who lived in a high-rise apartment where a doorman secured incoming packages. She also sent orders to her parents’ house in New Jersey when she had a visit home planned. But both of those options were hugely inconvenient, so sometimes she routed deliveries to her place after texting her seven housemates to be on the lookout.

When Amazon installed branded delivery lockers near the center of campus, Gilbert began receiving packages there, which was less stressful than managing a small army of collaborators. But it limited her shopping to just one retailer. When Amazon didn’t have something she wanted, she had to fall back on her circle of friends.

Retailers delivering to a customers’ homes also want to avoid these situations. Research at our lab has identified a promising alternative: publicly accessible common carrier freight lockers where all retailers can leave packages for pickup.

So many stops, so little time
Like Amazon’s branded lockers, common carrier lockers are automated, self-service storage units that provide a secure location for customers to receive online purchases. However, any retailer or delivery firm can access them. Some private buildings have such lockers now, but those are only open to residents. Our study examined the effectiveness of locating them in public spaces in dense urban areas, where they can be available to everyone.

The University of Washington’s Urban Freight Lab is a structured research work group composed of leading retail, logistics and delivery firms. We partner with the Seattle Department of Transportation, collect and analyze data, and run pilot tests of promising solutions in Seattle’s Center City area. Our focus is on solving urban delivery issues in an age when e-commerce is exploding, city populations are expanding, and gridlock is reaching epic levels.

In its first report, published in early 2018, the Lab analyzed the “Final 50 Feet” of the urban goods delivery system – the last leg of the supply chain. It begins when trucks pull into a parking space and stop moving, whether at the curb, in an alley, or at a building’s loading dock or internal freight bay. From there, it follows delivery people inside urban towers, ending where customers receive their packages.

Researchers discovered two especially thorny challenges in this segment of the chain: extended “dwell time,” when trucks are parked in load/unload spaces too long, and failed first delivery attempts due to causes that include porch piracy. Solving these puzzles could reduce delivery costs, traffic congestion and crime rates, and improve online shoppers’ experiences.

Delivering packages one at a time to individual homes or offices is time-consuming and requires driving to multiple locations and parking in multiple spaces. It also results in failed first delivery rates of up to 15 percent in parts of some cities, according to some of our lab’s member companies. Instead, we decided to try creating delivery density in a single location right where the trucks unloaded.

Centralized lockers where people live and work
Accordingly, the Urban Freight Lab’s second research project pilot-tested placing a common carrier locker system in the 62-floor Seattle Municipal Tower in downtown Seattle’s financial district. This step cut the time required to make deliveries in the tower by 78 percent. The next question was where to locate more of these delivery density points, or “mini-distribution nodes,” as the study called them.

Amazon, which is headquartered in Seattle, had already approached regional transportation agency Sound Transit about locating its branded lockers at the agency’s Link light rail stations. But public stewards of the property – the Seattle Department of Transportation, Sound Transit and King County Metro – did not want to advantage one carrier or retailer over others. Instead, we suggested locating common carrier lockers.

The transit agencies saw that this could reduce delivery truck traffic in neighborhoods they served, easing congestion and reducing vehicle emissions. And their mobility hub policies aimed to create lively public spaces that offered not only multiple transportation modes but lots of convenient amenities.

In a survey of 185 riders at three transit stations, our lab’s third research study found strong interest in the lockers, with up to 67 percent of respondents at each station willing to use them and the vast majority willing to carry a package three to six blocks to do so. These responses, plus the fact that some 137,000 people lived within a 30-minute walk of the three stations, suggested that tens of thousands of Seattle residents would be willing to use common carrier lockers at those stations.

For retailers like Nordstrom, the lockers represent a potential solution to porch piracy and other glitches associated with online shopping. “Rather than leaving the package at a door, some carriers want customers to come to their location to collect the package, while others might redeliver,” Loren VandenBerghe, director of transportation for Nordstrom, told us. “Whatever the process, the customer has to track down the package. Instead, we’d prefer to get the package in our customer’s hands when they expect it.”

Researchers have developed criteria for selecting locker locations and chosen five possible sites at or near the transit stations for pilot testing. We have received funding from the U.S. Department of Energy to expand use of common carriers lockers in public spaces to a larger area in Seattle’s dense urban core and start actively managing the load/unload space network with new technology. Delivery drivers will be able to pull right up to lockers and unload goods, and riders can pick up their packages when they hop on or off a bus – making it much more convenient than waiting for a truck and scanning the street for porch pirates.

Recommended Citation:
Goodchild, A. (2018, December 18). Where’s my package? Common carrier freight lockers can ease city traffic and prevent failed deliveries. The Conversation.

An Empirical Taxonomy of Common Curb Zoning Configurations in Seattle

Download PDF  (0.63 MB)
Publication: Findings
Publication Date: 2022

We utilize an unsupervised learning algorithm called-modes clustering (Huang 1998), which is similar to the better-known-means method (Hartigan and Wong 1979), but with a dissimilarity measure designed for categorical variables (Cao et al. 2012), originally developed for analyzing sequential categorical data such as gene sequences (Goodall 1966), but also amenable to curb zoning types. For a specified, the-modes algorithm finds the top vectors that minimize a distance to all sample vectors in the training dataset. The resulting top modes are representative of distinct clusters of sample vectors, with cluster membership determined by the closest mode. The parameter is chosen through cross-validation by holding out portions of the available training data and finding the smallest that largely minimizes the within-cluster variation in this hold-out set (also called the “elbow method”). We utilize basic matching dissimilarity, as implemented in (Vos 2015). For two vectors and of length, where each element attains categorical values, matching dissimilarity is defined as, where denotes the indicator vector, with value 1 where the bracketed condition is true and 0 otherwise. We’ve chosen this measure of dissimilarity between two sets of categorical variables for a number of reasons: 1) its simplicity, 2) successful use in categorical data clustering (Goodall 1966), and 3) its sensitivity to the ordering of values when vectors and are ordered, specific to how we have chosen to represent curb zoning data.

Authors: Thomas MaxnerDr. Andisheh Ranjbari, Chase Dowling
Recommended Citation:
Dowling, Chase P., Thomas Maxner, and Andisheh Ranjbari. 2022. “An Empirical Taxonomy of Common Curb Zoning Configurations in Seattle.” Findings, February.

A Framework for Determining Highway Truck-Freight Benefits and Economic Impacts

Download PDF  (0.84 MB)
Publication: Journal of the Transportation Research Forum
Volume: 52
Pages: 27-43
Publication Date: 2013
This paper proposes a method for calculating both the direct freight benefits and the larger economic impacts of transportation projects. The identified direct freight benefits included in the methodology are travel time savings, operating cost savings, and environmental impacts. These are estimated using regional travel demand models (TDM) and additional factors. Economic impacts are estimated using a regional Computable General Equilibrium (CGE) model. The total project impacts are estimated combining the outputs of the transportation model and an economic model. A Washington State highway widening project is used as a case study to demonstrate the method. The proposed method is transparent and can be used to identify freight specific benefits and generated impacts.
Though the Washington State Department of Transportation (WSDOT) has a long standing Mobility Project Prioritization Process (MPPP) (WSDOT 2000), which is a Benefit-Cost Analysis (BCA) framework used for mobility program assessment, it does not separately evaluate or account for the truck freight benefits of proposed highway infrastructure projects. It is therefore unable to evaluate and consider the economic impacts of highway projects that accrue to freight-dependent industries (those heavily reliant on goods movement) or non-freight-dependent firms (service sector) that are perhaps indirectly impacted by the productivity of the freight system. The established evaluation criteria of any transportation project largely influences the project selection and direction, thus for freight to become an integrated component of a managing agency’s transportation program, it must be recognized and acknowledged through the project evaluation criteria (NCHRP 2007). Before implementing any freight project evaluation criteria, an agency must first be able to identify the measures that matter to freight and freight-related systems. At this time there is no known nationally accepted framework for analyzing the full range of freight-related impacts stemming from transportation infrastructure projects. Complex interactions with separate, but not isolated, effects among economic, environmental, and social components with sometimes conflicting priorities make freight impacts more difficult to measure than those of other highway users (Belella 2005).
To successfully compete in a new funding world with significantly reduced monies for transportation infrastructure, states must become even more pragmatic about the means by which they emphasize and prioritize investments. Identification of the necessity to include freight performance measures in local, state, and national transportation plans, and rise above anecdotal understandings of system performance, is becoming evident as more municipalities and state agencies move toward implementing freight-related plans (MnDOT 2008, Harrison et al. 2006). Therefore, WSDOT has undertaken the development of an improved methodology to assess highway truck-freight project benefits designed to be integrated into the department’s existing prioritization processes. This paper lays out the development process of this effort and the resulting methodology. The contribution of this paper to the literature is to present a methodology that includes a truck-specific determination of the economic value of a project in addition to the economic impacts captured by a regional Highway Truck-Freight Benefits 28 computable general equilibrium (CGE) framework. The proposed method is transparent, and can be used to identify freight-specific benefits and generated impacts.
The remainder of this paper is organized as follows: the second section provides a brief review of the state of practice in the evaluation of transportation infrastructure investments; the third section details the process by which the benefits to be included in the analysis were selected and the methodology subsequently developed; the next section applies the methodologies to a case study and provides its result; the last section offers conclusions of the proposed methodology as well as the limitations of the study and directions for future work on fully incorporating freight into state DOT investment decisions.



Recommended Citation:
Wang, Zun, Jeremy Sage, Anne Goodchild, Eric Jessup, Kenneth Casavant, and Rachel L. Knutson. "A framework for determining highway truck-freight benefits and economic impacts." In Journal of the Transportation Research Forum, vol. 52, no. 1424-2016-118048, pp. 27-43. 2013.

Review of Performance Metrics for Community-Based Planning for Resilience of the Transportation System

Download PDF  (0.89 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2604
Pages: 44-53
Publication Date: 2017

Community resilience depends on the resilience of the lifeline infrastructure and the performance of the disaster-related functions of local governments. State and federal resilience plans and guidelines acknowledge the importance of the transportation system as a critical lifeline in planning for community resilience and in helping local governments to set recovery goals. However, a widely accepted definition of the resilience of the transportation system and a structure for its measurement are not available. This paper provides a literature review that summarizes the metrics used to assess the resilience of the transportation system and a categorization of the assessment approaches at three levels of analysis (the asset, network, and systems levels). Furthermore, this paper ties these metrics to relevant dimensions of community resilience. This work addresses a key first step required to enhance the efficiency of planning related to transportation system resilience by providing (a) a standard terminology with which efforts to enhance the resilience of the transportation system can be developed, (b) an approach to organize planning and research efforts related to the resilience of the transportation system, and (c) identification of the gaps in measurement of the performance of the resilience of the transportation system.

Recommended Citation:
Machado, Jose Luis, and Anne Goodchild. Review of Performance Metrics for Community-Based Planning for Resilience of the Transportation System. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Record, 2604(1), 44–53.