Skip to content
Technical Report

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

 
Download PDF  (3.07 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Publication Date: 2019
Summary:

This report presents a pilot test of a common carrier smart locker system — a promising strategy to reduce truck trip and failed first delivery attempts in urban buildings. The Urban Freight Lab tested this system in the 62-story Seattle Municipal Tower skyscraper in downtown Seattle.

The Urban Freight Lab identified two promising strategies for the pilot test: (1) Locker system: smaller- to medium-sized deliveries can be placed into a locker that was temporarily installed during the pilot test; and (2) Grouped-tenant-floor-drop-off-points for medium-sized items if the locker was too small or full (4-6 floor groups set up by Seattle Department of Transportation and Seattle City Light).

Users picked up their goods at the designated drop-off points. Flyers with information on drop-off-points were given to the carriers. UFL researchers evaluated the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by (1) Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and (2) Comparing them to the pilot test goals.

Recommended Citation:
Goodchild, A., Kim, H., & Ivanov, B. Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy. (2019)
Presentation

Using a GIS-based Emissions Minimization Vehicle Routing Problem with Time Windows (EVRPTW) Model to Evaluate CO2 Emissions and Costs: Two Case Studies Comparing Changes Within and Between Fleets

Publication: Transportation Research Board 90th Annual Meeting
Publication Date: 2010
Summary:

Growing pressure to limit greenhouse gas emissions is changing the way businesses operate. A model was developed in ArcGIS to evaluate the trade-offs between cost, service quality (represented by time window guarantees), and emissions of urban pickup and delivery systems under these changing pressures.

A specific case study involving a real fleet with specific operational characteristics is modeled as an emissions minimization vehicle routing problem with time windows (EVRPTW). Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost, service quality, and emissions. Specific considerations of the influence of time windows, customer density, and vehicle choice are included.

The results show a stable relationship between monetary cost and kilograms of CO2, with each kilogram of CO2 associated with a $3.50 increase in cost, illustrating the influence of fuel use on both cost and emissions. In addition, customer density and time window length are strongly correlated with monetary cost and kilograms of CO2 per order. The addition of 80 customers or extending the time window 100 minutes would save approximately $3.50 and 1 kilogram of CO2 per order. Lastly, the evaluation of four different fleets illustrates significant environmental and monetary gains can be achieved through the use of hybrid vehicles.

Authors: Erica Wygonik
Recommended Citation:
Wygonik, Erica and Anne V. Goodchild. “Using a GIS-based emissions minimization vehicle routing problem with time windows (EVRPTW) model to evaluate emissions and cost trade-offs in a case study of an urban delivery system.” Proc., 90th Annual Meeting of the Transportation Research Board, Transportation Research Board, Washington, DC.
Paper

Evaluation of Emissions Reduction in Urban Pickup Systems Heterogeneous Fleet Case Study

 
Download PDF  (0.31 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2224
Pages: 8-16
Publication Date: 2011
Summary:

A case study of the University of Washington Mailing Services, which operates a heterogeneous fleet of vehicles, provides insight into the impact of operational changes on cost, service quality, and emissions. An emissions minimization problem was formulated and solutions were identified with a creation and local search algorithm based on the I1 and 2-opts heuristics.

The algorithm could be used to find many solutions that could improve existing routing on both cost and emissions metrics, reduce emissions by an average of almost 6%, and reduce costs by an average of 9%. More significant cost and emissions savings could be found with service quality reductions. For example, reducing delivery frequency to once a day could lead to emissions and cost savings of close to 35% and 3%, respectively.

Rules of thumb for vehicle assignment within heterogeneous fleets were explored to gain an understanding of simple implementations, such as assigning cleaner vehicles to routes with more customers and longer travel distances.

This case study identified significant emissions reductions that could be obtained with minimal effects on cost and service and that offered new, practical applications that could be used by fleet managers interested in reducing their carbon footprint.

Authors: Dr. Anne Goodchild, Kelly Pitera, Felipe Sandoval
Recommended Citation:
Pitera, Kelly, Felipe Sandoval, and Anne Goodchild. "Evaluation of Emissions Reduction in Urban Pickup Systems: Heterogeneous Fleet Case Study." Transportation Research Record 2224, no. 1 (2011): 8-16.