Skip to content
Dataset

Developing Better Curb Management Strategies through Understanding Commercial Vehicle Driver Parking Behavior in a Simulated Environment

Publication: Harvard Dataverse
Publication Date: 2023
Summary:

Three different data types were obtained from Oregon State Driving and Bicycling Simulator Laboratory for purpose of this report and they are as follow:

  1. Speed data consists of subject number, average speed, minimum speed, and all the independent variables. Speed data were collected based on the truck’s speed while driving through a certain scenario (out of 24). For each scenario, the average and minimum speed (mph) of 12 drivers were recorded along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals).
  2. Eye tracking data consists of subject number, total fixation duration (TFD) in milliseconds, area of interest (AOI), and all the independent variables. TFD data were collected while the truck driver maneuvers through a certain scenario (out of 24). For each scenario, the TFD for each AOI was recorded for 11 subjects along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals). AOI represent the area of interest that a driver fixates for a certain of time to generate the total fixation duration.
  3. Eye tracking data consists of subject number, GSR in peaks per minute, and all the independent variables. GSR data were collected while the truck driver maneuvers through a certain scenario (1 out of 24). For each scenario, the peaks per minute data was recorded for 11 subjects along each segment (scenario) from the start of the road to 150 feet before the intersection (traffic signals). Peaks per minute represents the emotional arousal (i.e., something is scary, threating, joyful, etc.) that a driver generates when reacting to a particular event. Fourteen participants were recruited, two of them had a simulator sickness so they were excluded from the data and the analysis. While there are no quality or consistency issues with this data set, it should be noted that the sample is on the smaller side and that should be considered when interpreting derived results. The average values were calculated to apply robust statistical analysis for such data (speed and lateral position). As the experiment consists of 2x2x2x3 factorial design, each participant had to driver through 24 scenarios; therefore, 288 scenario observations were obtained and recorded in the excel file.
Recommended Citation:
Goodchild, Anne; McCormack, Ed; Ranjbari, Andisheh; Hurwitz, David, 2023, "Developing Better Curb Management Strategies through Understanding Commercial Vehicle Driver Parking Behavior in a Simulated Environment", Harvard Dataverse. https://doi.org/10.7910/DVN/HVAUT3.
Technical Report

Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions

 
Download PDF  (3.37 MB)
Publication Date: 2023
Summary:

Millions of people who live and work in cities purchase goods online. As ecommerce and urban deliveries spike, there is an increasing demand for curbside loading and unloading space. To better manage city curb spaces for urban freight, city planners and decision makers need to understand commercial vehicle driver behaviors and the factors they consider when parking at the curb.

Urban freight transportation is a diverse phenomenon. Commercial vehicle drivers must overcome several obstacles and adapt to various rules and policies to properly navigate the intricate metropolitan network and make deliveries and pick-ups. However, other road users and occasionally municipal planners generally view them as contributing considerably to urban congestio, responsible for unauthorized parking, double parking, and exceeding their legal parking time.

These realities reflect the need for a thorough comprehension of commercial vehicle operators’ core decision-making procedures and parking habits to inform and adjust curb management policies and procedures. However, more robust corroborated literature on the subject is needed. The information used in these studies is typically obtained from empirical field research, which, while valuable, is limited to certain situations and case scenarios. Therefore, to improve the operation of urban transportation networks, it is necessary to study commercial vehicle drivers’ parking behavior in a controlled environment.

This project used a heavy vehicle driving simulator to examine commercial vehicle drivers’ curbside parking behaviors in various environments in shared urban areas. Also observed were the interactions between commercial vehicle drivers and other road users.

The experiment was successfully completed by 12 participants. Five independent variables were included in this experiment: number of lanes (two-lane and four-lane roads), bike lane existence, passenger vehicle parking space availability, commercial vehicle loading zones (CVLZs) (no CVLZ, occupied CVLZs, and unoccupied CVLZs), and parking time (short-term parking: 3 to 5 minutes and long-term parking: 20 to 60 minutes). The heavy vehicle driving simulator also collected data regarding participants’ driving speed, eye movement, and stress level.

Results from the heavy vehicle driving simulator experiment indicated that the presence of a bike lane had significant effects on commercial vehicle drivers’ parking decisions., but only a slight effect on fixation duration times. The average fixation duration time, representing how long participants looked at a particular object, on the road with a bike lane was 4.81 seconds, whereas it was 5.25 seconds on roads without a bike lane. Results also showed that the frequency of illegal parking (not parking in the CVLZs) was greater during short-term parking activities, occurring 60 times (45 percent of parking maneuvers). Delivery times also had a slight effect on commercial vehicles’ speed while searching for parking (short-term parking was 17.7 mph; long term parking was 17.2 mph) and on drivers’ level of stress (short-term parking was 8.16 peaks/mins; long-term parking was 8.36 peaks/mins). Seven percent of participants chose to park in the travel lane, which suggested that commercial vehicle operators prioritize minimizing their walking distance to the destination over the violation of parking regulations.

The limited sample size demonstrated the value of our experimental approach but limited the strength of the recommendations that can be applied to practice. With that limitation acknowledged, our preliminary recommendations for city planners include infrastructure installation (i.e., convex mirrors installed at the curbside and CVLZ signs) to help drivers more easily identify legal parking spaces, and pavement markings (i.e., CVLZs, buffered bike lanes) to improve safety when parking. Parking time limits and buffers for bike lanes could improve efficient operation and safety for cyclists and other road users.

For future work, larger sample sizes should be collected. Additional factors could be considered, such as increased traffic flow, pedestrian traffic, conflicts among multiple delivery vehicles simultaneously, various curb use type allocations, and different curb policies and enforcement. Including a larger variety of commercial vehicle sizes and loading, zone sizes would also be of value. A combination of field observations and a driving simulator study could also help validate this investigation’s outcomes.

Authors: Dr. Andisheh RanjbariDr. Anne GoodchildDr. Ed McCormackRishi Verma, David S. Hurwitz (Oregon State University), Yujun Liu (Oregon State University), Hisham Jashami (Oregon State University)
Recommended Citation:
Goodchild, A., McCormack, E., Hurwitz, D., Ranjbari, A., Verma, R., Liu, Y., & Jashami, H. (2023). Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions. PacTrans. 
Paper

Commercial Vehicle Driver Behaviors and Decision Making: Lessons Learned from Urban Ridealongs

 
Download PDF  (0.79 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2675 (9)
Pages: 608-619
Publication Date: 2021
Summary:

As ecommerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries.

In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices.

The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with only less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times.

We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers.

The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.

In recent years, cities have changed their approach toward managing urban freight vehicles. Passive regulations, such as limiting delivery vehicles’ road and curb use to given time windows or areas have been replaced by active management through designing policies for deploying more commercial vehicle (CV) load zones, pay-per-use load zone pricing, curb reservations, and parking information systems. The goal is to reduce the negative externalities produced by urban freight vehicles, such as noise and emissions, traffic congestion, and unauthorized parking, while guaranteeing goods flow in dense urban areas. To accomplish this goal, planners need to have an understanding of the fundamental parking decision-making process and behaviors of CV drivers.

Two main difficulties are encountered when CV driver behaviors are analyzed. First, freight movement in urban areas is a very heterogeneous phenomenon. Drivers face numerous challenges and have to adopt different travel and parking behaviors to navigate the complex urban network and perform deliveries and pick-ups. Therefore, researchers and policy makers find it harder to identify common behaviors and responses to policy actions for freight vehicles than for passenger vehicles. Second, there is a lack of available data. Most data on CV movements are collected by private carriers, who use them to make business decisions and therefore rarely release them to the public. Lack of data results in a lack of fundamental knowledge of the urban freight system, inhibiting policy makers’ ability to make data-driven decisions.

The urban freight literature discusses research that has employed various data collection techniques to study CV driver behaviors. Cherrett et al. reviewed 30 UK surveys on urban delivery activity and performed empirical analyses on delivery rates, time-of-day choice, types of vehicles used to perform deliveries, and dwell time distribution, among others. The surveys reviewed were mostly establishment-based, capturing driver behaviors at specific locations and times of the day. Allen et al. performed a more comprehensive investigation, reviewing different survey techniques used to study urban freight activities, including driver surveys, field observations, vehicle trip diaries, and global positioning system (GPS) traces. Driver surveys collect data on driver activities and are usually performed through in-person interviews with drivers outside their working hours or at roadside at specific locations. In-person interviews provide valuable insights into driver choices and decisions but are often limited by the locations at which the interviews occur or might not reflect actual choices because they are done outside the driver work context. Vehicle trip diaries involve drivers recording their daily activities while field observations entail observing driver activities at specific locations and establishments; neither collects insights into the challenges that drivers face during their trips and how they make certain decisions. The same limitations hold true for data collected through GPS traces. Allen et al. mentioned the collection of travel diaries by surveyors traveling in vehicles with drivers performing deliveries and pick-ups as another data collection technique that could provide useful insights into how deliveries/pick-ups are performed. However, they acknowledged that collecting this type of data is cumbersome because of the difficulty of obtaining permission from carriers and the large effort needed to coordinate data collection.

This study aims to fill that gap by collecting data on driver decision-making behaviors through observations made while riding along with CV drivers. A systematic approach was taken to observe and collect data on last-mile deliveries, combining both qualitative observations and quantitative data from GPS traces. The ridealongs were performed with various delivery companies in Seattle, Washington, covering a range of vehicle types (cars, vans, and trucks), goods types (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail).

The data collected will not only add to the existing literature by providing estimates of trip times, parking choice types, time and distance spent cruising for parking, and parking dwell times but will also provide insights into why those decisions are made and the factors affecting driver choices.

The objectives of this study are to provide a better understanding of CV driver behaviors and to identify common and unique challenges they experience in performing the last mile. These findings will help city planners, policy makers, and delivery companies work together better to address those challenges and improve urban delivery efficiency.

The next section of this paper describes the relevant literature on empirical urban freight behavior studies. The following section then introduces the ridealongs performed and the data collection methods employed. Next, analysis of the data and qualitative observations from the ridealongs are described, and the results are discussed in five overarching categories: the time spent in and out of the vehicle, parking location choice, the reasons behind those choices, parking cruising time, and factors affecting dwell time.

Recommended Citation:
Chiara, Giacomo Dalla, Krutein, Klaas Fiete, Ranjbari, Andisheh, & Goodchild, Anne. (2021). Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making. Transportation Research Record, 2675(9), 608-619. https://doi.org/10.1177/03611981211003575
Paper

Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making

 
Download PDF  (1.85 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2675 (9)
Publication Date: 2021
Summary:

As e-commerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries. In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices.

The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times. We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers. The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.

In recent years, cities have changed their approach toward managing urban freight vehicles. Passive regulations, such as limiting delivery vehicles’ road and curb use to given time windows or areas (1), have been replaced by active management through designing policies for deploying more commercial vehicle (CV) load zones, pay-per-use load zone pricing, curb reservations, and parking information systems.

The goal is to reduce the negative externalities produced by urban freight vehicles, such as noise and emissions, traffic congestion, and unauthorized parking while guaranteeing goods flow in dense urban areas. To accomplish this goal, planners need to have an understanding of the fundamental parking decision-making process and behaviors of CV drivers.

Two main difficulties are encountered when CV driver behaviors are analyzed. First, freight movement in urban areas is a very heterogeneous phenomenon. Drivers face numerous challenges and have to adopt different travel and parking behaviors to navigate the complex urban network and perform deliveries and pick-ups. Therefore, researchers and policymakers find it harder to identify common behaviors and responses to policy actions for freight vehicles than for passenger vehicles. Second, there is a lack of available data. Most data on CV movements are collected by private carriers, who use them to make business decisions and therefore rarely release them to the public (2). Lack of data results in a lack of fundamental knowledge of the urban freight system, inhibiting policy makers’ ability to make data-driven decisions (3).

The urban freight literature discusses research that has employed various data collection techniques to study CV driver behaviors. Cherrett et al. reviewed 30 UK surveys on urban delivery activity and performed empirical analyses on delivery rates, time-of-day choice, types of vehicles used to perform deliveries, and dwell time distribution, among others. The surveys reviewed were mostly establishment-based, capturing driver behaviors at specific locations and times of the day. Allen et al. (5) performed a more comprehensive investigation, reviewing different survey techniques used to study urban freight activities, including driver surveys, field observations, vehicle trip diaries, and global positioning system (GPS) traces.

Driver surveys collect data on driver activities and are usually performed through in-person interviews with drivers outside their working hours or at roadside at specific locations. In-person interviews provide valuable insights into driver choices and decisions but are often limited by the locations at which the interviews occur or might not reflect actual choices because they are done outside the driver work context. Vehicle trip diaries involve drivers recording their daily activities while field observations entail observing driver activities at specific locations and establishments; neither collects insights into the challenges that drivers face during their trips and how they make certain decisions.

The same limitations hold true for data collected through GPS traces. Allen et al. (5) mentioned the collection of travel diaries by surveyors traveling in vehicles with drivers performing deliveries and pick-ups as another data collection technique that could provide useful insights into how deliveries/pick-ups are performed. However, they acknowledged that collecting this type of data is cumbersome because of the difficulty of obtaining permission from carriers and the large effort needed to coordinate data collection.

This study aims to fill that gap by collecting data on driver decision-making behaviors through observations made while riding along with CV drivers. A systematic approach was taken to observe and collect data on last-mile deliveries, combining both qualitative observations and quantitative data from GPS traces. The ridealongs were performed with various delivery companies in Seattle, Washington, covering a range of vehicle types (cars, vans, and trucks), goods types (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail).

The data collected will not only add to the existing literature by providing estimates of trip times, parking choice types, time and distance spent cruising for parking, and parking dwell times but will also provide insights into why those decisions are made and the factors affecting driver choices. The objectives of this study are to provide a better understanding of CV driver behaviors and to identify common and unique challenges they experience in performing the last mile. These findings will help city planners, policy makers, and delivery companies work together better to address those challenges and improve urban delivery efficiency.

The next section of this paper describes the relevant literature on empirical urban freight behavior studies. The following section then introduces the ridealongs performed and the data collection methods employed. Next, analysis of the data and qualitative observations from the ridealongs are described, and the results are discussed in five overarching categories: the time spent in and out of the vehicle, parking location choice, the reasons behind those choices, parking cruising time, and factors affecting dwell time.

Recommended Citation:
Dalla Chiara, G., Krutein, K. F., Ranjbari, A., & Goodchild, A. (2021). Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making. Transportation Research Record: Journal of the Transportation Research Board, 036119812110035. https://doi.org/10.1177/03611981211003575.
Technical Report

Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (2.46 MB)
Publication: U.S. Department of Energy
Publication Date: 2021
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

In Year 2, the team executed the implementation plan:

  • oversaw installation of the in-road sensors, and collecting and processing data,
  • managed installation, marketing and operations of three common locker systems in the pilot test area,
  • tested the prototype smart phone parking app with initial data stream, and
  • developed a truck parking behavior simulation model.
Recommended Citation:
Urban Freight Lab (2021). Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.