Skip to content
Report

The State of Zero-Emissions Delivery in the U.S.

 
Download PDF  (3.33 MB)
Publication Date: 2025
Summary:

We have seen major changes in the last few years as cities and companies in the United States transition to more environmentally sustainable urban delivery. But progress still remains piecemeal and slow. In both policy and practice on city streets, Europe and parts of Asia are far ahead of the U.S. in advancing electrification, shifting away from traditional trucks to smaller forms like e-bikes, and managing city space to induce or support zero emission delivery (ZED).

This paper captures the state of policy and practice of zero emission delivery in the U.S. as of January 2025. It offers a baseline for future work and surfaces levers U.S. cities can consider using to advance ZED. In this report, researchers from the Urban Freight Lab at the University of Washington created a policy and practice framework based on their expertise, review and synthesis of academic literature, current technology and private sector achievements. Via the framework, the research team identifies a three-legged stool of approaches needed to achieve or advance zero emission delivery in the United States.

These three vital areas for progress on ZED are:

  1. Electrification
  2. Mode Shift and Behavior Change, and
  3. Real Estate and Space Management

For some, these three key building blocks and the myriad elements discussed in this report may not have been linked as levers to catalyze ZED.

The report is divided into three sections, one for each of the key areas above. Each area has an overview of the current state of practice and associated trends, followed by both public sector-led and private-sector-led examples of the approach under discussion. All examples focus on real-world implementation (both domestic and international), showcasing ZED and/or providing a realistic pathway to advance ZED. And all examples focus a lens squarely on cities.

In the process of compiling this summary of the state of practice of ZED, the research team synthesized key takeaways for cities to consider in Electrification, Mode Shift and Behavior Change, and Real Estate and Space Management.

Recommended Citation:
Rula, K, Schnaiberg, L, Maxner, T, Shafiei Nia, H, Goodchild, A. (2025) The State of Zero Emission Delivery in the United States. Urban Freight Lab, University of Washington.
Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
Article

The Freight of the West

 
Download PDF  (0.64 MB)
Publication: Thinking Cities
Volume: December 2017
Pages: 82-85
Publication Date: 2017
Summary:

More than 80 percent of Americans have purchased goods online and, in 2016, more than 8 percent of all retail sales in the U.S. took place online. The growth of ecommerce is putting increasing pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. It is also forcing building developers and managers to plan for the influx of online goods.

To develop practical solutions to these problems, in 2016 the University of Washington launched the Urban Freight Lab (UFL), a partnership between private and public industry stakeholders. The UFL provides a place for companies and public agencies to work together to develop and ground-test low-cost, promising solutions to deliver these goods while maintaining livability and economic vitality.

As part of this research effort, a three-year strategic research partnership with the City of Seattle Department of Transportation (SDOT) has been established to advance understanding of urban goods movement in support of the City’s goals for safe, predictable and efficient goods movement and economic vibrancy.

By entering into a long-term strategic partnership with the university and industry, SDOT demonstrated its interest in developing innovative solutions to achieve their policy goals. The city’s willingness to pilot test and potentially adopt solutions that provided both public and private good was essential in attracting private sector firms to engage fully in the work.

The Urban Freight Lab

In 2016, the Urban Freight Lab recruited founding industry members from Charlie’s Produce, Costco Wholesale, Nordstrom, UPS, and the United States Postal Service (USPS) to develop solutions to improve the way goods are delivered in the urban environment.

Private sector members of the Urban Freight Lab at the University of Washington, in partnership with SDOT, are using a systems engineering approach to solve delivery problems that overlap the spheres of control of the city and business sector.

The Lab has created a multi-year strategic research plan with principles and innovative approaches to produce evidence-based improvement strategies.

The role of the Urban Freight Lab is to be a living laboratory where potential solutions are generated, evaluated, and then pilot-tested on real city streets. Members provide clear and open input as to whether proposed solutions are sustainable in their and other firms’ business models.

The Final 50 Feet

The Urban Freight Lab and its members have defined and focused on the Final 50 Feet; the urban supply chain segment that begins where delivery vehicles park at the curb, alley or in a building’s freight parking space. It tracks the delivery process inside buildings and ends at the receipt of goods by the receiver. The Final 50 Feet concept represents the first time that the Lab have identified the importance of analyzing deliveries moving along the street grid and in cities’ vertical space (office, hotel, retail and residential towers) as a unified goods delivery system.

Development of the Final 50 Feet concept is the necessary first step in defining rigorous, goal-oriented improvement teams that can take coordinated action to reduce truck trips, delivery delays, cost, emissions, and improve delivery service to tenants and consumers. It provides them with the ability to analyze and improve the process flows meaningfully from the beginning-to-end of the last piece of the urban goods system.

The Urban Freight Lab members and SDOT have identified two priority goals, with both public and private benefits, for the 2017-2020 research partnership:

  1. Reduce the number of failed first delivery attempts. The failed first delivery can be as high as 15 percent. Benefits of reducing failed first deliveries include:
    • Improve urban online shoppers’ experiences and protect retailers’ brands;
    • Cut business costs for the retail sector and logistics firms;
    • Lower traffic congestion in cities, as delivery trucks could make up to 15 percent fewer trips while still completing the same number of deliveries.
  2. Reduce dwell time. The time a truck is parked in a load/ unload space. There are both public and private benefits to reaching this goal, including:
    • Lower costs for delivery firms, and therefore potentially lower costs for their customers;
    • Better utilization of public and private truck load/unload spaces;
    • Less congestion, as spaces turn over more quickly.

Overview of the Innovative Approaches Taken to Identify and Quantitatively Assess the Final 50 Feet of the Urban Goods Delivery System

Building the first comprehensive database of urban off-street infrastructure for delivery and pick-up operations

The urban goods delivery system includes both public and private facilities. While on-street parking facilities are well documented in Seattle’s databases, facilities out of the public right of way (i.e. privately held) are not. SCTL research assistants, developed a ground-truthed data collection method to build a comprehensive database inventory, capturing geospatial locations and documenting the visible features of all private freight parking infrastructure in five urban centers in the Seattle area.

For this task, the team collaborated with one of the private carrier members of the Urban Freight Lab to further improve the accuracy of the data collection method. Carrier drivers with deep knowledge of city routes and infrastructure, review the closed door locations.

This review allowed the Lab to rule out 98 percent (206) of the locations behind closed doors, reducing uncertainty in the final database from 38 percent to less than 1 percent.

Researchers found that 87 percent of buildings in the City’s dense urban centers are completely reliant on nearby public commercial vehicle load zones (CVLZs) and alley truck load/unload spaces to receive goods deliveries. These buildings do not have underground or adjacent freight bays on their property.

Building a delivery process flow for delivery inside the building environment

The Lab created detailed process flow maps of the Final 50’ in and around five prototype city buildings in Seattle, Washington.

The team collected original data by following delivery persons from the buildings’ freight bays or nearby commercial vehicle zones (CVLZs) into each of the buildings, until delivery was completed or the return to the truck when there was a failed delivery. The Lab designed and built an application for collectors to enter the precise time that the delivery people began and ended each process step. The team then collected data for up to a week in peak delivery periods for each building. They analyzed the range and average of delay in the process steps to understand where improvement strategies will have the most significant ability to achieve project goals (13). Based on this analysis, the Lab found that the greatest opportunities to reduce the number of failed first deliveries and dwell time in truck load/unload spaces are inside buildings when delivery persons:

  • Interact with security personnel; and
  • Attempt to locate tenants.

In the next phase of the Final 50 Feet project, the Urban Freight Lab and SDOT will pilot test promising improvement strategies in and on the streets around the Seattle Municipal Tower over four weeks.

Benefits

Final 50’ project findings will be used to provide decision support to city officials and private-sector firms managing scarce resources. By applying systems engineering and evidence-based planning, we can make receiving online goods as efficient as ordering them – without clogging city streets and curb space.

We have received requests from many other cities, including Washington, D.C., to share results and lessons learned during the Freight Master Plan development process and early actions coming out of this three-year program. Seattle is committed to being a leader in urban goods policy and problem-solving and keeping our economy thriving.

According to City of Seattle officials Mr. Christopher Eaves and Ms. Jude Willcher, “Seattle is one fastest growing cities in the country. The Seattle Department of Transportation is committed meeting the urban goods delivery challenges facing most big cities in the U.S. We know that issuing parking tickets to companies who are simply trying to meet the daily delivery needs of residents and businesses isn’t the right solution. So, our goal is to identify and implement scalable strategies that improve deliveries at existing building, as well as initiate strategic research to mine new data to improve and inform new construction designs that support freight and delivery in the city. And we are incredibly grateful to have found a strong and innovative partner in the UW Freight Lab and SCTL”.

Recommended Citation:
Urban Freight Lab. “The freight of the West” Thinking Cities Magazine, December 2017, 82-85
Article

More Online Shopping Means More Delivery Trucks. Are Cities Ready?

 
Download PDF  (2.46 MB)
Publication: The Conversation
Publication Date: 2016
Summary:

Two converging trends — the rise of e-commerce and urban population growth — are creating big challenges for cities. Online shoppers are learning to expect the urban freight delivery system to bring them whatever they want, wherever they want it, within one to two hours. That’s especially true during the holidays, as shipping companies hustle to deliver gift orders on time.

City managers and policymakers were already grappling with high demand and competing uses for scarce road, curb, and sidewalk space. If cities do not act quickly to revamp the way they manage increasing numbers of commercial vehicles unloading goods in streets and alleys and into buildings, they will drown in a sea of double-parked trucks.

The University of Washington has formed a new Urban Freight Lab to solve delivery system problems that cities and the business sector cannot handle on their own. Funders of this long-term strategic research partnership include the City of Seattle Department of Transportation (SDOT) and five founding corporate members: Costco, FedEx, Nordstrom, UPS, and the U.S. Postal Service.

The core problem facing cities is that they are trying to manage their part of a sophisticated data-powered 21st-century delivery system with tools designed for the 1800s — and they are often trying to do it alone. Consumers can order groceries, clothes, and electronics with a click, but most cities only have a stripe of colored paint to manage truck parking at the curb. The Urban Freight Lab brings building managers, retailers, logistics and tech firms, and city government together to do applied research and develop advanced solutions.

Moving more goods, more quickly

We have reached the point where millions of people who live and work in cities purchase more than half of their goods online. This trend is putting tremendous pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. It also forces building operators to plan for the influx of online goods. A few years ago, building concierges may have received a few flower bouquets. Now many are sorting and storing groceries and other goods for hundreds of residents every week.

In the first quarter of 2016, almost 8 percent of total U.S. retail sales took place online. Surging growth in U.S. online sales has averaged more than 15 percent year-over-year since 2010. Black Friday web sales soared by 22 percent from 2015 to 2016.

Online shoppers’ expectations for service are also rising. Two out of three shoppers expect to be able to place an order as late as 5:00 p.m. for next-day delivery. Three out of five believe orders placed by noon should be delivered the same day, and one out of four believe orders placed by 4:00 p.m. or later should still be delivered on the same day.

City living and shopping is still all about location, location, location. People are attracted to urban neighborhoods because they prefer to walk more and drive less. Respondents in the 2015 National Multifamily Housing Council-Kingsley Apartment Resident Preferences Survey preferred walking to grocery stores and restaurants rather than driving by seven points. But this lifestyle requires merchants to deliver goods to customers’ homes, office buildings or stores close to where they live.

Smarter delivery systems

SDOT recently published Seattle’s first draft Freight Master Plan, which includes high-level strategies to improve the urban goods delivery system. But before city managers act, they need evidence to prove which concepts will deliver results.

To lay the groundwork for our research, an SCTL team led by Dr. Ed McCormack and graduate students Jose Machado Leon and Gabriela Giron surveyed 523 blocks of Seattle’s downtown (including Belltown, the commercial core, Pioneer Square and International District), South Lake Union and Uptown urban centers in the fall of 2016. They compiled GIS coordinates and infrastructure characteristics for all observable freight loading bays within buildings. Our next step is to combine this information with existing GIS layers of the city’s curbside commercial vehicle load zones and alleys to produce a complete map of Seattle’s urban delivery infrastructure.

In our first research project, the Urban Freight Lab is using data-based process improvement tools to purposefully manage both public and private operations of the Final-50-Feet space. The final 50 feet of the urban delivery system begins when a truck stops at a city-owned curb, commercial vehicle load zone or alley. It extends along sidewalks and through privately owned building freight bays, and may end in common areas within a building, such as the lobby.

One key issue is failed deliveries: Some city residents don’t receive their parcels due to theft or because they weren’t home to accept them. Could there be secure, common drop-off points for multiple carriers to use, attached to bus stops or on the sidewalk?

The most pressing issue is the lack of space for trucks to park and deliver goods downtown. It may be possible to use technology to get more use out of existing commercial vehicle load zones. For example, trucks might be able to use spaces now reserved exclusively for other uses during off-peak hours or seasons.

To analyze the fundamental problems in the urban logistics system, our research team will create process flow maps of each step in the goods delivery process for five buildings in Seattle. We will collect data and build a model to analyze “what if” scenarios for one location. Then we will pilot test several promising low-cost, high-value actions on Seattle streets in the fall of 2017. The pilots may involve actively managing city load zones and alleys to maximize truck use, or changing the way people use freight elevators.

By using information technologies and creative planning, we can make receiving online goods as efficient as ordering them — without clogging our streets or losing our packages.

Recommended Citation:
Goodchild, A., & Ivanov, B. (2016, December 20). More online shopping means more delivery trucks. Are cities ready? The Conversation. https://theconversation.com/more-online-shopping-means-more-delivery-trucks-are-cities-ready-67686.
Report

The Final 50 Feet of the Urban Goods Delivery System (Final Report)

 
Download PDF  (6.73 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Goods delivery is an essential but little-noticed activity in urban areas. For the last 40 years, deliveries have been mostly performed by a private sector shipping industry that operates within general city traffic conditions. However, in recent years e-commerce has created a rapid increase in deliveries, which implies an explosion of activity in the future.

Meeting current and future demand is creating unprecedented challenges for shippers to meet both increased volumes and increasing customer expectations for efficient and timely delivery. Anecdotal evidence suggests that increasing demand is overwhelming goods delivery infrastructure and operations. Delivery vehicles parked in travel lanes, unloading taking place on crowded sidewalks, and commercial truck noise during late night and early morning hours are familiar stories in urban areas.

These conditions are noticeable throughout the City of Seattle as our population and employment rapidly increase. However, goods delivery issues are particularly problematic in Seattle’s high-density areas of Downtown, Belltown, South Lake Union, Pioneer Square, First Hill, Capitol Hill and Queen Anne, described as Seattle’s “Center City”. Urban goods transportation makes our economy and quality of life possible.

As the Seattle Department of Transportation (SDOT) responds to the many travel challenges of a complex urban environment, we recognize that goods delivery needs to be better understood and supported to retain the vitality and livability of our busiest neighborhoods.

U.S. cities do not have much information about the urban goods delivery system. While public agencies have data on city streets, public transportation and designated curbside parking, the “final 50 feet” in goods delivery also utilizes private vehicles, private loading facilities, and privately-owned and operated buildings outside the traditional realm of urban planning.

Bridging the information gap between the public and private sectors requires a new way of thinking about urban systems. Specifically, it requires trusted data sharing between public and private partners, and a data-driven approach to asking and answering the right questions, to successfully meet modern urban goods delivery needs.

The Urban Freight Lab (UFL) provides a standing forum to solve a range of short-term as well as long-term strategic urban goods problem solving, that provides evidence of effectiveness before strategies are widely implemented in the City.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System.
Article

How Many Amazon Packages Get Delivered Each Year?

Publication: The Conversation
Publication Date: 2022
Summary:

How many Amazon packages get delivered each year? – Aya K., age 9, Illinois

It’s incredibly convenient to buy something online, right from your computer or phone. Whether it’s a high-end telescope or a resupply of toothpaste, the goods appear right at your doorstep. This kind of shopping is called “e-commerce” and it’s becoming more popular each year. In the U.S., it has grown from a mere 7% of retail purchases in 2012 to 19.6% of retail and $791.7 billion in sales in 2020.

Amazon’s growing reach
For Amazon, the biggest player in e-commerce, this means delivering lots of packages.

In 2021 Amazon shipped an estimated 7.7 billion packages globally, based on its nearly $470 billion in sales.

In 2021 Amazon shipped an estimated 7.7 billion packages globally.

If each of these packages were a 1-foot square box and they were stacked on top of one another, the pile would be six times higher than the distance from the Earth to the Moon. Laid end to end, they would wrap around the Earth 62 times.

Back in the early 2010s, most things bought from Amazon.com were shipped using a third-party carrier like FedEx or UPS. In 2014, however, Amazon began delivering packages itself with a service called “Fulfilled by Amazon.” That’s when those signature blue delivery vans started appearing on local streets.

Since then, Amazon’s logistics arm has grown from relying entirely on other carriers to shipping 22% of all packages in the U.S. in 2021. This is greater than FedEx’s 19% market share and within striking distance of UPS’s 24%. Amazon’s multichannel fulfillment service allows other websites to use its warehousing and shipping services. So your order from Etsy or eBay could also be packed and shipped by Amazon.

The supply chain
To handle that many packages, shipping companies need an extensive network of manufacturers, vehicles and warehouses that can coordinate together. This is called the supply chain. If you’ve ever used a tracking number to follow a package, you’ve seen it in action.

People who make decisions about where to send vehicles and how to route packages are constantly trying to keep costs down while still getting packages to customers on time. The supply chain can do this very effectively, but it also has downsides.

More delivery vehicles on the road produce more greenhouse gas emissions that contribute to climate change, along with pollutants like nitrogen oxides and particulate matter that are hazardous to breathe. Traffic congestion is also a major concern in cities as delivery drivers try to find parking on busy streets.

Urban freight solutions
Are there ways to balance the increasing number of deliveries while making freight safe, sustainable and fast? At the University of Washington’s Urban Freight Lab, we work with companies like Amazon and UPS and others in the shipping, transportation and real estate sectors to answer questions like this. Here are some solutions for what we and our colleagues call the “last mile” – the last leg of a package’s long journey to your doorstep.

  • Electrification: Transitioning from gasoline and diesel vehicles to fleets of electric or other zero-emission vehicles reduces pollution from delivery trucks. Tax credits and local policies, such as creating so-called green loading zones and zero-emission zones for clean vehicles, create incentives for companies to make the switch.
  • Common carrier lockers: Buildings can install lockers at central locations, such as busy transit stops, so that drivers can drop off packages without going all the way to your doorstep. When you’re ready to pick up your items, you just stop by at a time that’s convenient for you. This reduces both delivery truck mileage and the risk of packages being stolen off of porches.
  • Cargo bicycles: Companies can take the delivery truck out of the equation and use electric cargo bicycles to drop off smaller packages. In addition to being zero-emission, cargo bicycles are relatively inexpensive and easy to park, and they provide a healthier alternative for delivery workers.

To learn more about supply chains and delivery logistics, check with your town or city’s transportation department to see if they are testing or already have goods delivery programs or policies, like those in New York and Seattle. And the next time you order something for delivery, consider your options for receiving it, such as walking or biking to a package locker or pickup point, or consolidating your items into a single delivery.

Package delivery can be both convenient and sustainable if companies keep evolving their supply chains, and everyone thinks about how they want delivery to work in their neighborhoods.

Recommended Citation:
Goodchild, A. How many Amazon packages get delivered each year? The Conversation. https://theconversation.com/how-many-amazon-packages-get-delivered-each-year-187587
Presentation

Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation

 
Download PDF  (0.09 MB)
Publication: U.S. House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials
Volume: 5-Dec-19
Publication Date: 2019
Summary:

Written Testimony of
Anne Goodchild
Professor in Civil and Environmental Engineering
Director of the Supply Chain Transportation and Logistics Center
University of Washington

Joint Hearing on:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation”
before the United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials.

December 5, 2019

Good morning, Chairs Norton and Lipinski and Ranking Members Davis and Crawford as well as distinguished Members of the Committee. Thank you for the opportunity to speak to you about this important topic. My name is Anne Goodchild and I am a professor and the Director of the Supply Chain Transportation and Logistics Center at the University of Washington. I am an urban freight expert.  The freight system, ultimately, allows for economic specialization; it supports city living, provides markets to producers, and strengthens competition.  On its own, the transportation and logistics sector represents approximately 10% of the US gross domestic product – a larger sector than either retail, or financial services.  The freight system is more than interstates, ports, pipelines and rail facilities.  The freight system is city streets, local highways, sidewalks, bike lanes, and front steps – the last mile of where these supply chains is carried out. It is the delivery man walking to your door or mailbox.  When we talk about freight infrastructure investment and building a better freight system, we must remember to include the last mile and particularly the Final Fifty Feet to the final delivery destination.  Without completing this final step, supply chains fail to deliver the economic and social benefits they promise.

Last mile costs businesses a disproportionate amount of time and money

The last mile is essential, and expensive; the most difficult and costly mile of all.  While estimates vary, the cost of the last mile has been estimated at between 25% and 50% of total supply chain transportation costs.

The last mile is costly because:

  1. It relies more on human labor than the other segments of supply chain transportation with drivers going door-to-door to drop off packages.  In cities, drivers can spend 80 or 90% of their time outside the vehicle
  2. Goods are more fragmented the farther you travel down the supply chain.  Upstream, goods are moved in large, consolidated shipments such as single commodities but the closer goods get to the consumer the more they are broken down into shipments for individual customers
  3. 80% of Americans live in congested regions  where travel speeds are slower and less reliable.  This increases the number of vehicles and drivers required to do the same work
  4. There can be high rates of failed deliveries requiring repeated delivery attempts and resulting in ballooning costs. Failed delivery attempts can mean that two or three additional trips are require to accomplish the same task.

While the high cost of the last mile is in part due to the distributed nature of deliveries, the cost is inflated by congestion, a lack of reasonable parking options, and other constraints put on commercial vehicle operations such as specific street or time of day bans.

Online shopping growing and speeding

Online shopping rates are growing and this is increasing demand for last mile delivery.  UPS, the world’s largest package delivery company, experienced 23% revenue growth from 2014 to 2018 (5.5% annually ).  With one-click shopping and free home delivery it is now often cheaper and easier to order something online than it is to go to the store.  Retail e-commerce sales as a percent of total retail sales in United States rose to 9% in 2017 and this figure is expected to reach 12.4% in 2020.  With store-based shopping, most Americans use their personal vehicles for shopping trips; driving to the store alone, purchasing a few items, and returning home in their car.  With an online purchase, the trip – now a delivery – is made with a commercial vehicle, extending the supply chain from the store or warehouse and bringing increasing numbers of commercial vehicles into towns and neighborhoods.  The volume of daily deliveries to homes has soared – from fewer than 360,000 a day in New York City in 2009 to more than 1.5 million today .  Households now receive more deliveries than businesses; and this, with online retail representing only 10% of all retail.  Imagine how many more trips there will be when online retail hits 20% or 50%.

In addition to growth in the number of deliveries, the pace of delivery of speeding.  Amazon, which currently holds about a 50% share of the online market in the US has, in the last 3 years, halved their average click-to-door speed from about 6 days to about 3 days .  Other retailers are attempting to keep pace.  Just this week I received an email from Amazon notifying me that Amazon Fresh would now deliver at “ultrafast speeds” in my area: “You can schedule same-day deliveries from 6:00am – 10:00pm and get FREE 2-hour scheduled delivery windows on orders over $35”.  Free two-hour delivery.  This was not in response to a request, rather this is being rolled out to all Prime members.  Depending on your location, you can also get 1-hour delivery for a small additional fee.  This is also available in DC and Northern VA.  There has also been a proliferation of on-demand delivery services, particularly in the food delivery sector, where online platforms now serve close to 30% of the market.

The US leads the world in online shopping activity and speed of delivery .  Supply chains have spent decades investing in technology and building the information systems required to deliver on home delivery and service promises.  More recently, venture capital has also invested in transportation and logistics, with PitchBook reporting $14.4 billion invested globally in privately owned freight, logistics, shipping, trucking, transportation management system (TMS), and supply chain tracking startups since 2013 . Not only do these changes affect transportation and logistics companies, but these changes affect peripheral sectors as companies reorganize their operations to service these new demands.

As customers are offered, and accept, shorter and shorter click-to-delivery times, delivery companies have less opportunity to make consolidated, efficient deliveries.  Instead of waiting for more orders and sending out full trucks, vehicles are sent out to meet their quick delivery promise; reducing vehicle utilization.  This increases the number of vehicles on the road, increases the cost per delivery, and increases vehicle emissions.

Significant impact on cities

It is the roads and sidewalks built by American cities and towns that enable this last mile delivery. In Seattle, 87% of buildings in greater downtown rely solely on the curb for freight access.  These buildings have no off-street parking or loading bays.

Our cities were not built to handle the nature and volume of current freight activity and are struggling to accommodate growth .  At the same time, delivery of goods is just one of the many functions of our transportation networks.  The same roads and sidewalks are also used by pedestrians, cyclists, emergency vehicles, taxis, ride hailing services, buses, restaurants, and street vendors, to name a few.

Capacity on our transportation networks is increasingly scarce.  Texas Transportation Institute’s 2019 Urban Mobility Report, a summary of congestion in America, is titled “Traffic is Bad and Getting Worse”.  Over the past 10 years, the total cost of delay in our nation’s top urban areas has grown by nearly 47%.  It is on top of this already congested network, that we add this growing last mile traffic. American cities have yet to make any headway with congestion, and delivery traffic both adds to, and suffers from, this condition.

To address congestion, many state Departments of Transportation are working to provide safe and competitive alternatives to single occupancy vehicle travel such as transit, bicycling, and walking. Other federal agencies are also working on addressing this issue, such as the Department of Energy, which has awarded UW and Seattle an EERE grant.  In building dedicated bicycle facilities, one common solution is to convert the curb lane to a bike lane, removing commercial vehicle load and unload space.  At the same time, American’s are increasingly using ride-hailing services such as Uber and Lyft .  This also increases the demand for curb space as passengers request pickup and drop-off instead of parking their own vehicle off-street.

The result is too much demand for too little space, and there is ample evidence of a poorly functioning system.  From a study in Seattle, 52% of vehicles parked in commercial vehicle load zones were passenger cars, and 26% of all commercial vehicles parked in passenger load zones.  In New York City, UPS and Fedex received 471,000 parking violations in 2018.  Everyone has seen an image of a truck parked in a bike lane, or been stuck behind a delivery truck occupying an entire residential street.  While we might expect a small percentage of violations, these levels reflect a failure of planning and design to deliver reasonable alternatives to commercial vehicles, and a city that has not caught-up with the changes in supply chain and shopping patterns.

In addition to these operational challenges, commercial vehicles have impacts on American’s health and safety.  Per mile, trucks produce disproportionately more carbon dioxide and local pollutants (NOx, PM) than passenger vehicles so a substitution of delivery trucks for passenger vehicles has the potential to increase emissions.  However, delivery services also present an opportunity to reduce emissions per package as they can consolidate many packages into one vehicle; the same way transit or carpooling can be an emissions advantage over single occupancy vehicle trips.  Research shows that in most cases a well-run delivery service would provide a carbon dioxide reduction over typical car-based shopping behavior.  While there is the opportunity for delivery services to provide this emissions benefit, the move towards very fast delivery erodes that benefit as delivery services are unable to achieve the same level of consolidation and begin to look more like butler services.

Diesel powered vehicles, often used for the movement of freight, produce disproportionately more particular matter and NOx pollution than gasoline engines, so the use of these vehicles in urban areas, where human exposure levels are higher, has significant negative outcomes for human populations in terms of asthma and heart disease.  This is particularly true for the very young, elderly, or immunosuppressed.

While it may seem intuitive that replacing a car trip to the store with a truck delivery would be bad for the city, in fact, delivery services can reduce carbon emissions and total vehicle miles travelled.  This is because the truck is not just delivering to one home, but to many.  In this sense, the truck delivery behaves like a transit vehicle or very large carpool.  This can reduce congestion by reducing the number of vehicles on the road.  Delivery trucks can be an asset when performing in this efficient manner because they consolidate many goods into a single vehicle reducing per package cost, emissions, and congestion impacts.

Banning trucks and requiring or encouraging the use of smaller vehicles INCREASES the number of vehicles and the vehicle miles travelled; exacerbating traffic and parking problems.

Growth in two and one-hour delivery INCREASES the number of vehicles and vehicle miles travelled; exacerbating traffic and parking problems.

The Urban Freight Lab as a Public and Private Sector Collaboration

Businesses are challenged by the high cost of the last mile, and the increasing time pressure for deliveries.  Cities are working to manage congestion, the competing demands of many users, emissions, and intense pressure for curb space.  This presents a complex set of problems, where:

  • private carriers are struggling to comply with city regulations and remain financially competitive while meeting customer expectations
  • customers are benefiting from high levels of convenience but also experiencing high levels of congestion and suffering from the effects of growing emissions
  • cities and towns are struggling to meet demands of multiple stakeholders and enforce existing rules

All of this, in a context where there are very limited data regarding truck or commercial vehicle activity, numbers of deliveries, or other measures of efficiency.  The Freight Analysis Framework , which compiles the nation’s most significant freight datasets such as the Commodity Flow Survey, breaks the country into 153 zones, so that most states can only see what came into or out of the state, not how vehicles move around within cities and towns.  The more recently developed National Performance Management Research Data Set (NPMRDS) , presents truck specific data, and allows for highway speeds to be monitored at a county level, but does not show vehicle volumes, or give any insights into origin-destination patterns.  At the national level, mode-specific datasets provide more spatial, temporal, and activity detail.   For example, the Carload Waybill sample  provides important data on rail cargo movements and the Air Operators Utilization Reports  provide important data on airplane activity.  Unfortunately, the Vehicle Inventory and Use Survey, which provided detailed data on truck and goods movements, was discontinued in 2002.  This leaves cities and towns have no nationally consistent sources of or guidelines for collecting truck activity data.

The most economically efficient solutions to these challenges will be identified through collaboration between cities and private partners.  One particularly successful and innovative solution can be found in the Urban Freight Lab at the University of Washington (https://urbanfreightlab.com/urban-freight-lab-0).  As the director of the Urban Freight Lab, I have built a coalition of private companies and public agencies who work together to identify and measure problems, and develop and pilot-test solutions that will provide benefits for a diverse group of public and the private sector stakeholders.  The goal is to find win-win solutions for businesses and city dwellers, and to avoid short-sighted solutions like blanket truck bans.

The Urban Freight Lab is successful because:

  • All participants have skin in the game.  Private sector contributions elevate public sector research funding and ensure that all participants fully engage.  This is fundamentally different from an advisory board or oversight committee because members must report back to their leadership and justify participation with measurable returns on investment.  This participation from the private sector improves relevance and timeliness of public sector support.
  • Collaboration amongst the private and public sector ensures that products of the lab are as mutually beneficial as possible.
  • Problems, evaluation metrics, and research ideas come from the group and are connected directly to real-world challenges faced, not the research directors, the public, or private sector alone.
  • Private- and public-sector participants are senior executives who have the authority to make decisions in quarterly meetings.  They do not need to return to the organization for approval.
  • Cities need freight planning capacity but currently don’t have any.  The work of the Urban Freight Lab fills gaps in problem definition, data collection, solution generation, orchestration and evaluation of pilot tests.
  • Robust analysis is conducted by University researchers – they serve an important role in taking an unbiased view and base their analysis on data.
  • Quarterly meetings are working meetings with detailed agendas and exit criteria.  The focus is on making progress, making decisions, and moving forward, not simply information sharing.
  • Private sector partners are operational and technical staff with knowledge of operations.
  • Public sector partners represent a breadth of functions including planning, engineering, curb management, mobility, and innovation.
  • University research focusses on practical outcomes and does not hide in theoretical concepts.
  • Solutions are tested on the ground through pilots and real tests.  The slow work of collaboration building and overcoming obstacles to implementation is part of the research.

Current private-sector lab members include Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno Realty Corporation, US Pack, UPS, and  the United States Postal Service (USPS).  The Seattle Department of Transportation represents the public-sector.

Seattle is a growing City and has now been ranked in the top 4 for growth among major cities for five consecutive years.  It is a geographically constrained city surrounded by water and mountains, and boasts some of the highest rates of bike, walk, and transit commuting in the country ; with less than a quarter of City Center commuters now driving alone to work. It is a technologically oriented City; with the region serving as the home to many technology companies such as Amazon, Convoy, Facebook, Google, Microsoft, and Tableau.  The City was one of the first to launch PayByPhone, electronic toll tags, weigh-In-motion, high-occupancy-toll lanes, passive bicycle counters, real-time transit monitoring, bike and car share programs, and most recently, an Open Data Portal .  In this sense, the City provides an excellent example for experimentation where the public and private sector face intense pressure to look for new solutions and approaches; and levels of congestion and pressure that other US Cities can anticipate in their future as populations grow and infrastructure construction does not keep pace.

With this private- and public-sector funding the Urban Freight Lab has:

  • produced foundational research on the Final Fifty Feet of the supply chain
    developed and applied approaches to quantify urban freight infrastructure
    developed and applied approaches to measure infrastructure
    generated and tested approaches to reducing dwell time and failed deliveries in urban areas including common lockers
    developed and implemented an approach to measuring the volume of vehicles entering and exiting the City of Seattle.

Ongoing work is supported in large part by a grant from the Department of Energy U.S. Department of Energy: Energy Efficiency & Renewable Energy (EERE) titled Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption.  This project, funded by DOE, provides $1.5 million over 3 years with matching funds from the City of Seattle, Sound Transit, King County Metro, Kroger, the City of Bellevue, and CBRE.  The project will evaluate the benefit of integrated technology applications on freight efficiency.  Within the scope of this grant, Urban Freight Lab members and the Seattle DOT will be involved in developing and testing applications of technology in the Belltown area of Seattle that will increase commercial efficiency and reduce impact of freight activity on city residents .

Moving Forward

Shopping patterns have evolved, but our infrastructure has not.  We need to rethink how we use our streets, curbs, and sidewalks if we want to maintain and grow our current shopping and delivery habits.

By consolidating many goods into a single route, delivery services could be an asset to communities; growing economic activity, reducing total vehicle miles travelled and associated carbon emissions, and supporting communities  less dependent on cars.  However, the current trend towards faster and faster deliveries; and businesses subsidizing delivery costs means we see lower vehicle utilization, higher numbers of vehicles and congestion, and increased emissions.

While some town and city governments have invested measuring the state of urban freight in their communities and developed improvements, most have limited resources and no guidance from the state or federal level.  For example, they do not know how many trucks operate in the region, what they carry, whether the current curb allocation is satisfactory, or what benefit might result from improvements.

New modes, technologies, and operational innovations provide opportunities for win-win solutions.  These new conditions may allow new modes such as electric assist cargo bikes  to outcompete existing modes. Electric and hybrid vehicles can reduce both global and local pollutants.  New technologies such as robotics, artificial intelligence, and electronic curbs may fundamentally shift the existing infrastructure paradigms.  Private companies are ready to test these innovations, and the US and state DOTs can play a role in supporting these tests and conducting evaluations.

Investments in the freight system must include the last mile, and in particular the final fifty feet of the delivery route as a consideration to ensure economic vitality and support quality of life.  This includes supporting towns and cities in investigating and understanding the current state of goods movement at the municipal scale, identifying and evaluating new solutions for cities and towns to adapt to changing supply chains, integrating freight planning and passenger planning, and ultimately providing healthy environments for businesses to thrive and great places to live.

Recommended Citation:
“Where’s My Stuff? Examining the Economic, Environmental, and Societal Impacts of Freight Transportation." United States House Committee on Transportation and Infrastructure the Subcommittee on Highways and Transit and the Subcommittee on Railroads, Pipelines, and Hazardous Materials (2019). (Anne Goodchild).
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov
Report

Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities

 
Download PDF  (1.27 MB)
Publication Date: 2023
Summary:

Freight load and unload facilities located off the public right-of-way are typically not documented in publicly available databases. Without detailed knowledge of these facilities, i.e. private freight load and unload infrastructure, cities are limited in their ability to complete system-wide freight planning and to comprehensively evaluate the total supply of load and unload spaces in the city. To address this challenge, this research describes the development and application of a data collection methodology and a typology of private freight load/unload facilities for their inventory and documentation in dense urban centers.

The tools developed in this research are practice-ready and can be implemented in other cities to support research, policy and planning approaches that aim to improve the urban freight system. Assessment of the degree of harmonization between the current delivery vehicle dimensions and infrastructure they service is a crucial step of any policy that addresses private freight load/unload infrastructures. This includes providing: the adequate access dimensions, capacity to accommodate the volume and vehicle type, and an effective connecting design between the facilities and the public right-of-way.

A case study in Downtown Seattle found more than 337 private freight facilities for loading/unloading of goods but that translates into only 5% of the buildings in the densest areas of the city had these facilities. Alleys were found to play a critical role since 36% of this freight infrastructure was accessed through alleys.

This research results in the first urban inventory of private freight load/unload infrastructure, which has been shown to be a valuable resource for the City of Seattle that can be used to better understand and plan for the urban freight system.

Recommended Citation:
Machado León, J., Girón-Valderrama, G., Goodchild, A., & McCormack, E. Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities (2023).