Skip to content
Technical Report

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

 
Download PDF  (3.07 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Publication Date: 2019
Summary:

This report presents a pilot test of a common carrier smart locker system — a promising strategy to reduce truck trip and failed first delivery attempts in urban buildings. The Urban Freight Lab tested this system in the 62-story Seattle Municipal Tower skyscraper in downtown Seattle.

The Urban Freight Lab identified two promising strategies for the pilot test: (1) Locker system: smaller- to medium-sized deliveries can be placed into a locker that was temporarily installed during the pilot test; and (2) Grouped-tenant-floor-drop-off-points for medium-sized items if the locker was too small or full (4-6 floor groups set up by Seattle Department of Transportation and Seattle City Light).

Users picked up their goods at the designated drop-off points. Flyers with information on drop-off-points were given to the carriers. UFL researchers evaluated the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by (1) Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and (2) Comparing them to the pilot test goals.

Recommended Citation:
Goodchild, A., Kim, H., & Ivanov, B. Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy. (2019)
Technical Report

Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90

 
Download PDF  (1.46 MB)
Publication Date: 2018
Summary:

Unresolved safety issues caused by truck parking shortages in high-demand locations are of keen importance to the State Departments of Transportation (DOTs) participating in the Regional PacTrans Center and to the thousands of trucking companies and drivers using the Interstate 5 (I-5) and Interstate 90 (I-90) corridors. Safety issues include serious and/or fatal crashes that may be related to the lack of safe and secure parking, and illegal/unofficial parking on entrance and exit ramps, shoulders, and freeway lanes that create hazards for motorists during severe weather.

WSDOT completed a statewide truck parking study in December 2016, and the Oregon Department of Transportation (ODOT) published a report on truck parking along the US97 corridor in July 2017. Both states are interested in addressing safety issues inherent in the current lack of truck parking capacity. Researchers at the Supply Chain Transportation and Logistics Center (SCTL) at the University of Washington developed this project’s research goals with WSDOT to support their work.

Goals

The project goals are to:
  • Provide data-based decision support to WSDOT and neighboring states as they develop solutions for the lack of safe truck parking along the I-5 and I-90 corridors.
  • Develop new and valuable insights from truck drivers’ expertise on safety problems resulting from the lack of truck parking capacity on these corridors.
To achieve these goals, the research team first conducted a research scan of existing studies and other online reports that describe the lack of parking in high-demand locations along the I-5 and I-90 corridors in the PacTrans region.

Future Trends 

SCTL identified three trends in the truck parking industry that will affect the truck parking shortage in the future:
  1. The rising cost of land in growing metropolitan areas will continue to intensify this problem. Rapidly increasing land costs create pressure on truck service firms to either create new revenue streams (charging for parking that was formerly included for ‘free’ along with retail fuel sales) or relocate further from metro centers if they cannot compete with higher-value land uses near highway interchanges. Also, manufacturing and wholesale facilities that generate a high number of truck trips will likely continue to maximize building footprints on parcels, reducing available land for on-site truck parking.
  2. Federal regulatory changes are likely to increase long-haul truck parking demand in the next 10 years. In the short term, the electronic logging device (ELD) mandate beginning in 2018 will change driver behavior. Although some long-haul drivers have not strictly followed federal Hours of Service (HOS) regulations in the past, under the new ELD mandate they are more likely to stop and park for required rest periods because it will be more difficult to evade detection. In the next 10 years, additional federal regulations may be enacted and shorten drivers’ HOS again, thereby increasing demand for more rest stops on the Interstate Highway System and other major truck routes.
  3. In the longer term, emerging autonomous and cooperative truck technologies that address driver fatigue are likely to reduce demand for truck stops in rural areas – but not near cities. The truck driver interviews conducted for this project show that drivers stop for business reasons, not just for safety rest periods.

Finally, SCTL conducted 184 interviews of truck drivers over a three-week time period at two high-demand truck stops on the I-5 and I-90 corridors to determine: (a) origin and destination of trips; (b) connection to the Ports of Seattle and Tacoma; (c) drivers’ perceptions of safety issues caused by a lack of truck parking; (d) types of commodities carried; and (e) why drivers parked at these rest stops.

Key Findings 

The SCTL Center’s research provides new data and insights to answer questions under discussion between state, local, and regional transportation agencies and communities in the central Puget Sound region. The research results supported development of the Washington State Freight Mobility Plan. However the project’s findings have not resulted in public funding for additional parking in high-demand locations near I5 and I-90.

One of the most topical questions is whether the state’s economy and/or the Ports of Seattle and Tacoma benefit from the truck trips that require rest stops near the Seattle-Tacoma Bellevue metropolitan area. This question is central to understanding their proportional roles and funding responsibilities to add parking capacity where it is scarce: in the central Puget Sound region.

  • The on-site truck driver survey showed that there is an extremely strong tie between truck parking activity and the state’s economy: 91% percent of trucks parked along I-90 (at TA Seattle East Travel Center in North Bend) and 87% of those parked along I-5 (at the Mustard Seed in Sumner) delivered goods to businesses and other customers within Washington State. The evidence belies the hypothesis that most trucks using parking facilities in Washington are passing through the state and therefore provide no economic value to it.
  • Most drivers using the two truck parking facilities in central Puget Sound were not going to either the Port of Seattle or Port of Tacoma. In fact, 83% of truck drivers parked near I-90 and 78% near I-5 did not go to either of the two container ports. Although port-related traffic uses iv the truck parking facilities, it is not the major cause of increased parking demand at these locations.
  • Why do truck drivers park in these facilities? Surprisingly, more park there – and park longer – for business reasons rather than for safety reasons. The largest group of drivers (34% of those interviewed at TA Seattle East and 36% at Mustard Seed) said their primary reason for the stop was to wait to meet a specific delivery time at their destination or wait to locate another load. When SCTL compared the number of hours parked with the primary reason for parking, it found that delivery operations were the largest driver for longer stays.

The research findings have been used to communicate the importance of providing truck parking in high-demand areas in Washington State, particularly near I-5 south of Seattle and along I-90 near North Bend, to local officials, WSDOT, and other state officials.

By an overwhelming margin, truck drivers who parked along I-5 and I90 near the Seattle-Tacoma-Bellevue metropolitan area delivered goods in Washington State, providing strong evidence that their activities support the state’s economy and residents.

Recommended Citation:
Giron-Valderrama, Gabriela, Barbara Ivanov, and Anne Goodchild. "Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90." (2018).
Technical Report

Characterization of Seattle’s Commercial Traffic Patterns: A Greater Downtown Area and Ballard/Interbay Vehicle Count and Evaluation

 
Download PDF  (5.59 MB)
Publication Date: 2021
Summary:

Seattle now ranks as the nation’s sixth-fastest growing city and is among the nation’s densest. As the city grows, so do truck volumes — volumes tied to economic growth for Seattle and the region as a whole. But many streets are already at capacity during peak hours and bottleneck conditions are worsening. This project is designed to deliver critical granular baseline data on commercial vehicle movement in two key areas of the city to help the city effectively and efficiently plan for growing freight demand.

This timely research from the Urban Freight Lab (UFL) on behalf of the Seattle Department of Transportation produces Seattle’s first complete estimate of Greater Downtown area traffic volumes. And it offers a detailed analysis of commercial vehicle traffic in and around one of the city’s two major industrial centers, the Ballard-Interbay Northern Manufacturing Industrial Center.

These efforts are significant because the city has lacked a comprehensive estimate of commercial vehicle volumes until now. In the Greater Downtown area, the cordon counts (tracking traffic in and out of 39 entry/exit points) alongside traffic volume estimates will provide a powerful tool for local government to model, evaluate, develop, and refine transportation planning policies. This study lays the groundwork for the first commercial vehicle traffic model that will enable the evaluation of different freight planning and traffic management strategies, economic growth scenarios, and application of new freight vehicle technologies. Ballard-Interbay is slated for major infrastructure projects in the coming years, including new Sound Transit stations and critical bridge replacements. This analysis will help inform these projects, which are critical to an efficient, reliable transportation system for goods and people.

One overall finding merits attention as it suggests the need to update some of the freight network element categories defined in the current Seattle Freight Master Plan. The SCTL research team finds that the volume of smaller commercial vehicles (such as pick-ups, vans, and step vans) is significant in both the Greater Downtown area and Ballard-Interbay, representing more than half of all commercial vehicles observed (54% in the Greater Downtown area and 60% in Ballard-Interbay.) Among those smaller commercial vehicles, it is service vehicles that constitute a significant share of commercial traffic (representing 30% in the Greater Downtown area and 40% in Ballard-Interbay.) Among the myriad possible ramifications of this finding is parking planning. An earlier SCTL research paper (1) found service vehicles tend to have longer dwell times, with 44% of all observed service vehicles parked for more than 30 minutes and 27% parked for an hour or more. Given this study’s finding of service vehicles representing a significant share of commercial traffic volume, these vehicles may have a disproportionate impact on parking space rates at the curb.

Comprehensive planning requires comprehensive data. Yet cities like Seattle often lack the detailed data needed for effective freight planning, from peak hours and fleet composition to activity type and gateways of entry/exit. And if cities do have data, they are often too highly aggregated to be useful for management or planning or suffer from lack of comparability or data confidentiality problems.

Currently, urban traffic volume estimates by Puget Sound agencies are limited in spatial and vehicular detail. For example:

  • Seattle Department of Transportation (SDOT) is responsible for recording traffic counts through the year on selected arterial streets in Seattle, providing a seasonally adjusted average weekday total vehicle traffic for all lanes at all count locations.
  • Washington Department of Transportation (WSDOT) provides annual average daily traffic volumes in select locations of their jurisdiction, including the major interstates and state highways in the Seattle area. This data includes truck volume separated into three types: single, double, and triple units.
  • Puget Sound Regional Council (PSRC) regional truck model has three levels of vehicle classification: light commercial, medium trucks, and heavy trucks. This is based on WSDOT Annual Traffic Flow’s count locations and additional manual counts for model validation through the Puget Sound Region.

But none of these existing efforts produce enough detail to understand Seattle’s vehicle movements or connect them with economic activity. To fill the gap, Seattle could consider adopting a standard freight-data reporting system that would emphasize collecting and distributing richer and better data for time-series analysis and other freight forecasting, similar to systems used in cities like Toronto and London. Seattle is a national leader when it comes to freight master plans. This study offers a critical snapshot of the detailed data needed for effective policy and planning, potentially informing everything from road maintenance and traffic signals to electric vehicle charging station sites and possible proposals for congestion pricing. That said, Seattle could benefit greatly from sustained, ongoing detailed data reporting.

Recommended Citation:
Urban Freight Lab (2021). Characterization of Seattle's Commercial Traffic Patterns: A Greater Downtown Area and Ballard/Interbay Vehicle Count and Evaluation.
Technical Report

Defining Washington State Truck Intermodal Network

 
Download PDF  (0.52 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2011
Summary:

In order to support WSDOT in development of the Washington State Freight Mobility Plan, this document presents recommendations for criteria to be used in defining the Washington state truck intermodal network.

The state does not have an existing definition of the freight truck-intermodal system. To establish the criteria, this project reviewed methods used by other states, identified the facilities in Washington specified by the National Highway System, and compared these facilities to those identified by regional planning organizations. Finally, recommendations are made for criteria to use in identifying the truck intermodal network for Washington.

Recommended Citation:
Goodchild, A. V., & Ivanov, B. (2011). Defining the Washington State Truck Intermodal Network (No. WA-RD 783.1). Washington State Department of Transportation, Office of Research & Library Services.
Technical Report

Multimodal Intersections: Resolving Conflicts between Trains, Motor Vehicles, Bicyclists and Pedestrians

 
Download PDF  (9.16 MB)
Publication: Oregon State Department of Transportation
Publication Date: 2017
Summary:

This research report investigates the relationship between pedestrians and bicyclists on paths parallel to railroad tracks and with a road perpendicular to the path. The possible conflicts at intersections within these design parameters are of concern to ODOT, and therefore, has been recognized as an opportunity to conduct research that improves this type of intersection. The goal of this research project is to create a Guidebook that suggests appropriate path or road treatments for crossings, while also acknowledging and complimenting the unique site conditions present at the intersection. The report contains an extensive literature review, including existing railroad treatment options, and a description of the conducted field surveys and pedestrian, bicycle, vehicle, and train counts from the video. The report could help future work, such as developing more design solutions for paths parallel to tracks and the road perpendicular to the path. A preliminary guidebook is exemplified in the conducted case studies. It is intended to be a user friendly tool for city planners and engineers to assess a crossing and identify appropriate treatment options to improve the path and road user environment, and overall safety for all users.

Recommended Citation:
Goodchild, Anne V., Edward McCormack, Anna Bovbjerg, and Manali Sheth. Multimodal Intersections: Resolving Conflicts Between Trains, Motor Vehicles, Bicyclists and Pedestrians. No. FHWA-OR-18-04. Oregon. Dept. of Transportation, 2017.
Technical Report

Urban Goods Delivery Toolkit

Publication Date: 2020
Summary:

This Toolkit is designed to help transportation professionals and researchers gather key data needed to make the Final 50 Feet segment function as efficiently as possible, reducing both the time trucks park in load/unload spaces and the number of failed first delivery attempts.

In addition, the toolkit can help transportation planners, traffic engineers, freight system managers, parking and operations strategists, and researchers build a fundamental knowledge base for planning; managing parking operations; managing emergency management and response; updating traffic, land use and building codes; and modeling future scenarios and needs.

In short, the toolkit can be used to help cities meet the ever-increasing demand for trucks and other load/unload activities.

Recommended Citation:
Urban Freight Lab. (2020) Urban Goods Delivery Toolkit. https://depts.washington.edu/toolkit
Technical Report

Cross Border Transportation Patterns at the Western Cascade Gateway and Trade Corridor: Implications for Mitigating the Impact of Delay on Regional Supply Chains

 
Download PDF  (1.83 MB)
Publication: Western Washington University Border Policy Research Institute
Publication Date: 2008
Summary:

This report presents a commercial vehicle profile of transportation patterns and a commodity profile of the primary border crossing along the Western Cascade border region of southwest British Columbia, Canada, and northwest Washington, United States, in particular the corridor between the urban areas of Vancouver, British Columbia, and Seattle, Washington.

Because of the larger trade volumes along the eastern portion of the U.S.-Canadian border between Michigan, New York, and Ontario, trade research on the northern U.S. border has typically focused on trade along the eastern portion of the border between Michigan, New York, and Ontario, as well as on immigration and customs issues along the southern border with Mexico. As a result, less attention has been given to the western portion of the U.S./Canada border.

This research begins to fill that gap with both a description of regional trade and a description of current delay patterns, consequences of delay, and causes of delay. Using four data sources for comparison—a Global Positioning System (GPS) freight carrier border delay data set, a commercial volume data set (BC MoT), a detailed border operations survey data set, and manifest sampling (WCOG)—the authors consider the linkages among volume, delay, border operations, commercial vehicle origin/destination, and commodities carried to create a commercial vehicle profile at the Cascade Gateway. The data also allow the authors to demonstrate transportation patterns at this gateway and along the trade corridor, and to show that they are very regional in nature.

This research will benefit both public and private stakeholders who are interested in understanding cross-border commercial vehicle commodity flows and transportation patterns in the Cascade gateway and trade corridor, as well as the profile of delay experienced at the Pacific Highway commercial border crossing. Such an understanding can aid in the development of solutions to mitigate border delay and its impacts.

Authors: Dr. Anne Goodchild, Li Leung, Susan Albrecht
Recommended Citation:
Goodchild, A., Albrecht, S., & Leung, L. (2008). Cross Border Transportation Patterns at the Western Cascade Gateway and Trade Corridor: Implications for Mitigating the Impact of Delay on Regional Supply Chains (Research Report No. 6).
Technical Report

Changing Retail Business Models and the Impact on CO2 Emissions from Transport: E-commerce Deliveries in Urban and Rural Areas

 
Download PDF  (2.21 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Volume: 2013-S-UW-0023
Publication Date: 2014
Summary:

While researchers have found relationships between passenger vehicle travel and smart growth development patterns, similar relationships have not been extensively studied between urban form and goods movement trip-making patterns. In rural areas, where shopping choice is more limited, goods movement delivery has the potential to be relatively more important than in more urban areas. As such, this work examines the relationships between certain development pattern characteristics including density and distance from warehousing. This work models the amount of carbon dioxide (CO2), nitrogen oxides (NOx), and Particle Matter (PM10) generated by personal travel and delivery vehicles in several different scenarios, including various warehouse locations. Linear models were estimated via regression modeling for each dependent variable for each goods movement strategy. Parsimonious models maintained nearly all of the explanatory power of more complex models and relied on one or two variables – a measure of road density and a measure of distance to the warehouse. Increasing road density or decreasing the distance to the warehouse reduces the impacts as measured in the dependent variables (vehicle miles traveled (VMT), CO2, NOx, and PM10). The authors find that delivery services offer relatively more CO2 reduction benefit in rural areas when compared to CO2 urban areas, and that in all cases delivery services offer significant VMT reductions. Delivery services in both urban and rural areas, however, increase NOX and PM10 emissions.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Goodchild, Anne, and Erica Wygonik. Changing retail business models and the impact on CO2 emissions from transport: e-commerce deliveries in urban and rural areas. No. 2013-S-UW-0023. Pacific Northwest Transportation Consortium, 2014.
Technical Report

Improving Food Rescue in Seattle: What Can Be Learned from a Supply Chain View?

 
Download PDF  (0.68 MB)
Publication Date: 2020
Summary:

Seattle is one of the nation’s fastest-growing cities, presenting both opportunities and challenges for food waste. An estimated 94,500 tons of food from Seattle businesses end up in compost bins or landfills each year—some of it edible food that simply never got sold at restaurants, grocery stores, hospitals, schools or dining facilities. Meantime, members of our community remain food insecure. It makes sense for food to feed people rather than become waste.

This is why Seattle Public Utilities continues to support efforts toward food rescue, where edible food that would otherwise enter the waste stream is gleaned from local businesses and re-distributed to local food programs. SPU has joined other cities, states, and regional coalitions in committing to cutting food waste by 50 percent from 2015 by 2030, leading with prevention and rescue.

Since 2018, SPU has engaged more than 80 stakeholders from 50-plus organizations in a Food Rescue Innovation Initiative—a collaborative effort to better understand food rescue challenges and explore potential solutions. The initiative surfaced transportation and logistics as one of the key challenges.

To that end, SPU asked the University of Washington Supply Chain Transportation and Logistics Center (SCTL) to conduct foundational research into the logistics of food rescue in Seattle. This research forms part of SPU’s broader work to identify barriers to making food rescue operations in Seattle as effective and efficient as possible—and work toward solutions to overcome those barriers with both the private and public sector. The SCTL research includes interviews with a representative cross-section of food suppliers, food bank agencies, meal program providers and nonprofit partners.

With this document, SPU seeks to inform the myriad businesses that donate food (and by doing so, reduce their waste costs); the wide range of nonprofit hunger relief partners who collect and redistribute donated food to community members in need; local government; and locally based companies with supply chain logistics expertise that could contribute solutions to this complex puzzle.

 

Recommended Citation:
Urban Freight Lab (2020). Improving Food Rescue in Seattle: What Can Be Learned from a Supply Chain View?
Technical Report

Cost, Emissions, and Customer Service Trade-Off Analysis In Pickup and Delivery Systems

Publication: Oregon Department of Transportation, Research Section
Publication Date: 2011
Summary:

This research offers a novel formulation for including emissions into fleet assignment and vehicle routing and for the trade-offs faced by fleet operators between cost, emissions, and service quality. This approach enables evaluation of the impact of a variety of internal changes (e.g. time window schemes) and external policies (e.g. spatial restrictions), and enables comparisons of the relative impacts on fleet emissions. To apply the above approach to real fleets, three different case studies were developed. Each of these cases has significant differences in their fleet composition, customers’ requirements, and operational features that provide this research with the opportunity to explore different scenarios.

The research includes estimations of the impact on cost and CO2 and NOX emissions from fleet upgrades, the impact on cost, emissions, and customer wait time when demand density or location changes, and the impact on cost, emissions, and customer wait time from congestion and time window flexibility. Additionally, it shows that any infrastructure use restriction increases cost and emissions. A discussion of the implications for policymakers and fleet operators in a variety of physical and transportation environments is also presented.

Authors: Dr. Anne Goodchild, Felipe Sandoval
Recommended Citation:
Goodchild, A., & Sandoval, F. (2011). Cost, Emissions, and Customer Service Trade-Off Analysis In Pickup and Delivery Systems (No. OR-RD 11-13). Oregon Department of Transportation Research Section.