Skip to content
Technical Report

Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90

 
Download PDF  (1.46 MB)
Publication Date: 2018
Summary:

Unresolved safety issues caused by truck parking shortages in high-demand locations are of keen importance to the State Departments of Transportation (DOTs) participating in the Regional PacTrans Center and to the thousands of trucking companies and drivers using the Interstate 5 (I-5) and Interstate 90 (I-90) corridors. Safety issues include serious and/or fatal crashes that may be related to the lack of safe and secure parking, and illegal/unofficial parking on entrance and exit ramps, shoulders, and freeway lanes that create hazards for motorists during severe weather.

WSDOT completed a statewide truck parking study in December 2016, and the Oregon Department of Transportation (ODOT) published a report on truck parking along the US97 corridor in July 2017. Both states are interested in addressing safety issues inherent in the current lack of truck parking capacity. Researchers at the Supply Chain Transportation and Logistics Center (SCTL) at the University of Washington developed this project’s research goals with WSDOT to support their work.

Goals

The project goals are to:
  • Provide data-based decision support to WSDOT and neighboring states as they develop solutions for the lack of safe truck parking along the I-5 and I-90 corridors.
  • Develop new and valuable insights from truck drivers’ expertise on safety problems resulting from the lack of truck parking capacity on these corridors.
To achieve these goals, the research team first conducted a research scan of existing studies and other online reports that describe the lack of parking in high-demand locations along the I-5 and I-90 corridors in the PacTrans region.

Future Trends 

SCTL identified three trends in the truck parking industry that will affect the truck parking shortage in the future:
  1. The rising cost of land in growing metropolitan areas will continue to intensify this problem. Rapidly increasing land costs create pressure on truck service firms to either create new revenue streams (charging for parking that was formerly included for ‘free’ along with retail fuel sales) or relocate further from metro centers if they cannot compete with higher-value land uses near highway interchanges. Also, manufacturing and wholesale facilities that generate a high number of truck trips will likely continue to maximize building footprints on parcels, reducing available land for on-site truck parking.
  2. Federal regulatory changes are likely to increase long-haul truck parking demand in the next 10 years. In the short term, the electronic logging device (ELD) mandate beginning in 2018 will change driver behavior. Although some long-haul drivers have not strictly followed federal Hours of Service (HOS) regulations in the past, under the new ELD mandate they are more likely to stop and park for required rest periods because it will be more difficult to evade detection. In the next 10 years, additional federal regulations may be enacted and shorten drivers’ HOS again, thereby increasing demand for more rest stops on the Interstate Highway System and other major truck routes.
  3. In the longer term, emerging autonomous and cooperative truck technologies that address driver fatigue are likely to reduce demand for truck stops in rural areas – but not near cities. The truck driver interviews conducted for this project show that drivers stop for business reasons, not just for safety rest periods.

Finally, SCTL conducted 184 interviews of truck drivers over a three-week time period at two high-demand truck stops on the I-5 and I-90 corridors to determine: (a) origin and destination of trips; (b) connection to the Ports of Seattle and Tacoma; (c) drivers’ perceptions of safety issues caused by a lack of truck parking; (d) types of commodities carried; and (e) why drivers parked at these rest stops.

Key Findings 

The SCTL Center’s research provides new data and insights to answer questions under discussion between state, local, and regional transportation agencies and communities in the central Puget Sound region. The research results supported development of the Washington State Freight Mobility Plan. However the project’s findings have not resulted in public funding for additional parking in high-demand locations near I5 and I-90.

One of the most topical questions is whether the state’s economy and/or the Ports of Seattle and Tacoma benefit from the truck trips that require rest stops near the Seattle-Tacoma Bellevue metropolitan area. This question is central to understanding their proportional roles and funding responsibilities to add parking capacity where it is scarce: in the central Puget Sound region.

  • The on-site truck driver survey showed that there is an extremely strong tie between truck parking activity and the state’s economy: 91% percent of trucks parked along I-90 (at TA Seattle East Travel Center in North Bend) and 87% of those parked along I-5 (at the Mustard Seed in Sumner) delivered goods to businesses and other customers within Washington State. The evidence belies the hypothesis that most trucks using parking facilities in Washington are passing through the state and therefore provide no economic value to it.
  • Most drivers using the two truck parking facilities in central Puget Sound were not going to either the Port of Seattle or Port of Tacoma. In fact, 83% of truck drivers parked near I-90 and 78% near I-5 did not go to either of the two container ports. Although port-related traffic uses iv the truck parking facilities, it is not the major cause of increased parking demand at these locations.
  • Why do truck drivers park in these facilities? Surprisingly, more park there – and park longer – for business reasons rather than for safety reasons. The largest group of drivers (34% of those interviewed at TA Seattle East and 36% at Mustard Seed) said their primary reason for the stop was to wait to meet a specific delivery time at their destination or wait to locate another load. When SCTL compared the number of hours parked with the primary reason for parking, it found that delivery operations were the largest driver for longer stays.

The research findings have been used to communicate the importance of providing truck parking in high-demand areas in Washington State, particularly near I-5 south of Seattle and along I-90 near North Bend, to local officials, WSDOT, and other state officials.

By an overwhelming margin, truck drivers who parked along I-5 and I90 near the Seattle-Tacoma-Bellevue metropolitan area delivered goods in Washington State, providing strong evidence that their activities support the state’s economy and residents.

Recommended Citation:
Giron-Valderrama, Gabriela, Barbara Ivanov, and Anne Goodchild. "Safe Truck Parking in PacTrans Interstate Corridors: I-5 and I-90." (2018).
Technical Report

Characterization of Seattle’s Commercial Traffic Patterns: A Greater Downtown Area and Ballard/Interbay Vehicle Count and Evaluation

 
Download PDF  (5.59 MB)
Publication Date: 2021
Summary:

Seattle now ranks as the nation’s sixth-fastest growing city and is among the nation’s densest. As the city grows, so do truck volumes — volumes tied to economic growth for Seattle and the region as a whole. But many streets are already at capacity during peak hours and bottleneck conditions are worsening. This project is designed to deliver critical granular baseline data on commercial vehicle movement in two key areas of the city to help the city effectively and efficiently plan for growing freight demand.

This timely research from the Urban Freight Lab (UFL) on behalf of the Seattle Department of Transportation produces Seattle’s first complete estimate of Greater Downtown area traffic volumes. And it offers a detailed analysis of commercial vehicle traffic in and around one of the city’s two major industrial centers, the Ballard-Interbay Northern Manufacturing Industrial Center.

These efforts are significant because the city has lacked a comprehensive estimate of commercial vehicle volumes until now. In the Greater Downtown area, the cordon counts (tracking traffic in and out of 39 entry/exit points) alongside traffic volume estimates will provide a powerful tool for local government to model, evaluate, develop, and refine transportation planning policies. This study lays the groundwork for the first commercial vehicle traffic model that will enable the evaluation of different freight planning and traffic management strategies, economic growth scenarios, and application of new freight vehicle technologies. Ballard-Interbay is slated for major infrastructure projects in the coming years, including new Sound Transit stations and critical bridge replacements. This analysis will help inform these projects, which are critical to an efficient, reliable transportation system for goods and people.

One overall finding merits attention as it suggests the need to update some of the freight network element categories defined in the current Seattle Freight Master Plan. The SCTL research team finds that the volume of smaller commercial vehicles (such as pick-ups, vans, and step vans) is significant in both the Greater Downtown area and Ballard-Interbay, representing more than half of all commercial vehicles observed (54% in the Greater Downtown area and 60% in Ballard-Interbay.) Among those smaller commercial vehicles, it is service vehicles that constitute a significant share of commercial traffic (representing 30% in the Greater Downtown area and 40% in Ballard-Interbay.) Among the myriad possible ramifications of this finding is parking planning. An earlier SCTL research paper (1) found service vehicles tend to have longer dwell times, with 44% of all observed service vehicles parked for more than 30 minutes and 27% parked for an hour or more. Given this study’s finding of service vehicles representing a significant share of commercial traffic volume, these vehicles may have a disproportionate impact on parking space rates at the curb.

Comprehensive planning requires comprehensive data. Yet cities like Seattle often lack the detailed data needed for effective freight planning, from peak hours and fleet composition to activity type and gateways of entry/exit. And if cities do have data, they are often too highly aggregated to be useful for management or planning or suffer from lack of comparability or data confidentiality problems.

Currently, urban traffic volume estimates by Puget Sound agencies are limited in spatial and vehicular detail. For example:

  • Seattle Department of Transportation (SDOT) is responsible for recording traffic counts through the year on selected arterial streets in Seattle, providing a seasonally adjusted average weekday total vehicle traffic for all lanes at all count locations.
  • Washington Department of Transportation (WSDOT) provides annual average daily traffic volumes in select locations of their jurisdiction, including the major interstates and state highways in the Seattle area. This data includes truck volume separated into three types: single, double, and triple units.
  • Puget Sound Regional Council (PSRC) regional truck model has three levels of vehicle classification: light commercial, medium trucks, and heavy trucks. This is based on WSDOT Annual Traffic Flow’s count locations and additional manual counts for model validation through the Puget Sound Region.

But none of these existing efforts produce enough detail to understand Seattle’s vehicle movements or connect them with economic activity. To fill the gap, Seattle could consider adopting a standard freight-data reporting system that would emphasize collecting and distributing richer and better data for time-series analysis and other freight forecasting, similar to systems used in cities like Toronto and London. Seattle is a national leader when it comes to freight master plans. This study offers a critical snapshot of the detailed data needed for effective policy and planning, potentially informing everything from road maintenance and traffic signals to electric vehicle charging station sites and possible proposals for congestion pricing. That said, Seattle could benefit greatly from sustained, ongoing detailed data reporting.

Recommended Citation:
Urban Freight Lab (2021). Characterization of Seattle's Commercial Traffic Patterns: A Greater Downtown Area and Ballard/Interbay Vehicle Count and Evaluation.
Technical Report

Defining Washington State Truck Intermodal Network

 
Download PDF  (0.52 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2011
Summary:

In order to support WSDOT in development of the Washington State Freight Mobility Plan, this document presents recommendations for criteria to be used in defining the Washington state truck intermodal network.

The state does not have an existing definition of the freight truck-intermodal system. To establish the criteria, this project reviewed methods used by other states, identified the facilities in Washington specified by the National Highway System, and compared these facilities to those identified by regional planning organizations. Finally, recommendations are made for criteria to use in identifying the truck intermodal network for Washington.

Recommended Citation:
Goodchild, A. V., & Ivanov, B. (2011). Defining the Washington State Truck Intermodal Network (No. WA-RD 783.1). Washington State Department of Transportation, Office of Research & Library Services.
Technical Report

Multimodal Intersections: Resolving Conflicts between Trains, Motor Vehicles, Bicyclists and Pedestrians

 
Download PDF  (9.16 MB)
Publication: Oregon State Department of Transportation
Publication Date: 2017
Summary:

This research report investigates the relationship between pedestrians and bicyclists on paths parallel to railroad tracks and with a road perpendicular to the path. The possible conflicts at intersections within these design parameters are of concern to ODOT, and therefore, has been recognized as an opportunity to conduct research that improves this type of intersection. The goal of this research project is to create a Guidebook that suggests appropriate path or road treatments for crossings, while also acknowledging and complimenting the unique site conditions present at the intersection. The report contains an extensive literature review, including existing railroad treatment options, and a description of the conducted field surveys and pedestrian, bicycle, vehicle, and train counts from the video. The report could help future work, such as developing more design solutions for paths parallel to tracks and the road perpendicular to the path. A preliminary guidebook is exemplified in the conducted case studies. It is intended to be a user friendly tool for city planners and engineers to assess a crossing and identify appropriate treatment options to improve the path and road user environment, and overall safety for all users.

Recommended Citation:
Goodchild, Anne V., Edward McCormack, Anna Bovbjerg, and Manali Sheth. Multimodal Intersections: Resolving Conflicts Between Trains, Motor Vehicles, Bicyclists and Pedestrians. No. FHWA-OR-18-04. Oregon. Dept. of Transportation, 2017.