Skip to content
Technical Report

Route Machine: UW Medicine Department of Medicine Courier Services

 
Download PDF  (1.85 MB)
Publication Date: 2019
Summary:

The goal of this report is to survey the current state of practice of UW Medicine Department of Laboratory Medicine Courier Services in order to evaluate potential software(s) that can be implemented to fill information gaps needed to effectively and efficiently make informed decisions. The report describes the high-level goals and decision scope of the route machine, observations of the current state, evaluation criteria and ‘route machine’ options.

The information in this report can be used to inform:

  • What data insights (indicators) might be helpful for strategizing courier routing decisions and communicating information to leadership
  • Potential improvement strategies and what they might look like in implementation
  • Suitability of various data collection, visualization, and analytical tools, and off-the-shelf packages

This information provides the UW Department of Laboratory Medicine Courier Services the information needed to select tools(s), and general data insights the ‘route machine’ for implementation.

The rest of this document is organized as follows:

  • Objectives and decision scope of the ‘route machine’
  • Observations of the current routes
  • A list of key-performance indicators
  • Potential strategies for improving routes
  • Recommendations
  • Screenshots of Dashboard Prototypes and WorkWaze
Recommended Citation:
Greene, Chelsea and Anne Goodchild (2019). Route Machine: UW Medicine Department of Medicine Courier Services.
Technical Report

Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning

 
Download PDF  (1.07 MB)
Publication: Transportation Northwest (TransNow)
Publication Date: 2008
Summary:
The proposed research will address an emerging need by local, state and regional transportation planners and policymakers to better understand the transportation characteristics, functions and dynamics of ocean port-to-handling facility and handling facility-to-final market freight movements. The research will also address a gap in the academic literature for freight transportation models that capture underlying economic forces. This research effort will focus on the development and refinement of a regional freight model of urban container movements from the port to a handling facility and beyond. Existing regional transportation planning models and analytical tools have evolved from passenger travel demand models that are ill-suited to fully capture the business decisions and economic influences driving urban freight flows and have been further constrained by access to appropriate freight data. This research activity proposes a modeling approach which will capture the fundamental economic choices individual shippers consider when trading-off the marginal benefits/costs associated with warehouse inventory management/control relative to transportation access and flow while incorporating the primary freight generation activity centers (warehouse/distribution centers) in the Puget Sound region. This work will identify, evaluate and incorporate data for the Puget Sound region recently available from a variety of existing sources. Some data collection may also be necessary. The final product of this research study will be an improved tool to understand current and future freight movements through the Puget Sound region, and a methodology which will expand the current state of knowledge, and may be applied in other regions, both domestic and international. It will allow more in-depth and timely evaluation and analysis of different local/regional transportation policy initiatives such as the impact of migration of the main warehousing region, and development of inland inter-modal port facilities.

 

 

Authors: Dr. Anne Goodchild, Kaori Fugisawa, Eric Jessup
Recommended Citation:
Goodchild, Anne V., Eric L. Jessup, and Kaori Fugisawa. Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning. No. TNW2008-08. 2008.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Technical Report

Development, Deployment, and Assessment of Activity-Based Transportation Courses

 
Download PDF  (2.60 MB)
Publication: U.S. Federal Highway Administration
Publication Date: 2012
Summary:

This project developed four new activity‐based transportation courses including “Traffic Signal Systems Operations and Design”, “Understanding and Communicating Transportation Data”, “Introduction to Freight Transportation”, and “Rural Highway Design and Safety”. The courses are learner‐centered in which activities completed by students form the basis for their learning. The courses were offered fourteen times to a total of 195 students. Activity books that included 142 activities were developed for the four courses. The books and all supporting materials are available on the project web site. A number of assessments and evaluations were conducted to determine how effective the courses and materials were in meeting project objectives. The active learning style was a challenge for many students, as they were required to be prepared for class and to do “active” work during class. In general, there was an acceptance of the value of the active learning environments and how they positively contributed to student learning.

Authors: Dr. Anne Goodchild, Michael Kyte, Steve Beyerlein, Shane Brown, Chris Monsere, Kelly Pitera, Ming Le
Recommended Citation:
Kyte, Michael, Steve Beyerlein, Shane Brown, Chris Monsere, Anne Goodchild, Kelly Pitera, and Ming Lee. "Development, Deployment, and Assessment of Activity-Based Transportation Courses." (2012).
Technical Report

Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions

 
Download PDF  (3.37 MB)
Publication Date: 2023
Summary:

Millions of people who live and work in cities purchase goods online. As ecommerce and urban deliveries spike, there is an increasing demand for curbside loading and unloading space. To better manage city curb spaces for urban freight, city planners and decision makers need to understand commercial vehicle driver behaviors and the factors they consider when parking at the curb.

Urban freight transportation is a diverse phenomenon. Commercial vehicle drivers must overcome several obstacles and adapt to various rules and policies to properly navigate the intricate metropolitan network and make deliveries and pick-ups. However, other road users and occasionally municipal planners generally view them as contributing considerably to urban congestio, responsible for unauthorized parking, double parking, and exceeding their legal parking time.

These realities reflect the need for a thorough comprehension of commercial vehicle operators’ core decision-making procedures and parking habits to inform and adjust curb management policies and procedures. However, more robust corroborated literature on the subject is needed. The information used in these studies is typically obtained from empirical field research, which, while valuable, is limited to certain situations and case scenarios. Therefore, to improve the operation of urban transportation networks, it is necessary to study commercial vehicle drivers’ parking behavior in a controlled environment.

This project used a heavy vehicle driving simulator to examine commercial vehicle drivers’ curbside parking behaviors in various environments in shared urban areas. Also observed were the interactions between commercial vehicle drivers and other road users.

The experiment was successfully completed by 12 participants. Five independent variables were included in this experiment: number of lanes (two-lane and four-lane roads), bike lane existence, passenger vehicle parking space availability, commercial vehicle loading zones (CVLZs) (no CVLZ, occupied CVLZs, and unoccupied CVLZs), and parking time (short-term parking: 3 to 5 minutes and long-term parking: 20 to 60 minutes). The heavy vehicle driving simulator also collected data regarding participants’ driving speed, eye movement, and stress level.

Results from the heavy vehicle driving simulator experiment indicated that the presence of a bike lane had significant effects on commercial vehicle drivers’ parking decisions., but only a slight effect on fixation duration times. The average fixation duration time, representing how long participants looked at a particular object, on the road with a bike lane was 4.81 seconds, whereas it was 5.25 seconds on roads without a bike lane. Results also showed that the frequency of illegal parking (not parking in the CVLZs) was greater during short-term parking activities, occurring 60 times (45 percent of parking maneuvers). Delivery times also had a slight effect on commercial vehicles’ speed while searching for parking (short-term parking was 17.7 mph; long term parking was 17.2 mph) and on drivers’ level of stress (short-term parking was 8.16 peaks/mins; long-term parking was 8.36 peaks/mins). Seven percent of participants chose to park in the travel lane, which suggested that commercial vehicle operators prioritize minimizing their walking distance to the destination over the violation of parking regulations.

The limited sample size demonstrated the value of our experimental approach but limited the strength of the recommendations that can be applied to practice. With that limitation acknowledged, our preliminary recommendations for city planners include infrastructure installation (i.e., convex mirrors installed at the curbside and CVLZ signs) to help drivers more easily identify legal parking spaces, and pavement markings (i.e., CVLZs, buffered bike lanes) to improve safety when parking. Parking time limits and buffers for bike lanes could improve efficient operation and safety for cyclists and other road users.

For future work, larger sample sizes should be collected. Additional factors could be considered, such as increased traffic flow, pedestrian traffic, conflicts among multiple delivery vehicles simultaneously, various curb use type allocations, and different curb policies and enforcement. Including a larger variety of commercial vehicle sizes and loading, zone sizes would also be of value. A combination of field observations and a driving simulator study could also help validate this investigation’s outcomes.

Authors: Dr. Andisheh RanjbariDr. Anne GoodchildDr. Ed McCormackRishi Verma, David S. Hurwitz (Oregon State University), Yujun Liu (Oregon State University), Hisham Jashami (Oregon State University)
Recommended Citation:
Goodchild, A., McCormack, E., Hurwitz, D., Ranjbari, A., Verma, R., Liu, Y., & Jashami, H. (2023). Insights from Driver Parking Decisions in a Truck Simulator to Inform Curb Management Decisions. PacTrans. 
Technical Report

Using Truck Fleet Management GPS Data to Develop the Foundation for a Performance Measures Program

 
Download PDF  (1.12 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2011
Summary:

Global positioning systems (GPS) used for fleet management by trucking companies provide probe data that can support a truck performance-monitoring program. This paper discusses the steps taken to acquire fleet management data and then process those data so they can eventually be used for a network-based truck performance measures program. While other studies have evaluated truck travel by using GPS, they have used a limited number of project-specific and temporary devices that have collected frequent location reads, permitting a fine-grained performance analysis of specific roadway segments. In contrast, this fleet management GPS data project involved infrequent reads but a relatively large number of different trucks with ongoing data collection. The most effective approach to obtaining the fleet management data was to purchase the data directly from GPS vendors. Because a performance measures program ultimately monitors trips generated by trucks as they travel between origins and destinations, an algorithm was developed to extract trip end information from the data. The large volume of data required automated processing without manual intervention. Because performance measures require travel times and speeds, it was also necessary to evaluate whether speed data from a large number of trucks could compensate for infrequent location reads. Spot speeds recorded by the trucks’ GPS devices were compared to speed data from roadway loops. The researchers concluded that spot speed data can indicate free flow conditions, but sufficient quantities of data are probably necessary to measure congested travel.

 

Authors: Dr. Ed McCormack, Wenjuan Zhao
Recommended Citation:
McCormack, E. D., Zhao, W., & Tabat, D. (2011). GPS truck data performance measures program in Washington State. Washington State Department of Transportation, Office of Research. 
Technical Report

Development of a Freight Benefit/Cost Methodology for Project Planning

 
Download PDF  (1.32 MB)
Publication: Washington State Department of Transportation, Pacific NW Transportation Consortium (PacTrans)
Publication Date: 2013
Summary:
Future reauthorizations of the federal transportation bill will require a comprehensive and quantitative analysis of the freight benefits of proposed freight system projects. To prioritize public investments in freight systems and to ensure consideration of the contribution of freight to the overall system performance, states and regions need an improved method to analyze freight benefits associated with proposed highway and truck intermodal improvements that would lead to enhanced trade and sustainable economic growth, improved safety and environmental quality, and goods delivery in Washington State.
This project develops a process to address this need by building on previous and ongoing research by some project team members to develop an agency-friendly, data-supported framework to prioritize public investments for freight systems in Washington and Oregon. The project integrates two ongoing WSDOT-funded efforts: one to create methods to calculate the value of truck and truck-intermodal infrastructure projects and the other to collect truck probe data from commercial GPS devices to create a statewide Freight Performance Measures (FPM) program. This integration informs the development of a framework that allows public agencies to quantify freight investment benefits in specific areas such as major freight corridors and across borders.

 

 

Authors: Dr. Anne GoodchildDr. Ed McCormack, Ken Casavant, Zun Wang, B Starr McMullen, Daniel Holder
Recommended Citation:
Casavant, Ken, Anne Goodchild, Ed McCormack, Zun Wang, B. Starr McMullen, and Daniel Holder. "Development of a Freight Benefit/Cost Methodology for Project Planning." 
Technical Report

Field Test of Unmanned Aircraft Systems (UAS) to Support Avalanche Monitoring

 
Download PDF  (9.36 MB)
Publication: Norwegian Public Roads Administration Report
Volume: Geohazard Survey from Air (GEOSFAIR)
Publication Date: 2022
Summary:

The Norwegian Public Roads Administration, the Norwegian Geotechnical Institute, and SINTEF conducted a field test with a unmanned aerial system (UAS) with various instruments at the research station Fonnbu in Stryn. The purpose of the test was to evaluate the use of instrumented drones for monitoring and assessing avalanche danger. The instruments tested included optical and thermal imaging, laser scanning and ground-penetrating radar. Resulting datasets included 3D models (point clouds and height maps), multispectral and radiometric, thermal images and radargrams.

Authors: Dr. Ed McCormack, Regula Frauenfelder, Sean Salazar, Halgeir Dahle, Tore Humstad, Emil Solbakken, Trine Kirkhus, Richard Moore, Bastien Dupuy, Pauline Lorand
Technical Report

Technology and Safety on Urban Roadways: The Role of ITS in WSDOT

 
Download PDF  (0.13 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2006
Summary:

This report examines the relationship between Intelligent Transportation Systems (ITS) and safety from an urban perspective.

Existing urban ITS systems are either system-level or site-level applications. System-level ITS, such as freeway management systems or traffic signal networks, address safety concerns only indirectly. These systems are designed to improve traffic flows and thus indirectly reduce collisions caused by congestion. Other system-level ITS used to increase the efficiency of transit, commercial vehicle, and emergency service operations also benefit safety indirectly. Site-level ITS applications, such as railroad/highway crossing warnings or work zone systems, are installed to directly address safety concerns. However, these applications are limited to specific locations identified as hazardous.

Most urban crashes in Washington involve multiple vehicle collisions caused by driver error at locations that have not been identified as hazardous. Future ITS systems known collision avoidance systems (CAS) hold considerable promise for urban roadway safety because these in-vehicle devices will inform drivers of judgment errors and can do so at many locations along an urban roadway system.

A handful of ITS applications are so well tested that they can be aggressively pursued by WSDOT as tools to reduce urban crashes. Most of these applications include the various systems, such a ramp meters and incident detection, used for freeway management. Other ITS safety applications, while promising, still need to be fully documented and are best used as demonstration applications. Most of these applications involve sensor technology used to warn drivers about road and roadside hazards at specific sites. The greatest safety benefit from ITS may come from in-vehicle collision warning systems. These applications should evolve from a number of large federal research projects and private industry initiatives that are under way. Given their potential impact on safety, WSDOT should monitor applications of these projects.

Authors: Dr. Ed McCormack, Bill Legg
Recommended Citation:
McCormack, E., Legg, B. (2000). Technology and Safety on Urban Roadways: The Role of ITS in WSDOT. Research Report, Washington State Transportation Center (TRAC). Washington State Transportation Center, U.S. Department of Transportation. 
Technical Report

Development and Analysis of a GIS-Based Statewide Freight Data Flow Network

 
Download PDF  (4.92 MB)
Publication: Washington State Department of Transportation
Publication Date: 2009
Summary:
In the face of many risks of disruptions to our transportation system, this research improves WSDOT’s ability to manage the freight transportation system so that it minimizes the economic consequences of transportation disruptions.
Faced with a high probability that major disruptions to the transportation system will
harm the state’s economy, the Washington State Department of Transportation
(WSDOT), in partnership with Transportation Northwest (TransNow) commissioned
researchers at the University of Washington and Washington State University to
undertake freight resiliency research to:
  • Understand how disruptions of the state’s freight corridors change the way
    trucking companies and various freight-dependent industries route goods,
  • Plan to protect freight-dependent sectors that are at high risk from these disruptive
    events, and
  • Prioritize future transportation investments based on the risk of economic loss to
    the state
To accurately predict how companies will route shipments during a disruption,
this research developed the first statewide multimodal freight model for Washington
State. The model is a GIS-based portrayal of the state’s freight highway, arterial, rail,
waterway and intermodal network and can help the state prioritize strategies that protect industries most vulnerable to disruptions.
The report features two case studies showing the model’s capabilities: the potato growing and processing industry was chosen as a representative agricultural sector, and diesel fuel distribution for its importance to all industry sectors. The case studies are found in sections 5.2 and 5.3 in the report and show how the statewide freight model can:
  • Predict how shipments will be re-routed during disruptions, and
  • Analyze the level of resiliency in various industry sectors in Washington State
The two case studies document the fragility of the state’s potato growing and processing
sectors and its dependence on the I-90 corridor, while showing how the state’s diesel
delivery system is highly resilient and isn’t linked to I-90.
As origin-destination data for other freight-dependent sectors is added to the model,
WSDOT will be able to evaluate the impact of freight system disruptions on each of
them. This will improve WSDOT’s ability to develop optimal strategies for highway
closures, and prioritize improvements to the system based on the relative impact of the
disruption.
This research addressed several technical areas that would need to be resolved by any
organization building a state freight model. First, the researchers had to decide on the
level of spatial and temporal detail to include in the statewide GIS freight model. This
decision has significant consequences for data resolution requirements and results.
Including every road in Washington would have created a cumbersome model with a
large number of links that weren’t used. However, in order to analyze routing during a
disruption all possible connections must exist between origin and destination points in the model. While the team initially included only the core freight network in the model,
ultimately all road links were added to create complete network connectivity.
Second, as state- and corridor-level commodity flow data is practically non-existent, data
collection for the two case studies was resource intensive. Supply chain data is held by
various stakeholders and typically not listed on public websites, and it isn’t organized by
those stakeholders for use in a freight model. In most cases it’s difficult to assure data
quality. The team learned that the most difficult data to obtain is data on spatially or
temporally variable attributes, such as truck location and volume. So they developed a
method to estimate the importance of transportation links without commodity flow data.

Third, the freight model identified the shortest route, based on travel time, between any
origin and destination (O/D) pair in the state, and the shortest travel-time re-route for
each O/D pair after a disruption. The routing logic in the model is based on accepted
algorithms used by Google Maps and MapQuest. Phase III of the state’s freight
resiliency research was funded by WSDOT and will result in improved truck freight
routing logic for the model in 2011.
The two case studies showed how the state’s supply chains use infrastructure differently,
and that some supply chains have built flexibility into their operations and are resilient
while others are not, which leads to very different economic consequences. The results
of these case studies significantly contributed to WSDOT’s understanding of goods
movement and vulnerability to disruptions.
In the future, Washington State will need corridor-level commodity flow data to
implement the research findings and complete the state freight model. In 2009, the
National Cooperative Freight Research Program (NCFRP) funded development of new
methodology to collect and analyze sub-national commodity flow information. This
NCFRP project, funded at $500,000, will be completed in 2010 and provide a mechanism for states to accurately account for corridor-level commodity flows. If funds are available to implement the new methodology in Washington State, the state’s freight
model will use the information to map these existing origin destination commodity flows
onto the freight network, evaluate the number of re-routed commercial vehicles, and their increased reroute distance from any disruption. This will allow WSDOT to develop
prioritized plans for supply chain disruptions, and recommend improvements to the
system based on the economic impact of the disruption.
This report summarizes 1) the results from a thorough review of resilience literature and resilience practices within enterprises and organizations, 2) the development of a GIS-based statewide freight transportation network model, 3) the collection of detailed data regarding two important industries in Washington state, the distribution of potatoes and diesel fuel, and 4) analysis of the response of these industries to specific disruptions to the state transportation network.
The report also includes recommendations for improvements and additions to the GIS model that will further the state’s goals of understanding the relationship between infrastructure availability and economic activity, as well as recommendations for improvements to the statewide freight transportation model so that it can capture additional system complexity.
Authors: Dr. Anne GoodchildDr. Ed McCormack, Eric Jessup, Derik Andreoli, Kelly Pitera, Sunny Rose, Chilan Ta
Recommended Citation:
Goodchild, Anne V., Eric L. Jessup, Edward D. McCormack, Derik Andreoli, S Rose, Chilan Ta and Kelly Pitera. “Development and Analysis of a GIS-Based Statewide Freight Data Flow Network.” (2009).