Skip to content
Report

Seattle SMART: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Utilization

 
Download PDF  (4.76 MB)
Publication Date: 2025
Summary:

In Spring 2023, the Seattle Department of Transportation (SDOT) was awarded a Stage-1 grant under the Strengthening Mobility and Revolutionizing Transportation (SMART) Grants Program by the US DOT. The University of Washington’s Urban Freight Lab (UFL) partnered with SDOT to develop the methodological approach and analysis for the SMART project, titled “Last-mile freight curb access: digitizing the last-mile of urban goods to improve curb access and utilization,” and determine key research discoveries that contribute to the existing body of work and support development for a SMART Stage-2 grant. This technical report describes the research study, data collected, and findings from analysis of those data.

This project tested a Vehicle-to-Curb (V2C) technology that investigated the digitization of the existing CVLZ permit and to potentially enable pricing strategies. While parking pricing policies have been successful to manage passenger vehicle demand and their parking behaviors, the response of commercial vehicles to parking pricing is not sufficiently understood, and little information is available to predict their behavioral response.

The overarching goals of this project were to:

  1. pilot test the effectiveness of a V2C technology to enable the digitization of the existing Seattle CVLZ permit system and
  2. to qualitatively understand the role parking pricing and permitting programs play in affecting drivers’ ability to find and utilize authorized parking within the context of north downtown Seattle.

Key insights were gained through multiple research strategies: on-the-ground parking behavior data collection, carrier interviews, and a carrier survey. These insights allowed SDOT to develop a successful Stage-2 grant submission and will inform future parking and permit policy decisions.

Recommended Citation:
Dalla Chiara, G., Maxner, T., Esmaili, A., Wehrmueller, G., Rula, K., Goodchild, A. (2025). Seattle Smart: Digitizing the Last Mile of Urban Goods to Improve Curb Access and Utilization. Urban Freight Lab, University of Washington. https://doi.org/10.6069/TZAS-KG37
Report

The State of Zero-Emissions Delivery in the U.S.

 
Download PDF  (3.33 MB)
Publication Date: 2025
Summary:

We have seen major changes in the last few years as cities and companies in the United States transition to more environmentally sustainable urban delivery. But progress still remains piecemeal and slow. In both policy and practice on city streets, Europe and parts of Asia are far ahead of the U.S. in advancing electrification, shifting away from traditional trucks to smaller forms like e-bikes, and managing city space to induce or support zero emission delivery (ZED).

This paper captures the state of policy and practice of zero emission delivery in the U.S. as of January 2025. It offers a baseline for future work and surfaces levers U.S. cities can consider using to advance ZED. In this report, researchers from the Urban Freight Lab at the University of Washington created a policy and practice framework based on their expertise, review and synthesis of academic literature, current technology and private sector achievements. Via the framework, the research team identifies a three-legged stool of approaches needed to achieve or advance zero emission delivery in the United States.

These three vital areas for progress on ZED are:

  1. Electrification
  2. Mode Shift and Behavior Change, and
  3. Real Estate and Space Management

For some, these three key building blocks and the myriad elements discussed in this report may not have been linked as levers to catalyze ZED.

The report is divided into three sections, one for each of the key areas above. Each area has an overview of the current state of practice and associated trends, followed by both public sector-led and private-sector-led examples of the approach under discussion. All examples focus on real-world implementation (both domestic and international), showcasing ZED and/or providing a realistic pathway to advance ZED. And all examples focus a lens squarely on cities.

In the process of compiling this summary of the state of practice of ZED, the research team synthesized key takeaways for cities to consider in Electrification, Mode Shift and Behavior Change, and Real Estate and Space Management.

Recommended Citation:
Rula, K, Schnaiberg, L, Maxner, T, Shafiei Nia, H, Goodchild, A. (2025) The State of Zero Emission Delivery in the United States. Urban Freight Lab, University of Washington.
Report

Boston Delivers: Cargo Bike Pilot Evaluation

 
Download PDF  (0.93 MB)
Publication Date: 2025
Summary:

Boston Delivers was an 18-month pilot project (running September 2023 through February 2025) led by the Boston Transportation Department in partnership with Net Zero Logistics and funded by MassCEC through the ACT4All program. The project tested the use of electric cargo bikes for neighborhood deliveries, aiming to reduce congestion, improve air quality, and support local businesses by replacing car and van trips with more sustainable, right-sized vehicles. The Urban Freight Lab served as a research partner on the pilot, helping to design the evaluation framework, develop performance metrics, and analyze outcomes related to safety, emissions, and economic feasibility — ensuring the project produced actionable insights for Boston and other cities looking to implement cleaner and more efficient last-mile delivery options.

Executive Summary

Boston Delivers is a pilot project that promoted sustainable methods of making neighborhood deliveries for local businesses in Allston, Brighton, and the surrounding area. Instead of motor vehicles, packages were delivered by electric cargo bikes. The Boston Transportation Department (BTD) partnered with Net Zero Logistics (Net Zero) to carry out this delivery service. Net Zero Logistics provided electric cargo bikes, made deliveries, and coordinated delivery logistics. The Massachusetts Clean Energy Center (MassCEC) funded the pilot through their Accelerating Clean Transportation for All (ACT4All) Program. The pilot intended to test the policy implications of using right-sized delivery vehicles in urban environments, generate societal co-benefits from an efficient and sustainable mode for goods movement, and share learnings with a broad audience.

The city outlined four core goals as follows:

  1. Support Local Businesses,
  2. Reduce Urban Congestion,
  3. Improve Street Safety, and
  4. Reduce Pollution

Furthermore, the city created five learning objectives for the pilot program, as follows:

  1. Identify the policies, programs, and regulations that need to change to allow for e-cargo bike delivery in the City of Boston;
  2. Test infrastructure changes needed to accommodate e-cargo bike delivery, including but not limited to e-cargo bike delivery zones, staging and sorting areas, parcel lockers, and other last-mile logistical needs;
  3. Measure the benefits of e-cargo bike delivery, including its impact on
    environmental, safety, and economic metrics;
  4. Understand the costs and feasibility of e-cargo bike delivery for different types of
    businesses;
  5. Share findings on e-cargo bike delivery and communicate to delivery service providers that the City of Boston is ready for e-cargo bikes to be used on a larger scale.

The 18-month pilot began in September 2023 and concluded in February 2025. The Boston team successfully recruited a logistics partner (Net Zero), onboarded and launched a new delivery service, and completed thousands of deliveries on behalf of underserved populations during the pilot period. Net Zero and BTD worked with four different clients who utilized the service:

  • a private “meals on wheels” service provider (City Fresh Foods),
  • a local restaurant (OliToki),
  • a local non-profit (Allston Brighton Health Collaborative), and
  • a catering service that fulfilled group food orders for corporate offices.

Between September 2023 and January 2025, 18,375 deliveries were made (approximately 20,000 units) with an estimated total of 5,881 cargo bicycle miles traveled and an estimated savings of 2,352.5 – 3,193.5 of kg CO2e (carbon emissions) avoided. By replacing larger vehicle trips, these outcomes directly contributed to the City’s goals of reducing neighborhood congestion and the chances for serious crashes, improving air quality through less tailpipe pollution, and showcasing new delivery methods that could benefit local businesses.

The pilot demonstrated that e-bike deliveries could be a feasible alternative to cars for specific delivery scenarios. Critically, Boston created a strong pilot framework that referenced big picture agency goals but focused on measurable pilot learning objectives. This approach allowed for a flexible and adaptive approach during pilot design and implementation, which made the pilot all the more successful. With an adaptive approach, the city was able to uncover important key learnings for future pilots.

While the critical elements of the pilot were achieved (launching a cargo bike operator, performing thousands of deliveries, and focusing on an underserved neighborhood), key learnings for future sustainable delivery programs from the pilot included:

  • Flexibility in pilot design and implementation is critical during the execution of any pilot program and especially when working in close partnership with multiple organizations and companies.
  • There is a need to coordinate and potentially partner with anchor clients or partners with significant volume ahead of launching a sustainable delivery program.
  • For pilots or programs that require space for staging, identifying location(s) for these activities, and ensuring they can be launched expediently and permitted in a timely manner, is critical for success.
  • When choosing a pilot geography, the use cases for e-bikes for last mile delivery should be evaluated in terms of existing neighborhood density, ease or lack thereof in making deliveries by large van or truck, and whether the neighborhood already has significant numbers of bike deliveries and a robust cycling culture.
  • Organizers should understand the economics of programs that involve multiple non-governmental and private sector organizations, including the significant start up (capital) costs required, and the importance of achieving economies of scale in delivery volume to ensure long-term financial health of a program.
  • Broader citywide goals and policies around safety, congestion relief, and decarbonization can help center urban delivery goals in broader contexts (potentially allowing for additional funding, programmatic support, communication, better unit economics, etc.).

Overall, the goal of this pilot evaluation is to reflect on the City of Boston’s pilot experience and provide transparency about these learnings to a wide audience. We hope that the information below will provide real value for future City of Boston initiatives, delivery service providers and vendors, and cities nationwide as they continue to focus on ways to unlock greater efficiency in urban deliveries and realize a wide array of societal benefits.

Authors: Kelly RulaYu-Chen ChuDr. Giacomo Dalla ChiaraDr. Anne GoodchildArsalan Esmaili, Ben Rosenblatt, Harper Mills (Boston Transportation Department), Matthew Warfield (Boston Transportation Department)
Recommended Citation:
Rula, K., Rosenblatt, B., Mills, H., Chu, Y, Dalla Chiara, G., Warfield, M., Goodchild, A. (2025). Boston Delivers Cargo Bike Pilot Evaluation. Urban Freight Lab, University of Washington.
Report

Evaluation of Sound Transit Train Stations and Transit-Oriented Development Areas for Common Carrier Locker Systems (Executive Summary)

 
Download PDF  (1.66 MB)
Publication Date: 2018
Summary:

The rapid expansion of ecommerce has flooded American cities with delivery trucks, just as those cities are experiencing booming population growth. Retailers need a more efficient, reliable, and cost-effective way to deliver goods in increasingly crowded urban environments. For their part, cities like Seattle want to minimize traffic congestion, both sustain quality of life for residents and ensure a smooth flow of goods and services.

Common carrier parcel lockers hold tremendous potential for streamlining the urban goods delivery system and addressing these challenges. This research study explores the viability of providing public right of way for common carrier lockers at or near transit stations in Seattle, a ground-breaking step toward improving freight delivery in the city’s fast-growing urban core.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) Evaluation of Sound Transit Train Stations and Transit Oriented Development Areas for Common Carrier Locker Systems (Executive Summary)
Report

The Final 50 Feet of the Urban Goods Delivery System (Final Report)

 
Download PDF  (6.73 MB)
Publication Date: 2018
Summary:

Urban Freight Lab’s foundational report is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains (the end of the supply chain, where delivery drivers must locate both parking and end customers). These include curb parking spaces, private truck freight bays and loading docks, street design, traffic control, and delivery policies and operations within buildings.

Goods delivery is an essential but little-noticed activity in urban areas. For the last 40 years, deliveries have been mostly performed by a private sector shipping industry that operates within general city traffic conditions. However, in recent years e-commerce has created a rapid increase in deliveries, which implies an explosion of activity in the future.

Meeting current and future demand is creating unprecedented challenges for shippers to meet both increased volumes and increasing customer expectations for efficient and timely delivery. Anecdotal evidence suggests that increasing demand is overwhelming goods delivery infrastructure and operations. Delivery vehicles parked in travel lanes, unloading taking place on crowded sidewalks, and commercial truck noise during late night and early morning hours are familiar stories in urban areas.

These conditions are noticeable throughout the City of Seattle as our population and employment rapidly increase. However, goods delivery issues are particularly problematic in Seattle’s high-density areas of Downtown, Belltown, South Lake Union, Pioneer Square, First Hill, Capitol Hill and Queen Anne, described as Seattle’s “Center City”. Urban goods transportation makes our economy and quality of life possible.

As the Seattle Department of Transportation (SDOT) responds to the many travel challenges of a complex urban environment, we recognize that goods delivery needs to be better understood and supported to retain the vitality and livability of our busiest neighborhoods.

U.S. cities do not have much information about the urban goods delivery system. While public agencies have data on city streets, public transportation and designated curbside parking, the “final 50 feet” in goods delivery also utilizes private vehicles, private loading facilities, and privately-owned and operated buildings outside the traditional realm of urban planning.

Bridging the information gap between the public and private sectors requires a new way of thinking about urban systems. Specifically, it requires trusted data sharing between public and private partners, and a data-driven approach to asking and answering the right questions, to successfully meet modern urban goods delivery needs.

The Urban Freight Lab (UFL) provides a standing forum to solve a range of short-term as well as long-term strategic urban goods problem solving, that provides evidence of effectiveness before strategies are widely implemented in the City.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) The Final 50 Feet of the Urban Goods Delivery System.
Report

NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research

 
Download PDF  (3.99 MB)
Publication Date: 2022
Summary:

In an effort to reduce emissions from last-mile deliveries and incentivize green vehicle adoption, The New York City Department of Transportation (NYC DOT) is seeking to implement a Green Loading Zone (GLZ) pilot program. A Green Loading Zone is curb space designated for the sole use of “green” vehicles, which could include electric and alternative fuel vehicles as well as other zero-emission delivery modes like electric-assist cargo bikes. To inform decisions about the program’s siting and regulations, this study was conducted by the University of Washington’s Urban Freight Lab (UFL) in collaboration with NYC DOT under the UFL’s Technical Assistance Program.

The study consists of three sources of information, focusing primarily on input from potential GLZ users, i.e., delivery companies. An online survey of these stakeholders was conducted, garnering 13 responses from 8 types of companies. Interviews were conducted with a parcel carrier and an electric vehicle manufacturer. Additionally, similar programs from around the world were researched to help identify current practices. The major findings are summarized below, followed by recommendations for siting, usage restriction and pricing of GLZs. It is important to note that these recommendations are based on the survey and interview findings and thus on benefits to delivery companies. However, other important factors such as environmental justice, land use patterns, and budgetary constraints should be considered when implementing GLZs.

Literature Review Findings

Green Loading Zones are a relatively novel approach to incentivizing electric vehicle (EV) adoption. Two relevant pilot programs exist in the United States, one in Santa Monica, CA and the other one in Los Angeles, CA. Both are “zero-emission” delivery programs, meaning alternative fuel vehicles that reduce emissions (compared to fossil fuel vehicles) are not included in the pilot’s parking benefits (dedicated spaces and free parking). Other cities including Washington, DC and Vancouver, Canada are also creating truck-only zones and dedicating parking to EVs in their efforts to reduce emissions. Bremen, Germany also has a similar program called an Environmental Loading Point.

Many cities in Europe are implementing low- or zero-emission zones. These are different than GLZs in that entire cities or sections of cities are restricted to vehicles that meet certain emissions criteria. London, Paris, and 13 Dutch municipalities are all implementing low-emission zones. These zones have achieved some success in reducing greenhouse gas emissions: in London, CO2 from vehicles has been reduced by 13 percent. Companies operating in those cities have opted to purchase cleaner vehicles or to replace trucks with alternative modes like cargo bikes. In addition to demonstrating similar goals as NYC DOT, these programs provide insights to the siting and structure of GLZs. Loading zones have been selected based on equity concerns, delivery demand, and commercial density. Every city in the literature review has installed specific signage for the programs to clearly convey the regulations involved.

Survey and interview Findings

A range of company types replied to the survey: parcel carriers (large shippers), small shippers, e-commerce and retail companies, freight distributors, a truck dealer, a liquid fuel delivery company, and a logistics NYC  association (answering on behalf of members). The majority of these companies will be increasing their fleet sizes over the next ten years, and most plan to increase the share of EVs in their fleets while doing so. A smaller share (4 of 13) also plans to increase their share of alternative fuel vehicles. The most cited reasons for increasing fleet size and green vehicle share are: 1) internal sustainability goals, 2) social responsibility, and 3) new vehicles/models coming to the market.

Green vehicle adoption is not without its challenges. For EV adoption specifically, companies identified three major barriers: 1) competition in the EV market, 2) electric grid requirements upstream of company-owned facilities, and 3) lack of adequate government-supported purchasing subsidies. To overcome these barriers, respondents would like larger or more government purchasing incentives and reduced toll or parking rates for EVs. However, the majority of companies also expressed a willingness to pay for GLZs at similar rates to other commercial loading zones.

As for area coverage, all respondents deliver to Manhattan, Queens, and Brooklyn. 11 of 13 deliver to Staten Island and the Bronx as well. All EV and cargo bike operators deliver to Manhattan, whereas only one EV operator and one cargo bike operator deliver to all five boroughs of NYC. Respondents deliver at all times of day, but the busiest times are between 9:00AM and 4:00PM (stated by 8 of 13 respondents). Peak periods are busiest for four companies in the morning (6:00AM-9:00AM) and six companies in the evening (4:00PM-9:00PM).

The interviews supported findings from the survey. Both interviewed companies have a vested interest in reducing their environmental footprint and plan to use or produce exclusively zero-emission vehicles by 2050 (carrier) or 2035 (manufacturer). However, they noted challenges to electrifying entire fleets for cities. Charging infrastructure needs to be expanded, but incentives are also needed (parking benefits, subsidies, expedited permitting) to make the market viable for many delivery companies.

Recommendations

The preceding findings informed four key recommendations:

  • GLZs should be made available to multiple modes: green vehicles and cargo bikes. Adequate curb space might be needed to accommodate multiple step-side vans plus a small vehicle and cargo bikes, but this should be balanced against curb utilization rates and anticipated dwell times to maximize curb use.
  • Explore piloting GLZs in Lower Manhattan and commercial areas of Midtown Manhattan; they could be the most beneficial locations for the pilot according to survey respondents.
  • The preferred layout for GLZs is several spaces distributed across multiple blocks.
  • DOT can charge for the GLZ use. It is recommended that rates not exceed current parking prices in the selected neighborhood, but some companies are willing to pay a modest increase over that rate to avoid parking tickets.

 

Recommended Citation:
Urban Freight Lab (2022). NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research.
Report

Mapping the Challenges to Sustainable Urban Freight

 
Download PDF  (2.29 MB)
Publication Date: 2022
Summary:

Just as there has been a push for more climate-friendly passenger travel in recent years, that same push is building for freight travel. At the same time ecommerce is booming and goods delivery in cities is rising, sustainability has become a policy focus for city governments and a corporate priority for companies.

Why? Cities report being motivated to be responsive to residents, businesses, and the goals of elected leaders. Companies report being motivated by cost reduction, efficiency, branding and customer loyalty, and corporate responsibility.

For its part, Amazon in 2019 pledged to become a net-zero carbon business by 2040. In the wake of that pledge, Amazon financially supported this Urban Freight Lab research examining two key questions:

  1. What is the current state of sustainable urban freight planning in the United States?
  2. What are the challenges to achieving a sustainable urban freight system in the United States and Canada?

Because the research literature reveals that denser, more populous cities are the areas most impacted by climate change, we focused our analysis on the 58 cities representing the largest, densest, and fastest-growing cities in the U.S. found within the nation’s 25 largest, densest, and fastest-growing metro areas. Our population, growth, and density focus resulted in heavy concentration in California, Texas, and Florida and light representation in the Midwest.

Within those 58 cities, we reviewed 243 city planning documents related to transportation and conducted 25 interviews with public and private stakeholders. We intentionally sought out both the public and private sectors because actors in each are setting carbon-reduction goals and drafting plans and taking actions to address climate change in the urban freight space.

In our research, we found that:

  1. The overwhelming majority of cities currently have no plans to support sustainable urban freight. As of today, ten percent of the cities considered in this research have taken meaningful steps towards decarbonizing the sector.
  2. Supply chains are complex and the focus on urban supply chain sustainability is relatively new. This reality helps explain the myriad challenges to moving toward a sustainable urban freight system.
  3. For city governments, those challenges include a need to adapt existing tools and policy levers or create new ones, as well as a lack of resources and leadership to make an impact in the industry.
  4. For companies, those challenges include concerns about the time, cost, technology, and labor complexity such moves could require.

“Sustainability” can mean many things. In this research, we define sustainable urban freight as that which reduces carbon dioxide emissions, with their elimination—which we refer to as decarbonization—as the ultimate end goal. This definition represents just one environmental impact of urban freight and does not include, for example, noise pollution, NOx or SOx emissions, black carbon, or particulate matter.

We define urban freight as last-mile delivery within cities, including parcel deliveries made by companies like Amazon and UPS and wholesale deliveries made by companies like Costco and Pepsi. We do not include regional or drayage/port freight as those merely transit through cities and face distinct sustainability barriers.

Authors: Urban Freight Lab
Recommended Citation:
Urban Freight Lab (2022). Mapping the Challenges to Sustainable Urban Freight.
Report

The Seattle Neighborhood Delivery Hub Pilot Project: An Evaluation of the Operational Impacts of a Neighborhood Delivery Hub Model on Last-Mile Delivery

 
Download PDF  (2.98 MB)
Publication Date: 2021
Summary:

As one of the nation’s first zero-emissions last-mile delivery pilots, the Seattle Neighborhood Delivery Hub served as a testbed for innovative sustainable urban logistics strategies on the ground in Seattle’s dense Uptown neighborhood. Providers could test and evaluate new technologies, vehicles, and delivery models — all in service of quickly getting to market new more fuel- and resource-efficient solutions, reducing emissions and congestion, and making our cities more livable and sustainable.

These technologies are also an important part of the City of Seattle’s Transportation Electrification Blueprint, including the goal of transitioning 30% of goods delivery to zero emissions by 2030.

Recommended Citation:
Urban Freight Lab (2021). The Seattle Neighborhood Delivery Hub Pilot Project: An Evaluation of the Operational Impacts of a Neighborhood Delivery Hub Model on Last-Mile Delivery.
Report

Cargo E-Bike Delivery Pilot Test in Seattle

 
Download PDF  (2.98 MB)
Publication Date: 2020
Summary:

This study performed an empirical analysis to evaluate the implementation of a cargo e-bike delivery system pilot tested by the United Parcel Service, Inc. (UPS) in Seattle, Washington. During the pilot, a cargo e-bike with a removable cargo container was used to perform last-mile deliveries in downtown Seattle. Cargo containers were pre-loaded daily at the UPS Seattle depot and loaded onto a trailer, which was then carried to a parking lot in downtown.

Data were obtained for two study phases. In the “before-pilot” phase, data were obtained from truck routes that operated in the same areas where the cargo e-bike was proposed to operate. In the “pilot” phase, data were obtained from the cargo e-bike route and from the truck routes that simultaneously delivered in the same neighborhoods. Data were subsequently analyzed to assess the performance of the cargo e-bike system versus the traditional truck-only delivery system.

The study first analyzed data from the before-pilot phase to characterize truck delivery activity. Analysis focused on three metrics: time spent cruising for parking, delivery distance, and dwell time. The following findings were reported:

  • On average, a truck driver spent about 2 minutes cruising for parking for each delivery trip, which represented 28 percent of total trip time. On average, a driver spent about 50 minutes a day cruising for parking.
  • Most of the deliveries performed were about 30 meters (98 feet) from the vehicle stop location, which is less than the length of an average blockface in downtown Seattle (100 meters, 328 feet). Only 10 percent of deliveries were more 100 meters away from the vehicle stop location.
  • Most truck dwell times were around 5 minutes. However, the dwell time distribution was right-skewed, with a median dwell time of 17.5 minutes.

Three other metrics were evaluated for both the before-pilot and the pilot study phases: delivery area, number of delivery locations, and number of packages delivered and failed first delivery rate. The following results were obtained:

  • A comparison of the delivery areas of the trucks and the cargo e-bike before and after the pilot showed that the trucks and cargo e-bike delivered approximately in the same geographic areas, with no significant changes in the trucks’ delivery areas before and during the pilot.
  • The number of establishments the cargo e-bike delivered to in a single tour during the pilot phase was found to be 31 percent of the number of delivery locations visited, on average, by a truck in a single tour during the before-pilot phase, and 28 percent during the pilot phase.
  • During the pilot, the cargo e-bike delivered on average to five establishments per hour, representing 30 percent of the establishments visited per hour by a truck in the before-pilot phase and 25 percent during the pilot.
  • During the pilot, the number of establishments the cargo e-bike delivered to increased over time, suggesting a potential for improvement in the efficiency of the cargo e-bike.
  • The cargo e-bike delivered 24 percent of the number of packages delivered by a truck during a single tour, on average, before the pilot and 20 percent during the pilot.
  • Both before and during the pilot the delivery failed rate (percentage of packages that were not delivered throughout the day) was approximately 0.8 percent. The cargo e-bike experienced a statistically significantly lower failed rate of 0.5 percent with respect to the truck fail rate, with most tours experiencing no failed first deliveries.

The above reported empirical results should be interpreted only in the light of the data obtained. Moreover, some of the results are affected by the fact that the pilot coincided with the holiday season, in which above average demand was experienced. Moreover, because the pilot lasted only one month, not enough time was given for the system to run at “full-speed.”

Recommended Citation:
Urban Freight Lab (2020). Cargo E-Bike Delivery Pilot Test in Seattle.
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.