Goodchild, Anne. Sunny Rose, Derik Andreoli, and Eric Jessup. "Activity Modeling of Freight Flows in Washington State: Case Studies of the Resilience of Potato and Diesel Distribution Systems."
This paper presents an analytical model to contrast the carbon emissions from a number of goods delivery methods. This includes individuals travelling to the store by car, and delivery trucks delivering to homes. While the impact of growing home delivery services has been studied with combinatorial approaches, those approaches do not allow for systematic conclusions regarding when the service provides net benefit. The use of the analytical approach presented here, allows for more systematic relationships to be established between problem parameters, and therefore broader conclusions regarding when delivery services may provide a CO2 benefit over personal travel.
Methods
Analytical mathematical models are developed to approximate total vehicle miles traveled (VMT) and carbon emissions for a personal vehicle travel scenario, a local depot vehicle travel scenario, and a regional warehouse travel scenario. A graphical heuristic is developed to compare the carbon emissions of a personal vehicle travel scenario and local depot delivery scenario.
Results
The analytical approach developed and presented in the paper demonstrates that two key variables drive whether a delivery service or personal travel will provide a lower CO2 solution. These are the emissions ratio, and customer density. The emissions ratio represents the relative emissions impact of the delivery vehicle when compared to the personal vehicle. The results show that with a small number of customers, and low emissions ratio, personal travel is preferred. In contrast, with a high number of customers and low emissions ratio, delivery service is preferred.
Conclusions
While other research into the impact of delivery services on CO2 emissions has generally used a combinatorial approach, this paper considers the problem using an analytical model. A detailed simulation can provide locational specificity, but provides less insight into the fundamental drivers of system behavior. The analytical approach exposes the problem’s basic relationships that are independent of local geography and infrastructure. The result is a simple method for identifying context when personal travel, or delivery service, is more CO2 efficient.
Between 1998 and 2005, employment in the U.S. warehousing industry grew at a compound annual growth rate of 22.23%, and the number of establishments increased at compound annual growth rate of 9.48%. Over this same period of time, the price for transportation fuels increased dramatically and became much more volatile. In this paper we examine the microeconomic and macroeconomic forces that have enabled such rapid growth in the warehousing industry. We also analyze structural change through employment and warehouse construction starts data and show that a new breed of warehouse has emerged – the mega distribution center, or mega DC. Mega DCs serve mega markets, which allows them to gain advantage through economies of scale and by employing push-pull supply chain strategies that decrease the uncertainty associated with forecasting market demand. Our geographical analyses suggest that this new breed of mega DC is attracted to locations that optimize access to multiple regional markets (and possibly national markets) at the expense of optimizing access to any single market. On average the length of the final leg of the supply chain becomes longer. Because the last leg must be made by truck — which is the least fuel-efficient mode of transport by far — the location requirements of this new breed of mega DC increase supply chain exposure to the related risks of rising and increasingly volatile fuel prices.
Despite their heavy use of the road transportation system, little data is available on trip generation rates for trucks. In this paper, truck trip rates from grocery stores are used in a case study to evaluate and compare two simple methods for collecting data on truck trip generation: telephone interviews and manual counts. The findings from this study showed that grocery stores generated an average of 18 truck trips per day on a typical peak period weekday. The results also showed that a combination of telephone interviews and manual counts was more effective than telephone interviews alone. Information from the telephone interview guided the manual counts and provided a baseline measurement of counts. However, the interviews underreported truck trips when compared to the manual observations.
The management of transportation systems for resilience has received significant attention in recent years. Resilience planning concerns the actions of an organization that reduce the consequences of a disruption to the system the organization manages. Little exploration has been made into the connections between resilience planning and the actions of a state department of transportation (DOT) that contribute to resilience of a freight transportation system. Conclusions are presented from collaborative research between the Washington State DOT Freight Systems Division (WSDOT FSD) and researchers at the University of Washington. Activities of the WSDOT FSD that contribute to resilience are identified, and one such activity undertaken by WSDOT to improve communication with system users is described. This and other activities can be undertaken by other DOTs that want to improve the resilience of their freight transportation systems at relatively low cost.
Common-carrier parcel lockers present a solution for decreasing delivery times, traffic congestion, and emissions in dense urban areas through consolidation of deliveries. Multi-story residential buildings with large numbers of residents, and thus a high volume of online package orders, are one of the best venues for installing parcel lockers. But what is the right size for a residential building locker that would suit the residents’ and building managers’ needs?
Because of the novelty of parcel lockers, there is no clear guideline for determining the right locker size and configuration for a residential building given the resident population. A small locker would result in packages exceeding capacity and being left in the lobby, increasing the building manager’s workload and confusing and inconveniencing users. On the other hand, a large locker is more expensive, more difficult to install, and unappealing to residents.
To answer this question, we installed a common-carrier parcel locker in a residential building in downtown Seattle, WA, U.S.A. Through collecting detailed data on locker usage from the locker provider company, we studied and quantified carriers’ delivery patterns and residents’ online shopping and package pickup behaviors. We then used this information to model the locker delivery and pickup process, and simulated several locker configurations to find the one that best suits the delivery needs of the building.
These findings could aid urban planners and building managers in choosing the right size for residential building lockers that meet delivery demand while minimizing costs and contributing to environmental benefits.
A central theme of U.S. transportation planning policies is to reduce single-occupancy vehicle (SOV) trips and promote transit and non-motorized transportation by coordinating land-use planning and transportation demand management (TDM) programs. Cities often implement TDM programs by intervening with new development during the municipal permit review process. Seattle’s Transportation Management Program (TMP) under a joint Director’s Rule (DR) requires a commitment from developers to adopt select strategies from six TDM element categories: program management, physical improvements, bicycle/walking programs, employer-based incentives, transit and car/vanpooling, and parking management. TMP targets new developments and requires some TDM elements, recommends others, and leaves the rest to negotiation. The result is an individualized TMP agreement that is site-specific, reflecting both city policy and developer needs. This case study presents a qualitative analysis of the guiding eight DRs and 41 site-specific TMP agreements in Seattle’s Downtown and South Lake Union (SLU) area since 1988. Overall, a content analysis of TMP documents reveals that the average number of elements adopted in an agreement falls short of requirements set by DRs (34%–61%). Major findings include developer preference toward non-traditional TDM measures such as physical improvement of frontage and urban design features, as well as parking management. High-occupancy vehicle (HOV) elements showed higher adoption rates (59%–63%) over biking/walking programs (1%). It is concluded that future TDM policies could benefit if future research includes examining the effectiveness of the range of management options stemming from the real estate trends toward green buildings, tenants’ values in sustainability, and city policy to reduce automobile trips.
Community resilience depends on the resilience of the lifeline infrastructure and the performance of the disaster-related functions of local governments. State and federal resilience plans and guidelines acknowledge the importance of the transportation system as a critical lifeline in planning for community resilience and in helping local governments to set recovery goals. However, a widely accepted definition of the resilience of the transportation system and a structure for its measurement are not available. This paper provides a literature review that summarizes the metrics used to assess the resilience of the transportation system and a categorization of the assessment approaches at three levels of analysis (the asset, network, and systems levels). Furthermore, this paper ties these metrics to relevant dimensions of community resilience. This work addresses a key first step required to enhance the efficiency of planning related to transportation system resilience by providing (a) a standard terminology with which efforts to enhance the resilience of the transportation system can be developed, (b) an approach to organize planning and research efforts related to the resilience of the transportation system, and (c) identification of the gaps in measurement of the performance of the resilience of the transportation system.