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Abstract
Ridehailing services (e.g., Uber or Lyft) may serve as a substitute or a complement—or some combination thereof—to tran-
sit. Automation as an emerging technology is expected to further complicate the current complex relationship between tran-
sit and ridehailing. This paper aims to explore how US commuters’ stated willingness to ride transit is influenced by the price
of ridehailing services and whether the service is provided by an autonomous vehicle. To that end, a stated preference survey
was launched around the US to ask 1,500 commuters how they would choose their commute mode from among choices
including their current mode and other conventional modes as well as asking them to choose between their current mode
and an autonomous mode. Using a joint stated and revealed preference dataset, a mixed logit model was developed and ana-
lyzed. The results show that ridehailing per se might not be a significant competitor to transit, especially if it is integrated with
transit as a first-/last-mile service. The total share of transit (transit-only riders plus those who use transit in connection with
first-/last-mile ridehailing) remains substantially flat as set against conventional ridehailing services, even if ridehailing fares
decrease. On the other hand, when the ridehailing price is significantly reduced by automation, our analysis suggests a decline
in total transit ridership and an increase in ridehailing, especially for solo ridehailing. Also, it was found that autonomous
pooled ridehailing might not be as appealing to commuters as autonomous solo ridehailing.

Ridehailing services (e.g., Uber or Lyft) may serve as a
substitute or a complement—or some combination
thereof—to transit. The emergence of autonomous vehi-
cles may further complicate this already muddled rela-
tionship, by changing both the price of travel and the
nature of the in-vehicle experience. This paper examines
how US commuters’ stated willingness to ride transit is
influenced by the price of ridehailing services and
whether the service is provided by an autonomous
vehicle.

Prior research paints a mixed picture on the interac-
tions of ridehailing and transit. On the one hand, transit
riders could use ridehailing to overcome the first-/last-
mile problem caused by public transit’s fixed-route
nature, and to serve trips in off-peak times when transit
is less convenient. Examining US National Household
Travel Survey data, Wu and MacKenzie (1) found that
‘‘although less than 1% of [taxi or ridehailing] trips
involved a direct transfer to or from transit, one-third of
all tours containing [taxi or ridehailing] also included

transit.’’ Hall et al. (2) found that Uber is a complement
for the average transit agency, increasing transit rider-
ship by 5% after 2 years in the US. On the other hand,
ridehailing is an alternative mode of travel, and riders
might leave public transit for this new mode, as ridehail-
ing increases the convenience and reduces the cost of tak-
ing a taxi-like service (2, 3). Greenwood and Wattal (4)
show that UberX provides a 20% to 30% reduction in
prices relative to traditional taxis. While ridehailing fares
are typically higher than public transit fares, riders will
substitute ridehailing service for public transit if the ser-
vice is fast enough and convenient enough to offset its
additional cost.
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To that end, it is anticipated that the autonomous
vehicle (AV) technology may further improve the eco-
nomics of ridehailing by reducing the operational costs,
and therefore adversely affect the ridership, revenue, and
general viability of public transportation systems (5–7).
As shared autonomous ridehailing grows, it is likely to
draw some of the market share of public transit, unless
planned on a mutually complementary basis (8). Using
stated preference (SP) data, Levin and Boyles (9) devel-
oped a nested logit model for mode choice prediction
among three modes of (1) driving an AV and paying for
parking at the destination, (2) driving an AV and reposi-
tioning it back to the origin, and (3) transit. They found
that parking cost was the main incentive for choosing
transit, and that the avoidance of parking costs through
AV round-trips resulted in both an increase in AV
round-trips relative to one-way and parking trips and a
decrease in transit demand.

Researchers have begun to investigate integrated AV
and transit solutions (10–12). The idea of integrated AV
and transit systems was illustrated by Lenz and
Fraedrich (13) as ‘‘broadening service options of public
transport’’ by providing multimodal service in less dense
areas. Liang et al. (10) used an integer programming
model to maximize the profit of AVs as a last-mile con-
nection to train trips, while Yap et al. (14) developed a
mode choice model for last-mile services using SP data.
Their estimated mode choice model showed that on aver-
age, first-class train travelers prefer AVs over bus/tram/
metro as the last-mile connection. Vakayil et al. (11)
developed an AV and transit hybrid system and empha-
sized its potential for reducing total vehicle miles traveled
and the corresponding negative externalities such as con-
gestion and emissions.

Other researchers including Shen et al. (12) have used
agent-based simulation assuming fixed modal splits
between buses and AVs to explore the idea of supporting
bus operations and planning with complementary AV
services. They simulated first-/last-mile trips to and from
a train station in Singapore and found that integrating
shared AVs with transit improves system performance.
Also, Moorthy et al. (15) estimated the benefits of using
shared AVs for first-mile service to the airport in Ann
Arbor, Michigan as up to 37% energy savings. Pinto
et al. (16) assessed the impact of a suburban first-mile
shared-ride AV (SAV) transit feeder system on transit
and SAV demand using a simulation-based approach.
Alemi and Rodier (17) studied first-/last-mile connec-
tions using travel demand data from the San Francisco
Bay Area. They observed that nearly 31% of the existing
single-occupant work trips could be shifted to public
transit by using a ridehailing service as an access mode.

Empirical models of mode choice involving AVs and
transit have not been adequately studied and developed.

The extent and nature of interactions between AVs and
transit are also understudied. Existing research on auton-
omous ridehailing systems (18–23) has provided little
insight into the future of transit systems.

This study aims to measure the extent to which com-
muters may replace transit with ridehailing (i.e., solo and
pooled ridehailing), versus the potential to encourage
new riders to use transit by providing a first-/last-mile
connection service (i.e., transit plus ridehailing). This
paper contributes to the literature through building a
framework to study the potential impact of autonomous
ridehailing services on transit market share, considering
both transit-only travel and transit linked by ridehailing
services for the first/last mile. Moreover, it estimates and
applies a mode choice model to examine how these rela-
tionships may be affected by automation-driven price
reductions in ridehailing services. An SP choice experi-
ment is conducted and a joint SP–RP choice model is
developed. The choice sets considered include car and
transit along with three ridehailing modes for a commute
trip: solo ridehailing, pooled ridehailing, and transit plus
ridehailing in which ridehailing services provide a first-
and/or last-mile connection to transit. The effects of
vehicle automation were elicited by including it as an
attribute of ridehailing and car alternatives in the experi-
mental design.

This paper is organized as follows. In the next two sec-
tions, the survey, data collection process, and modeling
methods are explained. Then, the model results and anal-
ysis are presented. The final section of the paper sum-
marizes the findings and offers suggestions for future
studies.

Survey Design

To study the mode choice behavior of individuals, data
usually come from one or both of two sources: revealed
preference (RP) data, which refer to situations where the
choice is made and observed in real choice situations;
and stated preference (SP) data, which refer to situations
where a choice is made in hypothetical situations (24–28).
Although it necessarily involves hypothetical choices, SP
data can be used to cover wider variations of attribute lev-
els, and it is especially useful for choices that include new
alternatives, whereas RP is limited to studying alterna-
tives and attributes already represented in a marketplace.

In this study, the survey consisted of three parts:
socio-economic characteristics, information about the
respondent’s typical commute trip, and mode choice
behavior in hypothetical scenarios featuring emerging
transportation modes.

In the first section of the survey, respondents were
asked about their age, gender, driver’s license holding,
transit pass holding, education, disability status,
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occupation, and parking situation at their workplace.
They were also asked about their household’s income,
size, numbers of full-time and part-time workers, number
of members younger than 18, rental or ownership status,
and number of vehicles owned.

The second section of the survey asked respondents
several questions about their commute trip on a typical
workday, including the departure time, number of inter-
mediate stops and number of transfers along the trip,
and their primary commute mode.

The third section of the survey administered an SP
experiment. For this part, various choice scenarios were
developed, and in each scenario the respondents were
asked to choose between commute modes. The survey
included five transportation modes: car, transit, transit
plus ridehailing for the first/last mile, solo ridehailing,
and pooled ridehailing. Each of these modes could be
presented as conventional (i.e., human-driven) or auton-
omous in the choice scenarios.

Since respondents might have different perceptions
about ridehailing modes, a brief explanation of the ride-
hailing services was given to the respondents before start-
ing the third part of the survey. The general concepts of
ridehailing and driverless ridehailing were explained to
respondents as follows:

� Ridesourcing (or ridehailing) services allow you to
request a ride using a smartphone app, wait a few
minutes for the vehicle to pick you up, and then be
driven to work. When using ridesourcing services,
it is possible to make additional stops along the
way, if needed. Uber and Lyft are examples of
companies currently offering ridesourcing services.

� In a driverless ridesourcing service, you will still be
able to request the ride with a smartphone app,
wait a few minutes, and be driven to work. Instead
of a human driver, however, the car that arrives to
pick you up will be controlled by a computer.

The three specific mode alternatives that include ridehail-
ing were explained to the respondents as follows:

� In the transit + ridesourcing service, a ridesour-
cing service picks you up at home and transports
you to a public transit hub, from which you can
ride transit to your final destination. The public
transit portion of the trip in this case can be com-
pleted without any additional transfers.

� In a solo ridesourcing service you request a vehicle
to be ridden just by you (similar to UberX or Lyft
services).

� In a pooled ridesourcing service you may be
matched with other travelers who have a similar
route to yours and share the vehicle with these

other passengers (similar to Uber Pool or Lyft
Shared services).

To create the SP choice scenarios, each mode was
characterized by several attributes including travel time,
waiting time, travel cost, and parking fee. Travel cost for
car is the energy (gas or electricity) cost, calculated based
on the fuel economy of the car owned by the respondents
(they reported year, make, and model of their car in the
first part of the survey) and the trip distance as calcu-
lated between their home and workplace locations
through the Google Distance Matrix API. A gasoline
price of $2.74 per gallon and an electricity price of $
0.13 per kWh were assumed. In cases where the respon-
dent did not own a car, we used an average fuel economy
of 20.5miles per gallon as the basis for the energy cost of
the car alternative. The fuel economy information for
different vehicles can be found at https://www.fuelecono-
my.gov/. Travel times for the car and transit alternatives
were also obtained from the Google Distance Matrix
API. To generate the travel time of the transit plus ride-
hailing alternative, the estimated transit travel time was
multiplied by a fraction (selected from among 0.5, 0.7,
and 0.9 according to an experimental design), as this
alternative is expected to have a shorter travel time than
the transit-only alternative.

The combination of various attribute levels in each
choice situation was determined through an orthogonal
experimental design. The attribute levels used in the
experimental design of the survey are presented in
Table 1. Waiting time, in-vehicle travel time, and travel
cost for ridehailing were obtained from the Uber API for
the respondent’s approximate home and workplace loca-
tions. Once these base values for attributes were
retrieved, they were multiplied by different levels before
appearing in the choice scenario, according to the experi-
mental design. Travel cost for pooled ridehailing was
some fraction (selected from among 0.5, 0.7, and 0.9
according to the experimental design) of the solo ride-
hailing price, ensuring that pooled ridehailing was always
priced lower than solo ridehailing. Transit fare, transit
+ ridehailing price, and car parking fee were deter-
mined directly from the experimental design.

Data Collection

Because of the large number of alternatives and their
associated attributes, we conducted a random sampling
approach to reduce respondent burden. We used a frac-
tional factorial experimental design to develop a
balanced and orthogonal set of 9,000 choice scenarios
including 6,000 choice scenarios with conventional vehi-
cles in block sizes of four, and 3,000 choice scenarios
with AVs in block sizes of two. These scenarios were
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then partitioned randomly into sets of six. We checked
the balance and orthogonality of the resulting design and
found that the main effects and two-way interactions
were unconfounded. The ‘‘AlgDesign’’ R package was
used to generate the fractional orthogonal designs.

Each respondent was presented with a total of six sce-
narios. In scenarios 1 to 4 they had to choose between
conventional modes. Each respondent was presented
with three or four alternatives per scenario and was
asked to choose the preferred alternative for his/her daily
commute trip from home to work. If someone reported
driving as their current mode, they did not get a pure
transit alternative, and if they were currently a transit
commuter, they did not see a driving alternative. All
ridehailing services were shown to each respondent,
except that the transit plus ridehailing mode was dis-
played only if respondents’ commute trip took longer
than 30min by transit or included a transfer. The modes
shown in scenarios 1 to 4 were the same in each case but
with different attribute levels.

In scenarios 5 to 6, respondents chose between two
modes only. One was their current commute mode (e.g.,
driving) and the second mode was randomly selected
from the other four modes (e.g., solo ridehailing, pooled
ridehailing, transit, transit plus ridehailing). One of these
two modes was randomly displayed as autonomous (For
the case of transit, its autonomous version would be tran-
sit plus autonomous ridehailing). The modes shown in
scenario 6 were the same as those shown in scenario 5
but with different attribute levels.

Figure 1 shows examples of two scenarios shown to
different respondents in the final two choice scenarios
(i.e., scenarios 5–6). For example, if a respondent
reported ‘‘solo ridehailing’’ as his/her current commute
mode, he/she was asked to choose either between ‘‘solo
ridehailing’’ and autonomous version of a random mode,
or between ‘‘autonomous solo ridehailing’’ and a random
conventional mode. The random mode was randomly

selected from the modes not currently used by the
respondent (i.e., car, transit, transit plus ridehailing, and
pooled ridehailing in this example).

The survey was implemented on Amazon Web
Services (AWS) and was administered on Amazon’s
Mechanical Turk (MTurk). MTurk is an online crowd-
sourcing marketplace that makes it easier for individuals
and businesses to outsource their processes and jobs to a
distributed workforce who can perform these tasks virtu-
ally. This could include anything from conducting simple
data validation and research to more subjective tasks like
survey participation, content moderation, and more. To
have high-quality data, only the respondents with
approval rates of 95% or higher on at least 100 previ-
ously completed MTurk tasks were qualified to take this
survey. Although MTurk is widely used for data collec-
tion, the sample could be biased by MTurk respondents
perhaps being younger, more educated, and more famil-
iar with technology applications (29–33). The use of SP–
RP analysis can help to reduce the impact of this bias on
estimates, by bringing predicted market shares closer to
actual market shares (25, 28).

The survey was released in March 2019 on a nation-
wide scale with a target sample size of 1,500 respondents,
distributed proportionally to the population living in
each of the four continental US time zones. This gener-
ated a total of 9,000 SP observations. To control data
quality, we applied established quality-control techniques
to identify and filter out data of low quality. In our
experiment, low-quality data may result from several
concerns. A particular concern with respondents being
paid to complete a survey is that some may respond
without giving adequate consideration to questions, or
even randomly. To address these concerns, we conducted
a consistency check across the sample to check for incon-
sistent responses. Also, we flagged the respondents with
very long or very short survey completion times. Finally,
after dropping respondents with current modes of walk

Table 1. Attribute Levels/Values Used to Characterize Alternatives in Stated Preference Scenarios

Attribute Mode Levels*

Travel time All 0%, 6 15%, 6 30%
Waiting time Transit 3 min, 6 min, 9 min

Transit + ridehailing 3 min, 6 min, 9 min
Solo ridehailing 0%, 6 15%, 6 30%
Pooled ridehailing 0%, 6 15%, 6 30%

Travel cost Car 0%, 6 15%, 6 30%
Transit $1.50, $2.50, $3.50
Transit + ridehailing $3, $6, $9
Solo ridehailing 0%, 225%, 250%, 275%, + 25%
Pooled price/solo price ratio 0.5, 0.7, 0.9

Parking fee Car $ 0, $4, $8, $12

*The percentages represent the percentages of change from the base values.
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or bike because of their low share, unemployed respon-
dents, and those working from home, 6,753 observations
were retained.

The geographic distribution of all the respondents
who participated in the survey is displayed in Figure 2,
and Table 2 presents a summary of demographic statis-
tics for the retained respondents in the final sample.

Methods

A model developed based on pure SP data is prone to

over- or under-estimating market shares because of

hypothetical bias (25). The inclusion of RP data ensures

that estimation is anchored to observed behavior, result-

ing in more realistic market share predictions.

Figure 1. Examples of two sets of scenarios 5–6 shown to two different respondents.
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Although the ‘‘nested logit trick’’ is the most common
approach to pooling RP and SP data, it cannot account
for correlations between repeated observations of the
same respondent, such as in the six repeated choices

made by each respondent in this study. More impor-
tantly, joint SP–RP estimation can cause a ‘‘state depen-
dence’’ effect, defined as the impact of actual choice data
(RP) on the individual’s stated choices (SP data) (34).

Figure 2. Geographic distribution of the respondents around the US.

Table 2. Summary of the Demographic Statistics of the Final Sample

Demographic variable Category Value (sample) Value (US population)

Current commute travel mode Car driver and car passenger 85.5% 85.6%
Transit 9.0% 5.2%
Bike 1.6% 0.6%
Walk 2.2% 2.8%
Solo ridesourcing 1.4% NA
Pooled ridesourcing 0.3% NA
Other NA 5.8%

Mean travel time Car 20.6 min 26.9 min
Transit 54.0 min 51.0 min

Gender Female 46.5% 49.9%
Male 53.5% 50.1%

Age 18–24 7.7% 9.5%
25–34 42.6% 13.8%
35–44 25.6% 12.6%
45–54 15.5% 13.0%
55–64 7.8% 12.9%
65 or more 0.8% 15.6%

Education Less than high school 0.4% NA
High school graduate 7.3% NA
BSc and higher 61.0% 32.0%
Graduate and higher 16.0% 12.3%

Job Full-time 86.4% 66.3%
Part-time 11.1% 33.7%
Student 2.5% NA

Median age 34.0 37.8
Median household annual income Under $20,000 4.6% 15.5%

$20,000 to $39,999 19.2% 18.3%
$40,000 to $59,999 21.0% 15.9%
$60,000 to $99,999 34.6% 22.5%
$100,000 to $199,999 18.0% 20.9%
$200,000 or more 2.6% 6.9%

Mean persons per household 2.7 2.6
Mean vehicles per household 2.6 2.0

Drive alone and carpool combined based on American Community Survey; NA = not available.

Khaloei et al 1159



Habit persistence or inertia in seeking an alternative may
lead to a positive effect of state dependence, while a neg-
ative effect may result from the desire for variety or from
latent dissatisfaction associated with the current alterna-
tive (34).

Most SP–RP studies ignore state dependence and
adopt fixed parameters in pooling SP–RP data. This
study has accommodated such unobserved heterogeneity
in the state dependence effect of the RP choice on SP
choices based on the approach suggested by Bhat and
Castelar (34): see section 19 of (25) for more detail.

To model the mode choice behavior of commuters,
using the joint SP–RP data, a mixed logit (MXL) model
was built that can account for an error structure between
alternatives including unobserved preference heterogene-
ity, correlated choice sets, SP–RP scale difference, and
state dependency.

The mixed logit model develops as the vector form of
the individual-specific parameter, bi. We begin with the
basic form of the MXL model, with alternative-specific
constants, aji, and attributes, xji, for individuals i in
choice setting t and a choice set comprising several alter-
natives including the qth and the jth:

bki ¼ bk +sk � nik; ð1Þ

and

aji ¼ aj +sj � nji ð2Þ

where
bk is the population mean;
vik is the individual-specific heterogeneity, with mean 0

and standard deviation 1;
sk is the standard deviation of the distribution of biks

around bk; and
aji represents the choice-specific constants.

The elements of bi are randomly distributed across indi-
viduals with fixed means. The vjkis are the source of the
heterogeneity as individual and choice-specific unob-
served random terms.

An additional layer of individual heterogeneity can be
applied to the model in the form of error components
capturing alternatives-related influences. This is done by
creating a set of independent individual terms that can
be applied to the utility functions. This system allows us
to create what is a model of random effects and, more-
over, a very general type of alternative nesting. Let inde-
pendent individual terms be ein (n = 1, . . ., N), normally
distributed with mean 0 and standard deviation 1 (i.e.,
N[0,1]), and un be the scale parameter (standard devia-
tion) associated with these effects. Then, each utility
function could be written as

Uijt ¼ aji +bjXjit + anyof u1i1; u2i2; . . . :; uN iNð Þ ð3Þ

Assume a structure in a model with four utility func-
tions as follows:

Ui1t ¼ Vi1t + u1i1 + u2ei2 ð4Þ

Ui2t ¼ Vi2t + u2ei2 ð5Þ

Ui3t ¼ Vi3t + u1i1 + u3ei3 ð6Þ

Ui4t ¼ Vi4t + u4ei4 ð7Þ

Therefore, there is a correlation between Ui1t and Ui2t
and between Ui1t and Ui3t, while Ui4t has its own uncor-
related effect. The simplest way to allow different struc-
tures is to use binary variables, djn = 1, if the random
term en occurs in utility function j and 0 otherwise.

Some specific characteristics of the model of interest
in joint estimation with multiple datasets (i.e., SP and
RP datasets) include the possibility of ‘‘state (reference)
dependence’’ created in the SP data as a derivative of a
market context of RP data; and the differences in the
scale parameters for the SP data compared with the RP
data. State dependence is defined by Bhat and Castelar
(34) as

jqð1� dqt;RPÞ ð8Þ

where dqt, RP = 1 if an RP observation, 0 otherwise, and
jq is the state dependency parameter which can be fixed
or random. For each SP alternative, this variable enters
the utility function, with the ability to select a generic
specification.

The scale parameter for the SP dataset relative to the
RP dataset is obtained through the introduction of a set
of alternative-specific constants (ASCs) that have a zero
mean and free variance in the SP data while the scale for
the RP dataset is normalized to 1.0 (35). The scale para-
meter is calculated using

lqt ¼ ð1� dqt;RP

� �
l�+ dqt;RP ð9Þ

According to Equation 9, the dqt, RP was defined above
and l is inversely proportional to the estimated standard
deviation of the ASC of an alternative, according to the
EV1 distribution,

l ¼ p
ffiffiffi
6
p
� Standard Deviation of ASC

Then a model with error components for each alterna-
tive is identified. Unlike other specifications (36) that use
the results to identify the scale factors in the disturbances
of the utility functions, the logic is not used to identify
the parameters on the attributes; and in the conditional
distribution we are looking at here, the error components
act as attributes, not as disturbances. Also, the u para-
meters are estimated as if they are weights on attributes,
not scales on disturbances. The parameters are identified
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in the same way that the bs are identified on the
attributes.

As the error components are not observed, their scale
is not identified. Therefore, the parameter on the error
component is (dnsn) in which sn is the standard devia-
tion. Given that the u carries the magnitude and sign of
the parameter on the component, the scale is normalized
to 1 for estimation purposes as it is unidentified. Also,
since the sign of dm is not identified, we normalize the
sign to plus, and estimate |dm| with the sign and the value
of sm normalized for identification purposes.

Results

Model Results

The results of the mixed logit model estimated in
BIOGEME 3.2.5 are presented in Table 3. To find the
possible factors affecting the mode choice behavior of
individuals, the pairwise Spearman correlation test was
conducted, and the variables with acceptable levels of
significance (a=0.01, a=0.05, and a=0.10) were
identified for the modeling process.

Several models were developed with different attri-
butes including socio-economic variables, population
density of home and workplace location, and interac-
tions of different income bins and travel cost.

Random parameters in normal distributions have been
employed for ASCs and for the automation attribute.
Automation has been adopted as an attribute for car and
for solo and pooled ridehailing modes including the ride-
hailing used for the first-/last-mile connection in transit
plus ridehailing mode. The coefficients of automation
were also assumed to be the same for all ridehailing modes
(solo, pooled, and transit plus ridehailing). In addition,
the coefficients of waiting time were assumed to be the
same for solo and pooled ridehailing. Travel cost was
divided by the midpoint of the income category reported
by the respondent and was implemented as a generic vari-
able with the same coefficient in all the utility functions.

All travel time parameters were found significant with
negative signs for coefficients, which is consistent with
intuition. The coefficients for waiting time also have neg-
ative signs, but waiting time is statistically insignificant
for the transit alternative.

The results also showed that the population density at
the respondent’s workplace location has a positive
impact on choosing transit and transit plus ridehailing.
This might be related to the higher level of transit acces-
sibility in dense areas with a lot of parking and conges-
tion issues, which makes non-car modes often more
favorable in these settings.

Furthermore, several covariates were investigated as
possible sources of heterogeneity around the means of
the random parameter estimates. In effect, interacting

random parameters with other covariates decomposes
the heterogeneity observed within the random para-
meter, offering an explanation as to why that heteroge-
neity may exist (25). The random parameters for which a
covariate was found to partly explain the variation in
marginal utilities included car automation, car travel
time, and travel cost for all modes. The statistically sig-
nificant and negative parameter for the interaction term
of the random parameter, car automation, and the cov-
ariate, gender of a traveler, suggests that female travelers
are generally less willing to ride in AVs. Other variables
including age and car ownership were also interacted
with automation but were found to be statistically insig-
nificant as sources of heterogeneity in our sample. Also,
the interaction of the random parameter, car automa-
tion, with travel time attribute indicates that automation
might lead to an increase in the average value of travel
time savings (VTTS) for private cars and a decrease in
the VTTS for solo ridehailing. The VTTS values implied
by our results for each mode are reported in Table 4,
along with 95% confidence limits.

The VTTS for autonomous ridehailing was found to
be higher than that of a conventional car. This result is
counterintuitive, as in theory it is believed that being
freed from the need to drive would decrease the VTTS.
However, a few other studies also found the same results
(14, 37, 38), suggesting that since AVs are not yet com-
mercially available, people are not familiar/comfortable
enough with autonomous cars and their stated choices
today may not reflect choices they make in the future.
The VTTS for autonomous pooled ridehailing is higher
than that of autonomous solo ridehailing. This may
reflect concerns with sharing a ride in an autonomous
car with strangers when no driver is present. Since we do
not have the data necessary to test these hypotheses, we
leave it to other studies in the future.

Sensitivity Analysis

After building the choice model, a sensitivity analysis was
conducted to measure the impact of automation on the
behavior of transit commuters. Automation and electric
propulsion technologies are predicted to allow a substan-
tial decrease in prices for all modes (39). Furthermore,
automation is expected to affect the perceived cost of
travel by drivers (37, 38, 40), and it is expected to reduce
the travel time and waiting time by optimizing the effi-
ciency of mobility services (19, 41, 42).

Therefore, this section explores the potential mode
share effects of a decrease in the price, travel time, and
waiting time of ridehailing in two scenarios. The ranges
of decreases in the attributes are consistent with ranges
of variable values covered in the experimental design in
Table 1.

Khaloei et al 1161



T
a
b

le
3
.

M
X

L
M

o
d
el

E
st

im
at

io
n

R
es

u
lt
s

V
ar

ia
b
le

s

M
o
d
e

C
ar

Tr
an

si
t

Tr
an

si
t
+

R
H

So
lo

R
H

Po
o
le

d
R

H

E
st

im
at

e
P-

va
lu

e
E
st

im
at

e
P-

va
lu

e
E
st

im
at

e
P-

va
lu

e
E
st

im
at

e
P-

va
lu

e
E
st

im
at

e
P-

va
lu

e

C
o
n
st

an
t

–
–

2
2
.4

8
4
*
*
*

0
.0

0
2

2
.9

5
3
*
*
*

0
.0

0
2

3
.4

1
1
*
*
*

0
.0

0
2

3
.8

4
3
*
*
*

0
.0

0
Pa

ra
m

et
er

m
ea

ns
V
eh

ic
le

is
au

to
n
o
m

o
u
s:

1
;
el

se
:
0

2
1
.3

4
2
*
*
*

0
.0

0
–

–
0
.7

2
0
*
*
*

0
.0

0
0
.7

2
0
*
*
*

0
.0

0
0
.7

2
0
*
*
*

0
.0

0
Tr

av
el

ti
m

e
(m

in
)

2
0
.0

2
2
*
*
*

0
.0

0
2

0
.0

3
7
*
*
*

0
.0

0
2

0
.0

4
6
*
*
*

0
.0

0
2

0
.0

6
5
*
*
*

0
.0

0
2

0
.0

5
4
*
*
*

0
.0

0
W

ai
ti
n
g

T
im

e
(m

in
)

–
–

2
0
.0

1
4

0
.5

5
2

0
.1

6
5
*
*
*

0
.0

0
2

0
.1

8
8
*
*
*

0
.0

0
2

0
.1

8
8
*
*
*

0
.0

0
Tr

av
el

C
o
st

1
($

)/
h
o
u
se

h
o
ld

in
co

m
e

p
er

ye
ar

(i
n

$
1
0
0
0
)

2
8
.0

2
4
*
*
*

0
.0

0
2

8
.0

2
4
*
*
*

0
.0

0
2

8
.0

2
4
*
*
*

0
.0

0
2

8
.0

2
4
*
*
*

0
.0

0
2

8
.0

2
4
*
*
*

0
.0

0

Po
p
u
la

ti
o
n

d
en

si
ty

at
w

o
rk

p
la

ce
zi

p
co

d
e

(#
o
f
p
eo

p
le

/s
q
u
ar

e
m

ile
)

–
–

0
.2

0
E
2

0
4
*

0
.0

7
0
.1

0
E
2

0
4
*
*

0
.0

4
–

–
–

–

St
an

da
rd

de
vi
at

io
ns

of
pa

ra
m

et
er

di
st

ri
bu

tio
ns

C
o
n
st

an
t

–
–

2
.2

5
2
*
*

0
.0

4
2
.8

1
3
*
*
*

0
.0

0
3
.1

6
7
*
*
*

3
.6

9
2
*
*
*

0
.0

0
V
eh

ic
le

is
au

to
n
o
m

o
u
s:

1
;
el

se
:
0

2
.6

8
2
*
*
*

0
.0

0
–

–
0
.7

4
6
*
*
*

0
.0

0
0
.7

4
6
*
*
*

0
.0

0
0
.7

4
6
*
*
*

0
.0

0
In

te
ra

ct
io

ns
V
eh

ic
le

is
au

to
n
o
m

o
u
s:

1
;
el

se
:
0

&
tr

av
el

ti
m

e
(m

in
)

2
0
.0

1
3
*

0
.0

9
–

–
0
.0

0
3

0
.1

8
0
.0

2
6
*

0
.0

9
2

0
.0

1
9

0
.7

0

V
eh

ic
le

is
au

to
n
o
m

o
u
s:

1
;
el

se
:
0

&
tr

av
el

er
is

a
fe

m
al

e:
1
;
el

se
:0

2
0
.7

9
1
*
*

0
.0

3
–

–
2

0
.1

0
9

0
.4

4
2

0
.1

0
9

0
.4

4
2

0
.1

0
9

0
.4

4

N
u
m

b
er

o
f
O

b
se

rv
at

io
n
s

6
7
5
3

A
ka

ik
e

In
fo

rm
at

io
n

C
ri

te
ri

o
n

9
4
5
4
.2

0
Lo

g
Li

ke
lih

o
o
d

2
4
7
1
5
.8

0
A

d
ju

st
ed

M
cF

ad
d
en

p
se

u
d
o

R
2

0
.4

1

N
o
te

:
R

H
=

ri
d
eh

ai
lin

g.
1
G

as
/E

le
ct

ri
ci

ty
co

st
+

P
ar

ki
ng

fe
e

fo
r

ca
r

m
o
d
e;

fa
re

fo
r

o
th

er
m

o
d
es

.
*
2
-t

ai
l
si

gn
ifi

ca
n
ce

at
a

=
0
.1

0
.

*
*
2
-t

ai
l
si

gn
ifi

ca
n
ce

at
a

=
0
.0

5
.

*
*
*
2
-t

ai
l
si

gn
ifi

ca
n
ce

at
a

=
0
.0

1
.

–
P
ar

am
et

er
n
o
t

es
ti
m

at
ed

.

1162



Scenario 1. In this scenario, it is assumed that none of the
modes are autonomous, and the effects of varying price,
travel time, and waiting time of conventional ridehailing
modes on the attraction of transit commuters are simu-
lated. The baseline for this analysis is status quo; that is,
when all modes are conventional, and they keep their
current attribute values.

A. Price

As shown in Figure 3, the price of conventional ride-
hailing modes has been decreased by 10% increments (X
axis) and the market share for each of the three conven-
tional ridehailing modes (i.e., solo, pooled, and first/last
mile) along with the transit market share has been calcu-
lated (Y axis).

B. Travel time and waiting time

Figures 4 and 5 show how the market shares of the
three conventional ridehailing modes (i.e., solo, pooled,

and first/last mile) and transit depend on the ridehailing
travel time and waiting time, respectively.

Figure 3, which involves conventional modes, shows
that as the transit market share is decreased, the market
shares of ridehailing services increase. Among ridehailing
modes, the market shares of solo and pooled ridehailing
grow faster than that of ridehailing as a first-/last-mile
connection to transit. It is also shown that transit-only
market share decreases, but overall transit share, includ-
ing transit-only riders and those who use ridehailing for
first-/last-mile connection to transit, remains mostly con-
stant, or slightly increases (compared with the horizontal
white dashed line).

Figures 4 and 5, which involve conventional modes,
indicate that a decrease in the travel time and waiting
time of conventional ridehailing services leads to a

Table 4. Value of Travel Time Savings (VTTS)

Travel mode

VTTS ($/h)

Conventional Autonomous

Car 11.1 [8.2, 14.0]* 17.7 [6.1, 29.4]
Transit 17.8 [14.1, 21.6] na
Transit + ridehailing 22.4 [20.1, 24.7] 21 [15.4, 26.6]
Solo ridehailing 31.3 [26.6, 36.0] 18.4 [15.2, 21.6]
Pooled ridehailing 26.7 [22.4, 31.0] 35.7 [25.6, 45.8]

*
Values in the brackets show 95% confidence limits; na = not applicable.

Figure 3. Change in the market share of transit and ridehailing
modes as a result of decreased price of conventional ridehailing
services.

Figure 4. Change in the market share of transit and ridehailing
modes as a result of decreased travel time for conventional
ridehailing services.

Figure 5. Change in the market share of transit and ridehailing
modes as a result of decreased waiting time for conventional
ridehailing services.
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decrease in the market share of transit-only mode while
the total market share for transit, including transit-only
riders and those who use ridehailing for first-/last-mile
connection to transit, remains mostly constant (indicated
by the white dashed line).

Scenario 2. In this scenario, all modes are assumed to be
autonomous, and again the effects of varying the price,
travel time, and waiting time of autonomous ridehailing
modes on the market share of transit commuters are
simulated. The baseline for this analysis is when all
modes are autonomous, but they keep their other attri-
butes at current levels.

A. Price

As can be seen in Figure 6, The price of autonomous
ridehailing has been decreased by 10% in each step (X
axis) and the market share for each of the three autono-
mous ridehailing modes (i.e., solo, pooled, and first/last
mile) along with transit market share has been calculated
(Y axis).

B. Travel time & Waiting time

Figures 7 and 8 show how the market shares of the
three autonomous ridehailing modes (i.e., solo, pooled,
and first/last mile) and transit depend on the autono-
mous ridehailing travel time and waiting time,
respectively.

In Figure 6, which involves autonomous services,
transit-only market share decreases, while the market
share of transit plus ridehailing as first-/last-mile

connection remains roughly constant. Therefore, overall
transit share decreases slightly as indicated by the white
dashed line.

In Figures 7 and 8 which involves autonomous ser-
vices, reduction in travel time and waiting time has led to
an increase in the market share of ridehailing services
while the transit-only market share has dropped.
However, the overall transit market share suggests an
increase as indicated by the white dashed line.

Furthermore, comparing Figure 3 with Figure 6

reveals that a potential decrease in the price of ridehail-
ing services caused by automation accelerates the trend
of shifting from transit to solo ridehailing and transit
plus ridehailing, while pooled ridehailing might not bene-
fit too much from automation. This could be related to
discomfort and privacy concerns caused by sharing a

Figure 6. Change in the market share of transit and ridehailing
modes as a result of decreased price of autonomous ridehailing
services.

Figure 7. Change in the market share of transit and ridehailing
modes as a result of decreased travel time for autonomous
ridehailing services.

Figure 8. Change in the market share of transit and ridehailing
modes as a result of decreased waiting time for autonomous
ridehailing services.
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ride in an autonomous car with strangers when no driver
is present (39). Although people generally prefer the pri-
vacy of their own car to the shared environment of a bus
ride, many still consider it burdensome to share a car-
sized vehicle with strangers (43).

According to Figure 3, price reduction in conventional
ridehailing services could keep the total transit market
share constant by encouraging more transit users to use
inexpensive ridehailing for the first-/last-mile connection
to transit. In Figures 4 and 5, like price reduction, travel
time, and waiting time reduction in conventional ride-
hailing services could keep the total transit market share
approximately constant.

As can be seen in Figure 6, price reduction in autono-
mous ridehailing services could decrease the total transit
market share by encouraging more transit users to shift
to inexpensive autonomous ridehailing services, espe-
cially to solo ridehailing. In Figures 7 and 8, unlike price
reduction, travel time and waiting time reduction could
maintain (yet increase) the total transit market share
resulting from the increase in the usage of autonomous
ridehailing as the first-/last-mile connection to transit.

Conclusions

In this study, we explored how the automation of ride-
hailing might affect transit market share. To understand
how the changes in the commute mode shares depend on
the characteristics of transportation modes, a survey was
designed and distributed nationally that consisted of
three parts: socio-economic questions, actual mode
choice questions (i.e., RP data), and hypothetical mode
choice questions (i.e., SP data). In the third part, various
choice scenarios were developed that included five trans-
portation modes: car, transit, transit plus ridehailing for
the first/last mile, solo ridehailing, and pooled ridehail-
ing. To model the behavior of commuters a mixed logit
model was employed using joint SP–RP data, consider-
ing car as the reference mode.

The model results indicated that travel cost, waiting
time, and travel time decrease utility of all modes, and
higher population density at the work location increases
the utility of transit and transit plus ridehailing modes.
In addition to the choice model analysis, we also built
and analyzed different scenarios, assuming different
prices, waiting time, and travel times for ridehailing ser-
vices as well as assuming the services being autonomous
or conventional.

It was found that ridehailing per se might not be a sig-
nificant competitor to transit, especially if it is integrated
with transit as a first-/last-mile service. With conventional
ridehailing services, the total transit mode share (transit-
only riders plus those who use transit in connection with
ridehailing for first/last mile) remains largely flat even if

ridehailing fares decrease. On the other hand, if automa-
tion significantly reduces the price of ridehailing services,
our analysis suggests a decline in total transit ridership
and an increase in ridehailing, especially for solo ridehail-
ing in commute trips. This could lead to major challenges
with traffic congestion and emissions. Ridehailing services
already face taxation and other regulations by cities, and
additional policies may be needed in a future with autono-
mous ridehailing to offset the effects of automation-
enabled labor cost reductions. The results also suggest
that the better services by ridehailing companies to mini-
mize travelers’ waiting time and travel time may not nega-
tively affect the total transit market share, regardless of
the service being conventional or autonomous. The results
also imply that autonomous pooled ridehailing might not
be as attractive to commuters as autonomous solo ride-
hailing, which could be an important insight for transpor-
tation network companies (TNCs).

In future studies, it will be interesting to include other
modes such as walking and biking to figure out the shift
between those and ridehailing services, as automation is
introduced and/or prices change. Also, future studies
could focus on the attitudes of individuals toward auton-
omous pooled ridehailing to gain insights about the
reluctancy or willingness of people to the automation of
this mode. Since the workplace population density was
found to have a positive and statistically significant effect
on choosing transit and transit plus ridehailing modes, it
would be desirable to examine how other land use attri-
butes such as employment density and land use diversity
affect the choice between transit and ridehailing services,
particularly given the future availability of AVs. Finally,
we should note that the data for this study were collected
a year before the COVID-19 pandemic hit the US, and
so the data and market share estimates might not reflect
current or near future attitudes toward ridehailing and/
or transit services.
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