Skip to content
Paper

Processing Commercial GPS Data to Develop Web-Based Truck Performance Measure Program

 
Download PDF  (1.54 MB)
Publication: Transportation Research Record
Volume: 2011
Pages: 92–100
Publication Date: 2011
Summary:

Although trucks move larger volumes of goods than other modes of transportation, public agencies know little about their travel patterns and how the roadway network performs for trucks. Trucking companies use data from the Global Positioning System (GPS) provided by commercial vendors to dispatch and track their equipment. This research collected GPS data from approximately 2,500 trucks in the Puget Sound, Washington, region and evaluated the feasibility of processing these data to support a statewide network performance measures program. The program monitors truck travel time and system reliability and will guide freight investment decisions by public agencies. While other studies have used a limited number of project-specific GPS devices to collect frequent location readings, which permit a fine-grained analysis of specific roadway segments, this study used data that involved less frequent readings but that were collected from a larger number of trucks for more than a year. Automated processing was used to clean and format the data, which encompassed millions of data points. Because a performance measurement program ultimately monitored trips generated by trucks as they travel between origins and destinations, an algorithm was developed to extract this information and geocode each truck’s location to the roadway network and to traffic analysis zones. Measures were developed to quantify truck travel characteristics and performance between zones. To simplify the process and provide a better communications platform for the analysis, the researchers developed a Google Maps-based online system to compute the measures and show the trucks’ routes graphically.

Authors: Dr. Ed McCormack, Xiaolei Ma, Yinhai Wang
Recommended Citation:
Ma, Xiaolei, Edward D. McCormack, and Yinhai Wang. "Processing commercial global positioning system data to develop a web-based truck performance measures program." Transportation Research Record 2246, no. 1 (2011): 92-100.
Paper

A Description of Commercial Cross Border Trips in the Cascade Gateway and Trade Corridor

Publication: Transportation Letters: The International Journal of Transportation Research
Volume: 1(3)
Pages: 213-225
Publication Date: 2009
Summary:

This paper describes commercial vehicle delay, transportation patterns and the commodity profile at the Western Cascade Gateway, the main border crossing between Southwest British Columbia, Canada, and Northwestern Washington, United States. Using five data sources for comparison—a probe vehicle border crossing time data set, a detailed border operations survey data set, loop detector volume counts, manifest sampling, and data from the Bureau of Transportation Statistics, the transportation, trade, and delay patterns can be synthesized to provide a more complete description of regional freight transportation. This context can be used to consider the impact delay has on regional supply chains, and in developing appropriate freight transportation policy solutions for the border.

Authors: Dr. Anne Goodchild, Susan Albrecht, Li Leung
Recommended Citation:
Goodchild, Anne & Albrecht, Susan & Leung, Li. (2009). A description of commercial cross border trips in the Cascade Gateway and trade corridor. Transportation Letters: The International Journal of Transportation Research. 1. 213-225. 10.3328/TL.2009.01.03.213-225. 
Paper

Measurement and Classification of Transit Delays Using GTFS-RT Data

Publication: Public Transport
Volume: 14
Pages: 263-285
Publication Date: 2022
Summary:

This paper presents a method for extracting transit performance metrics from a General Transit Feed Specification’s Real-Time (GTFS-RT) component and aggregating them to roadway segments. A framework is then used to analyze this data in terms of consistent, predictable delays (systematic delays) and random variation on a segment-by-segment basis (stochastic delays). All methods and datasets used are generalizable to transit systems which report vehicle locations in terms of GTFS-RT parameters. This provides a network-wide screening tool that can be used to determine locations where reactive treatments (e.g., schedule padding) or proactive infrastructural changes (e.g., bus-only lanes, transit signal priority) may be effective at improving efficiency and reliability. To demonstrate this framework, a case study is performed regarding one year of GTFS-RT data retrieved from the King County Metro bus network in Seattle, Washington. Stochastic and systematic delays were calculated and assigned to segments in the network, providing insight to spatial trends in reliability and efficiency. Findings for the study network suggest that high-pace segments create an opportunity for large, stochastic speedups, while the network as a whole may carry excessive schedule padding. In addition to the static analysis discussed in this paper, an online interactive visualization tool was developed to display ongoing performance measures in the case study region. All code is open-source to encourage additional generalizable work on the GTFS-RT standard.

Authors: Dr. Andisheh Ranjbari, Zack Aemmer, Don MacKenzie
Recommended Citation:
Aemmer, Z., Ranjbari, A. & MacKenzie, D. Measurement and classification of transit delays using GTFS-RT data. Public Transp 14, 263–285 (2022). https://doi.org/10.1007/s12469-022-00291-7.
Paper

Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making

 
Download PDF  (1.85 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Volume: 2675 (9)
Publication Date: 2021
Summary:

As e-commerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries. In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices.

The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times. We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers. The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.

In recent years, cities have changed their approach toward managing urban freight vehicles. Passive regulations, such as limiting delivery vehicles’ road and curb use to given time windows or areas (1), have been replaced by active management through designing policies for deploying more commercial vehicle (CV) load zones, pay-per-use load zone pricing, curb reservations, and parking information systems.

The goal is to reduce the negative externalities produced by urban freight vehicles, such as noise and emissions, traffic congestion, and unauthorized parking while guaranteeing goods flow in dense urban areas. To accomplish this goal, planners need to have an understanding of the fundamental parking decision-making process and behaviors of CV drivers.

Two main difficulties are encountered when CV driver behaviors are analyzed. First, freight movement in urban areas is a very heterogeneous phenomenon. Drivers face numerous challenges and have to adopt different travel and parking behaviors to navigate the complex urban network and perform deliveries and pick-ups. Therefore, researchers and policymakers find it harder to identify common behaviors and responses to policy actions for freight vehicles than for passenger vehicles. Second, there is a lack of available data. Most data on CV movements are collected by private carriers, who use them to make business decisions and therefore rarely release them to the public (2). Lack of data results in a lack of fundamental knowledge of the urban freight system, inhibiting policy makers’ ability to make data-driven decisions (3).

The urban freight literature discusses research that has employed various data collection techniques to study CV driver behaviors. Cherrett et al. reviewed 30 UK surveys on urban delivery activity and performed empirical analyses on delivery rates, time-of-day choice, types of vehicles used to perform deliveries, and dwell time distribution, among others. The surveys reviewed were mostly establishment-based, capturing driver behaviors at specific locations and times of the day. Allen et al. (5) performed a more comprehensive investigation, reviewing different survey techniques used to study urban freight activities, including driver surveys, field observations, vehicle trip diaries, and global positioning system (GPS) traces.

Driver surveys collect data on driver activities and are usually performed through in-person interviews with drivers outside their working hours or at roadside at specific locations. In-person interviews provide valuable insights into driver choices and decisions but are often limited by the locations at which the interviews occur or might not reflect actual choices because they are done outside the driver work context. Vehicle trip diaries involve drivers recording their daily activities while field observations entail observing driver activities at specific locations and establishments; neither collects insights into the challenges that drivers face during their trips and how they make certain decisions.

The same limitations hold true for data collected through GPS traces. Allen et al. (5) mentioned the collection of travel diaries by surveyors traveling in vehicles with drivers performing deliveries and pick-ups as another data collection technique that could provide useful insights into how deliveries/pick-ups are performed. However, they acknowledged that collecting this type of data is cumbersome because of the difficulty of obtaining permission from carriers and the large effort needed to coordinate data collection.

This study aims to fill that gap by collecting data on driver decision-making behaviors through observations made while riding along with CV drivers. A systematic approach was taken to observe and collect data on last-mile deliveries, combining both qualitative observations and quantitative data from GPS traces. The ridealongs were performed with various delivery companies in Seattle, Washington, covering a range of vehicle types (cars, vans, and trucks), goods types (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail).

The data collected will not only add to the existing literature by providing estimates of trip times, parking choice types, time and distance spent cruising for parking, and parking dwell times but will also provide insights into why those decisions are made and the factors affecting driver choices. The objectives of this study are to provide a better understanding of CV driver behaviors and to identify common and unique challenges they experience in performing the last mile. These findings will help city planners, policy makers, and delivery companies work together better to address those challenges and improve urban delivery efficiency.

The next section of this paper describes the relevant literature on empirical urban freight behavior studies. The following section then introduces the ridealongs performed and the data collection methods employed. Next, analysis of the data and qualitative observations from the ridealongs are described, and the results are discussed in five overarching categories: the time spent in and out of the vehicle, parking location choice, the reasons behind those choices, parking cruising time, and factors affecting dwell time.

Recommended Citation:
Dalla Chiara, G., Krutein, K. F., Ranjbari, A., & Goodchild, A. (2021). Understanding Urban Commercial Vehicle Driver Behaviors and Decision Making. Transportation Research Record: Journal of the Transportation Research Board, 036119812110035. https://doi.org/10.1177/03611981211003575.
Paper

Lessons from Tests of Electronic Container Door Seals

Publication: Transportation Research Board 88th Annual Meeting
Publication Date: 2009
Summary:
A series of field operational tests completed by Washington State over a 10-year period has shown that electronic container door seals (E-seals) can increase the efficiency and improve the security of containerized cargo movement. Universal use of E-seals, along with the associated infrastructure, could provide notable improvements in security, container tracking, and transaction cost reductions. Testing in ports, border facilities, and on roadways proved that E-Seal technology works: E-Seals can accurately and automatically report on container status at choke points, and the records can be accessed online to verify seal location, status (tampered or untampered), date, and time. However, a number of institutional barriers are likely to delay or even forestall the adoption of E-seals. A lack of standards is a major issue, since the E-seals available today use many different frequencies, hindering their applicability to international trade flows. A further barrier is the acceptability and cost of E-seals to the container industry. Routine use of seals would require new software linkages and container sealing procedures, which could slow acceptance. Disposable seals, which eliminate the need to recycle E-seals, are not common because they need to be produced in large quantities to be low cost. E-seals acceptable to the industry also need to be proved in a real world trade environment and need to be functionally simple to reduce routine operational problems. Compatibility with existing highway transponders systems might also promote E-seal acceptance, since containers could be tracked on the roadway system.

 

 

Authors: Dr. Ed McCormack, Mark Jensen, Al Hovde
Recommended Citation:
McCormack, E., Jensen, M., & Hovde, A. (2009). Lessons from Tests of Electronic Container Door Seals (No. 09-0821).
Paper

Rails-Next-to-Trails: A Methodology for Selecting Appropriate Safety Treatments at Complex Multimodal Intersections

 
Publication: Transportation Research Record
Volume: 2672 (10)
Pages: 27-Dec
Publication Date: 2018
Summary:
There are more than 212,000 at-grade railroad crossings in the United States. Several feature paths running adjacent to the railroad tracks, and crossing a highway; they serve urban areas, recreational activities, light rail station access, and a variety of other purposes. Some of these crossings see a disproportionate number of violations and conflicts between rail, vehicles, and pedestrians and bikes. This research focuses on developing a methodology for appropriately addressing the question of treatments in these complex, multimodal intersections. The methodology is designed to be able to balance a predetermined, prescriptive approach with the professional judgment of the agency carrying out the investigation. Using knowledge and data from the literature, field studies, and video observations, a framework for selecting treatments based on primary issues at a given location is developed. Using such a framework allows the agency to streamline their crossing improvement efforts; to easily communicate and inform the public of the decisions made and their reasons for doing so; to secure stakeholder buy-in prior to starting a project or investigation; to make sure that approach and selected treatments are more standardized; and to ensure transparency in the organization to make at-grade crossings safer for pedestrians and bicyclists, without negatively impacting trains or vehicles.

 

Paper

Delivery by Drone: An Evaluation of Unmanned Aerial Vehicle Technology in Reducing CO2 Emissions in the Delivery Service Industry

 
Download PDF  (2.33 MB)
Publication: Transportation Research Part D: Transport and Environment
Volume: 61
Pages: 58-67
Publication Date: 2018
Summary:

This research paper estimates carbon dioxide (CO2) emissions and vehicle-miles traveled (VMT) levels of two delivery models, one by trucks and the other by unmanned aerial vehicles (UAVs), or “drones.”

Using several ArcGIS tools and emission standards within a framework of logistical and operational assumptions, it has been found that emission results vary greatly and are highly dependent on the energy requirements of the drone, as well as the distance it must travel and the number of recipients it serves.

Still, general conditions are identified under which drones are likely to provide a CO2 benefit – when service zones are close to the depot, have small numbers of stops, or both. Additionally, measures of VMT for both modes were found to be relatively consistent with existing literature that compares traditional passenger travel with truck delivery.

Authors: Dr. Anne Goodchild, Jordan Toy
Recommended Citation:
Goodchild, Anne, and Jordan Toy. "Delivery by Drone: An Evaluation of Unmanned Aerial Vehicle Technology in Reducing CO2 Emissions in the Delivery Service Industry" Transportation Research Part D: Transport and Environment 61 (2018): 58-67.
Paper

Evaluating CO2 Emissions, Cost, and Service Quality Trade-Offs in an Urban Delivery System Case Study

 
Download PDF  (0.63 MB)
Publication: International Association of Traffic and Safety Sciences (IATSS)
Volume: 35 (1)
Pages: 15-Jul
Publication Date: 2011
Summary:

Growing pressure to limit greenhouse gas emissions is changing the way businesses operate. This paper presents the trade-offs between cost, service quality (represented by time window guarantees), and emissions of an urban pickup and delivery system under these changing pressures. A model, developed by the authors in ArcGIS, is used to evaluate these trade-offs for a specific case study involving a real fleet with specific operational characteristics. The problem is modeled as an emissions minimization vehicle routing problem with time windows. Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost, service quality, and emissions. Specific consideration of the influence of time windows, customer density, and vehicle choice are included.

The results show a stable relationship between monetary cost and kilograms of CO2, with each kilogram of CO2 associated with a $3.50 increase in cost, illustrating the influence of fuel use on both cost and emissions. In addition, customer density and time window length are strongly correlated with monetary cost and kilograms of CO2 per order. The addition of 80 customers or extending the time window 100 minutes would save approximately $3.50 and 1 kilogram of CO2 per order. Lastly, the evaluation of four different fleets illustrates significant environmental and monetary gains can be achieved through the use of hybrid vehicles.

The results demonstrate there is not a trade-off between CO2 emissions and cost, but that these two metrics trend together. This suggests the most effective way to encourage fleet operators to limit emissions is to increase the cost of fuel or CO2 production, as this is consistent with current incentives that exist to reduce cost, and therefore emissions.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. "Evaluating CO2 Emissions, Cost, and Service Quality Trade-Offs in an Urban Delivery System Case Study." IATSS Research 35, No. 1 (2011): 7-15.
Paper

Using Truck Probe GPS Data to Identify and Rank Roadway Bottlenecks

 
Download PDF  (1.22 MB)
Publication: American Society of Civil Engineers (ASCE) Journal of Transportation Engineering
Volume: 139(1)
Pages: 7-Jan
Publication Date: 2013
Summary:

This paper describes the development of a systematic methodology for identifying and ranking bottlenecks using probe data collected by commercial global positioning system fleet management devices mounted on trucks. These data are processed in a geographic information system and assigned to a roadway network to provide performance measures for individual segments. The authors hypothesized that truck speed distributions on these segments can be represented by either a unimodal or bimodal probability density function and proposed a new reliability measure for evaluating roadway performance. Travel performance was classified into three categories: unreliable, reliably fast, and reliably slow. A mixture of two Gaussian distributions was identified as the best fit for the overall distribution of truck speed data. Roadway bottlenecks were ranked on the basis of both the reliability and congestion measurements. The method was used to evaluate the performance of Washington state roadway segments, and proved efficient at identifying and ranking truck bottlenecks.

Authors: Dr. Ed McCormack, Wenjuan Zhao, Daniel J. Dailey, Eric Scharnhorst
Recommended Citation:
Zhao, Wenjuan, Edward McCormack, Daniel J. Dailey, and Eric Scharnhorst. "Using truck probe GPS data to identify and rank roadway bottlenecks." Journal of Transportation Engineering 139, no. 1 (2012): 1-7.
Paper

Free and Secure Trade Commercial Vehicle Crossing Times at the Pacific Highway Port of Entry

 
Download PDF  (0.31 MB)
Publication: Journal of Transportation Engineering
Volume: 136(10)
Pages: 932-935
Publication Date: 2010
Summary:

At the Pacific Highway port of entry between the United States and Canada, typical delays are known to regional carriers and internalized into schedules. Due to their relative infrequency, the largest crossing times are not internalized into schedules and cause significant disruptions to regional supply chains. This technical note describes the recent patterns of very long crossing times (defined as more than 2 h or the largest 1% of crossing times) and explores the relationship between arrival volume and crossing time. To do so, this study uses commercial vehicle crossing time data from GPS technology and volume data from the British Columbia Ministry of Transportation. Results show a weak correlation between border crossing time and arrival volume when considering individual observations, but a stronger correlation when data are aggregated. Results show a high percentage of crossing time can be attributed to sources other than primary booth delay, particularly for the most disruptive, very long crossing times.

Authors: Dr. Anne Goodchild, Li Leung, Susan Albrecht
Recommended Citation:
Goodchild, Anne, Li Leung, and Susan Albrecht. "Free and secure trade commercial vehicle crossing times at the Pacific Highway port of entry." Journal of Transportation Engineering 136, no. 10 (2010): 932-935.