Skip to content
Paper

GPS Data Analysis of the Impact of Tolling on Truck Speed and Routing: A Case Study in Seattle, WA

 
Download PDF  (2.51 MB)
Publication: Journal of the Transportation Research Board
Volume: 2411:01:00
Pages: 112-119
Publication Date: 2014
Summary:

Roadway tolls are designed to raise revenue to fund transportation investments and manage travel demand and as such may affect transportation system performance and route choice. Yet, limited research has quantified the impact of tolling on truck speed and route choice because of the lack of truck-specific movement data. Most existing tolling impact studies rely on surveys in which drivers are given several alternative routes and their performance characteristics and asked to estimate route choices. The limitations of such an approach are that the results may not reflect actual truck route choices and the surveys are costly to collect. The research described in this paper used truck GPS data to observe empirical responses to tolling, following the implementation of a toll on the State Route 520 (SR-520) bridge in Seattle, Washington. Truck GPS data were used to evaluate route choice and travel speed along SR-520 and the alternate toll-free Route I-90. It was found that truck travel speed on SR-520 improved after tolling, although travel speed on the alternative toll-free Route I-90 decreased during the peak period. A set of logit models was developed to determine the influential factors in truck routing. The results indicated that travel time, travel time reliability, and toll rate were all influential factors during peak and off-peak periods. The values of truck travel time during various time periods were estimated, and it was found that the values varied with the definition of peak and off-peak periods.

Authors: Dr. Anne Goodchild, Zun Wang
Recommended Citation:
Wang, Zun, and Anne V. Goodchild. “GPS Data Analysis of the Impact of Tolling on Truck Speed and Routing.” Transportation Research Record: Journal of the Transportation Research Board, vol. 2411, no. 1, 2014, pp. 112–119., doi:10.3141/2411-14.
Paper

The Impact of Truck Arrival Information on System Efficiency at Container Terminals

 
Download PDF  (0.93 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2162
Pages: 17-24
Publication Date: 2010
Summary:

This paper quantifies the benefits to drayage trucks and container terminals from a data-sharing strategy designed to improve operations at the drayage truck-container terminal interface. This paper proposes a simple rule for using truck information to reduce container rehandling work and suggests a method for evaluating yard crane productivity and truck transaction time. Various scenarios with different levels of information quality are considered to explore how information quality affects system efficiency (i.e., truck wait time and yard crane productivity). Different block configurations and truck arrival rates are also investigated to evaluate the effectiveness of truck information under various system configurations. The research demonstrates that a small amount of truck information can significantly improve crane productivity and reduce truck delay, especially for those terminals operating near capacity or using intensive container stacking, and that complete truck arrival sequence information is not necessary for system improvement.

Authors: Dr. Anne Goodchild, Wenjuan Zhao
Recommended Citation:
Zhao, Wenjuan, and Anne V. Goodchild. “Impact of Truck Arrival Information on System Efficiency at Container Terminals.” Transportation Research Record: Journal of the Transportation Research Board, vol. 2162, no. 1, 2010, pp. 17–24., doi:10.3141/2162-03.
Paper

Analyzing the Shift in Travel Modes’ Market Shares with the Deployment of Autonomous Vehicle Technology

 
Download PDF  (0.52 MB)
Publication Date: 2020
Summary:

It is generally accepted that automation as an emerging technology in transportation sector could have a potential huge effect on changing the way individuals travel. In this study, the impact of automation technology on the market share of current transportation modes has been examined. A stated preference (SP) survey was launched around the U.S. to ask 1500 commuters how they would choose their commute mode if they had the option to choose between their current mode and an autonomous mode. The survey included five transportation modes: car, transit, transit plus ride-sourcing for the first/last mile, solo ride-sourcing, and pooled ride-sourcing. Each of these modes could be presented as regular or autonomous in the choice scenarios. Then, a mixed logit model was developed using the collected data. Results from the analysis of the model showed that applying the automation in ride-sourcing services to decrease the fare, has the largest effect on the market share of transit ride-sourcing. Also, it was found that measures such as deploying more frequent services by ride-sourcing operators to minimize the waiting time of the services could lead to an increase in the market share of transit plus ride-sourcing but it might not improve the market share for solo and pooled ride-sourcing. Furthermore, it was concluded that if the ride-sourcing market share does not move toward the automation, the mode that will lose the market share is the transit plus ride-sourcing mode for which the market share will be decreased as a consequence of the high decrease in the cost of riding an autonomous private car.

Authors: Dr. Andisheh Ranjbari, Moein Khaloei, Don MacKenzie
Recommended Citation:
Khaloei, M., Ranjbari, A. and MacKenzie, D. (2020) Analyzing the Shift in Travel Modes’ Market Shares with the Deployment of Autonomous Vehicle Technology. Transportation
Paper

Evacuating Isolated Islands with Marine Resources: A Bowen Island Case Study

 
Download PDF  (9.41 MB)
Publication: International Journal of Disaster Risk Reduction
Volume: 72
Publication Date: 2022
Summary:

Inhabited islands are susceptible to natural hazards, such as wildfires. To avoid disasters, preventative measures and guidelines need to be in place to strengthen community resilience. If these fail, evacuation is often the only choice. However, island evacuation is a vastly understudied problem in both research and practice, particularly for islands without permanent road connections to the mainland that require marine evacuation. Multiple vessel trips are necessary to evacuate the population from suitable access points, which previous studies did not entertain. Furthermore, most existing studies either focus on evacuations from an academic, or from a government perspective. Instead, this paper presents a collaborative approach. It applies a recently developed evacuation routing model that optimizes the evacuation plan for Bowen Island in Canada through minimizing the expected evacuation time across disaster scenarios. These were designed with the participation of a broad range of stakeholders, from local residents and volunteer groups to agencies from all levels of government and companies, which integrates both academic and practical perspectives to maximize solution quality. Different options for fleet sizes, staging locations and scenarios were considered. The results show that the optimized evacuation time for Bowen Island varies between 1 and 8 h, as it strongly depends on the disaster scenario, the evacuation fleet, and can be accelerated by temporary staging areas. The suitability of the approach for evacuation studies can be confirmed through the identification of key improvements for increased community resilience and the inclusion of the results in the official Bowen Island evacuation plan.

Authors: Fiete KruteinDr. Anne Goodchild, Jennifer McGowan
Recommended Citation:
Krutein, K. F., McGowan, J., & Goodchild, A. (2022). Evacuating isolated islands with marine resources: A Bowen island case study. International Journal of Disaster Risk Reduction, 72, 102865. https://doi.org/10.1016/j.ijdrr.2022.102865.
Paper

A Policy-Sensitive Model of Parking Choice for Commercial Vehicles in Urban Areas

 
Download PDF  (1.69 MB)
Publication: Transportation Science
Publication Date: 2020
Summary:

Understanding factors that drive the parking choice of commercial vehicles at delivery stops in cities can enhance logistics operations and the management of freight parking infrastructure, mitigate illegal parking, and ultimately reduce traffic congestion. In this paper, we focus on this decision-making process at large urban freight traffic generators, such as retail malls and transit terminals, that attract a large share of urban commercial vehicle traffic. Existing literature on parking behavior modeling has focused on passenger vehicles. This paper presents a discrete choice model for commercial vehicle parking choice in urban areas. The model parameters were estimated by using detailed, real-world data on commercial vehicle parking choices collected in two commercial urban areas in Singapore. The model analyzes the effect of several variables on the parking behavior of commercial vehicle drivers, including the presence of congestion and queuing, attitudes toward illegal parking, and pricing (parking fees). The model was validated against real data and applied within a discrete-event simulation to test the economic and environmental impacts of several parking measures, including pricing strategies and parking enforcement.

Authors: Dr. Giacomo Dalla Chiara, Lynette Cheah, Carlos Lima Azevedo, Moshe E. Ben-Akiya
Recommended Citation:
Dalla Chiara, Giacomo and Cheah, Lynette and Azevedo, Carlos Lima and Ben-Akiva, Moshe E. (2020). A Policy-Sensitive Model of Parking Choice for Commercial Vehicles in Urban Areas. Transportation Science, 54(3), 606–630. https://doi.org/10.1287/trsc.2019.0970 
Paper

Economic Analysis of Onboard Monitoring Systems in Commercial Vehicles

 
Download PDF  (1.01 MB)
Publication: Transportation Research Record
Volume: 2379
Pages: 64-71
Publication Date: 2013
Summary:
Onboard monitoring systems (OBMSs) can be used in commercial vehicle operations to monitor driving behavior, to enhance safety. Although improved safety produces an economic benefit to carriers, understanding how this benefit compares with the cost of the system is an important factor for carrier acceptance.
In addition to the safety benefits provided by the use of OBMSs, operational improvements may have economic benefits. This research provides, through a benefit-cost analysis, a better understanding of the economic implications of OBMSs from the perspective of the carrier. In addition to the benefits of reduced crashes, the benefits associated with reduced mileage, reduced fuel costs, and the electronic recording of hours of service (HOS) are considered. A sensitivity analysis demonstrates that OBMSs are economically viable under a wide range of conditions.
The results indicate that for some types of fleets, a reduction in crashes and an improvement in HOS recording provides a net benefit of close to $300,000 over the 5-year expected life span of the system. Furthermore, when additional benefits, such as reduced fuel consumption and reduced vehicle miles, are explored, the operation-related benefits can be upward of seven times more than the safety-related benefits.
This research also shows that net positive benefits are possible in large and small fleets. The results can be used to inform policies that motivate or mandate carriers to use such systems and to inform carriers about the value of system investment.

 

Authors: Dr. Anne Goodchild, Kelly A. Pitera, Linda Ng Boyle
Recommended Citation:
Pitera, Kelly, Linda Ng Boyle, and Anne V. Goodchild. "Economic Analysis of Onboard Monitoring Systems in Commercial Vehicles." Transportation Research Record 2379, no. 1 (2013): 64-71. 
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 
Paper

Examining Carrier Categorization in Freight Models

 
Download PDF  (0.73 MB)
Publication: Research in Transportation Business & Management
Volume: 11
Pages: 116-122
Publication Date: 2014
Summary:

Travel demand models are used to aid infrastructure investment and transportation policy decisions. Unfortunately, these models were built primarily to reflect passenger travel and most models in use by public agencies have poorly developed freight components. Freight transportation is an important piece of regional planning, so regional models should be improved to more accurately capture freight traffic. Freight research has yet to fully identify the relationships between truck movements and company characteristics in a manner sufficient to model freight travel behavior. Through analyzing the results of a survey, this paper sheds light on the important transportation characteristics that should be included in freight travel demand models and classifies carriers based on their role in the supply chain. The survey of licensed motor carriers included 33 questions and was conducted in Oregon and Washington. Respondents were asked about their vehicle fleets, locations served, times traveled, time windows, types of deliveries, and commodities. An assessment of how the relationships found can be integrated into existing models is offered.

Authors: Dr. Anne Goodchild, Maura Rowell, Andrea Gagliano
Recommended Citation:
Rowell, Maura, Andrea Gagliano, and Anne Goodchild. Examining Carrier Categorization in Freight Models. Research in Transportation Business & Management 11 (2014): 116-122. 
Paper

Forecasting Tools for Analyzing Urban Land Use Patterns and Truck Movement: A Case Study and Discussion

 
Download PDF  (0.49 MB)
Publication: Transportation Research Record
Volume: Volume 2547
Pages: 74-82
Publication Date: 2016
Summary:

Many urban planning efforts have supported development in dense, mixed-use areas, but tools are not widely available to help understand the relationship between urban form and goods movement. A review is presented on the status of urban goods movement forecasting models to account for the impacts of density and mixed land use. A description is given of a series of forecasting model runs conducted with state-of-the-practice tools available at the Puget Sound Regional Council. By comparing dense, mixed-use scenarios with different baseline and transportation network alternatives, the ability of the model to capture the relationship between goods movement and density is evaluated. The paper concludes with a discussion of the implications of the results for truck forecasting and freight planning.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Erica Wygonik, Alon Bassok, Daniel Carlson
Recommended Citation:
Wygonik, Erica, Alon Bassok, Edward McCormack, Anne Goodchild, and Daniel Carlson. "Forecasting Tools for Analyzing Urban Land Use Patterns and Truck Movement: Case Study and Discussion of Results." Transportation Research Record 2547, no. 1 (2016): 74-82.
Paper

Canada’s Port of Prince Rupert as a Successful National Gateway Strategy

Publication: Transportation Letters
Volume: 4(10)
Pages: 261-271
Publication Date: 2010
Summary:

In this paper we examine the Port of Prince Rupert as a case study of the Canadian Gateway strategy. We consider the effect of the Gateway strategy on the development of a container terminal at the Port of Prince Rupert, and Prince Rupert’s effect on discretionary cargo at west coast ports in North America. Canada’s Asia-Pacific Gateway Initiative was developed specifically to increase trade between Canada and the Asia-Pacific region. The initiative, coupled with a national freight transportation policy framework, commits investments to a long term plan for infrastructure. Through this integrative policy and public-private collaboration, the container terminal at the Port of Prince Rupert has grown and a new route for Asia-North America trade has developed. The port presents a novel concept for North American ports by locating outside of an existing urban center, and focusing on through, rather than local, traffic. However, through a logistical analysis of market sizes and likely importers, we demonstrate that the new container terminal at Prince Rupert will not likely cause a dramatic shift in cargo flows on the West Coast.

Authors: Dr. Anne Goodchild, Kelly Pitera, Susan Albrecht
Recommended Citation:
Pitera, Kelly, Anne Goodchild, and Susan Albrecht. "Canada's Port of Prince Rupert as a successful national gateway strategy." Transportation Letters 2, no. 4 (2010): 261-271.