Skip to content
Paper

Options for Benchmarking Performance Improvements Achieved from Construction of Freight Mobility Projects

 
Download PDF  (2.95 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2006
Summary:
This report documents the development of data collection methodologies that can be used to cost effectively measure truck movements along specific roadway corridors selected by transportation agencies in Washington State. The intent of this study was to design and test methodologies that could be used to measure the performance of freight mobility roadway improvement projects against benchmarks, or selected standards, that would be used both as part of the project selection process and to report on speed and volume improvements that resulted from completed freight mobility projects.
One technology tested was Commercial Vehicle Information System and Networks (CVISN) electronic truck transponders, which are mounted on the windshields of approximately 20,000 trucks in Washington. By using software to link the transponder reads from sites anywhere in the state, the transponder-equipped trucks could become a travel-time probe fleet. The second technology tested involved global positioning systems (GPS) placed in volunteer trucks to collect specific truck movement data at 5-second intervals. With GPS data it was possible to understand when and where the monitored trucks experienced congestion and to generate useful performance statistics.
The study found that both data collection technologies could be useful; however, the key to both technologies is whether enough instrumented vehicles pass over the roadways for which data are required. This basic condition affects whether the technologies will be effective at collecting the data required for any given benchmark project. The report also recommends the traffic data that should be collected for a benchmark program and the potential costs of using either data collection technology.

 

 

Authors: Dr. Ed McCormack, Mark Hallenbeck
Recommended Citation:
McCormack, E. D., & Hallenbeck, M. E. (2005). Options for Benchmarking Performance Improvements Achieved from Construction of Freight Mobility Projects. (No. WA-RD 607.1). Washington State Department of Transportation.
Student Thesis and Dissertations

Emissions, Cost, and Customer Service Trade-off Analyses in Pickup and Delivery Systems

Publication Date: 2011
Summary:

As commercial vehicle activity grows, the environmental impacts of these movements have increasing negative effects, particularly in urban areas. The transportation sector is the largest producer of CO2 emissions in the United States, by end-use sector, accounting for 32% of CO2 emissions from fossil fuel combustion in 2008. Medium and heavy-duty trucks account for close to 22% of CO2 emissions within the transportation sector, making systems using these vehicles key contributors to air quality problems. An important well-known type of such systems is the “pickup and delivery” in which a fleet of vehicles pickups and/or delivers goods from customers.

Companies operating fleet of vehicles reduce their cost by efficiently designing the routes their vehicles follow and the schedules at which customers will be visited. This principle especially applies to pickup and delivery systems. Customers are spread out in urban regions or are located in different states which makes it critical to efficiently design the routes and schedules vehicles will follow. So far, a less costly operation has been the main focus of these companies, particularly pickup and delivery systems, and less attention has been paid to understand how cost and emissions relate and how to directly reduce the environmental impacts of their transportation activities. This is the research opportunity that motivates the present study.

While emissions from transportation activities are mostly understood broadly, this research looks carefully at relationships between cost, emissions and service quality at an individual-fleet level. This approach enables evaluation of the impact of a variety of internal changes and external policies based on different time window schemes, exposure to congestion, or impact of CO2 taxation. It this makes it possible to obtain particular and valuable insights from the changes in the relationship between cost, emissions and service quality for different fleet characteristics.

In an effort to apply the above approach to real fleets, two different case studies are approached and presented in this thesis. Each of these cases has significant differences in their fleet composition, customers’ requirements and operational features that provide this research with the opportunity to explore different scenarios.

Three research questions guide this research. They are explained in more detailed below. The present study does not seek to provide a conclusive answer for each of the research questions but does shed light on general insights and relationships for each of the different features presented in the road network, fleet composition, and customer features.

In summary, this research provides a better understanding of the relationships between fleet operating costs, emissions reductions and impacts on customer service. The insights are useful for companies trying to develop effective emission-reduction strategies. Additionally, public agencies can use these results to develop emissions reductions policies.

Authors: Felipe Sandoval
Recommended Citation:
Sandoval, Felipe (2011). Emissions, Cost, and Customer Service Trade-off Analyses in Pickup and Delivery Systems, University of Washington Master's Degree Thesis.
Thesis: Array
Paper

Evaluating Two Low-Cost Methods of Collecting Truck Generation Data Using Grocery Stores

 
Download PDF  (0.20 MB)
Publication: Institute of Transportation Engineers (ITE) Journal
Volume: 81 (6)
Pages: 34–40
Publication Date: 2011
Summary:

Despite their heavy use of the road transportation system, little data is available on trip generation rates for trucks. In this paper, truck trip rates from grocery stores are used in a case study to evaluate and compare two simple methods for collecting data on truck trip generation: telephone interviews and manual counts. The findings from this study showed that grocery stores generated an average of 18 truck trips per day on a typical peak period weekday. The results also showed that a combination of telephone interviews and manual counts was more effective than telephone interviews alone. Information from the telephone interview guided the manual counts and provided a baseline measurement of counts. However, the interviews underreported truck trips when compared to the manual observations.

Authors: Dr. Ed McCormack, Alon Bassok
Recommended Citation:
McCormack, Edward, and Alon Bassok. "Evaluating Two Low-Cost Methods of Collecting Truck Generation Data Using Grocery Stores." Institute of Transportation Engineers. ITE Journal 81, no. 6 (2011): 34.