Skip to content
Paper

Impact of Truck Arrival Information on System Efficiency at Container Terminals

 
Download PDF  (1.49 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2162
Publication Date: 2014
Summary:

This paper quantifies the benefits to drayage trucks and container terminals from a data-sharing strategy designed to improve operations at the drayage truck-container terminal interface. This paper proposes a simple rule for using truck information to reduce container rehandling work and suggests a method for evaluating yard crane productivity and truck transaction time. Various scenarios with different levels of information quality are considered to explore how information quality affects system efficiency (i.e., truck wait time and yard crane productivity). Different block configurations and truck arrival rates are also investigated to evaluate the effectiveness of truck information under various system configurations. The research demonstrates that a small amount of truck information can significantly improve crane productivity and reduce truck delay, especially for those terminals operating near capacity or using intensive container stacking, and that complete truck arrival sequence information is not necessary for system improvement.

Authors: Dr. Anne Goodchild, Wenjuan Zhao
Recommended Citation:
Zhao, Wenjuan, and Anne V. Goodchild. "Impact of truck arrival information on system efficiency at container terminals." Transportation Research Record 2162, no. 1 (2010): 17-24. 
Student Thesis and Dissertations

Enhancing Performance Measurement: Implementing Computable General Equilibrium Models in Truck-Freight Network Investment Prioritization

 
Download PDF  (0.63 MB)
Publication: Freight Policy Transportation Institute
Publication Date: 2013
Summary:
The adoption of defensible performance measures and establishment of proven results has become a necessity of many state Transportation Departments. A major factor in demonstrating results is the impact a transportation infrastructure improvement project has on the region’s economic climate. Though often previously underrepresented in policy and planning of transportation systems, freight movement plays a critical role in the transference of infrastructure improvement benefits into regional economic impacts. The degree of impact influenced by freight movement improvements is dependent upon location and geographic scale of evaluation. This paper assesses the geographic scale considerations in selecting the modeling framework to evaluate economic impacts. Specifically, we consider the results of regional input-output (I-O) models as compared to those of computable general equilibrium (CGE) models in response to reduced travel time and operating costs in the freight highway network. Though widely used for policy and planning purposes, I-O models have come under criticism for their inability to realistically model the behaviors of a regional economy. Despite their increased flexibility in real-world modeling, CGE models have been resisted due to their complexity of use. We consider the implications of selecting between ease of use and model flexibility at scales ranging from a single county to statewide.

 

 

Authors: Dr. Anne Goodchild, Jeremy Sage, John Maxwell, Zun Wang, Ken Casavant
Recommended Citation:
Sage, Jeremy. John Maxwell, Zun Wang, Ken Casavant, and Anne Goodchild. "Enhancing Performance Measurement: Implementing Computable General Equilibrium Models in Truck-Freight Network Investment Prioritization." University of Washington Master's degree thesis. 
Paper

Truck Travel Time Reliability and Prediction in a Port Drayage Network

 
Download PDF  (2.05 MB)
Publication: Maritime Economics & Logistics
Volume: 13 (4)
Pages: 387-418
Publication Date: 2011
Summary:

This article will explore the reliability of the port drayage network. Port drayage is an important component of the marine intermodal system and affects the efficiency of the intermodal supply chain. Sharing and utilizing drayage truck arrival information could improve both port drayage and port operational efficiency. In this article two reliability measures are used to evaluate how the travel time reliability changes with trip origins and across drayage networks. The truck routing choices between Origin-Destination (OD) pairs are examined. A simple method is proposed to predict the 95 percent confidence interval of travel time between any OD pair and is validated with global positioning system (GPS) data. The results presented in this article demonstrate that the proposed travel time prediction method is sufficient for predicting truck arrival time windows at the terminal and can be translated into truck arrival group information.

Authors: Dr. Anne Goodchild, Wenjuan Zhao
Recommended Citation:
Zhao, Wenjuan, and Anne V. Goodchild. "Truck travel time reliability and prediction in a port drayage network." Maritime Economics & Logistics 13, no. 4 (2011): 387-418.