Research Topic: The Final 50 Feet of the Urban Goods Delivery System
The Urban Freight Lab coined the term “Final 50 Feet” and defined it as the supply chain segment that begins when a delivery vehicle pulls into a parking space and stops moving — in public load/unload spaces at the curb or in an alley, or a building’s loading dock or internal freight bay. It tracks the delivery process inside buildings and ends where the customer takes receipt of their goods. This research analyzes processes, develops potential solutions, and tests operational improvements in the final segment of the urban goods delivery system.
Investigation of Private Loading Bay Operations in Seattle’s Central Business District
Cities need new load/unload space concepts to efficiently move freight, particularly as autonomous vehicles (both passenger and freight) become feasible. This research aims to: understand the importance of off-street commercial parking, understand how off-street facilities are managed, and determine whether off-street commercial parking is an underutilized resource for urban goods delivery.
Researchers determined the locations of commercial and residential buildings in Seattle’s Central Business District with off-street delivery infrastructure, established communication with property management or building operators, and conducted interviews regarding facility management, usage, roadblocks in design/operations, and utilization.
This research finds that overbooking of off-street space is infrequent, most facility management is done by simple tenant booking systems, buildings relying primarily on curb space notes that infrastructure and operations were hindered by municipal services — especially when connecting to alleyways.
Griffin Donnelly and Anne Goodchild. Investigation of Private Loading Bay Operations in Seattle's Central Business District. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Modeling of Urban Freight Deliveries: Operational Performance at the Final 50 Feet
The demand for goods and services is rapidly increasing in cities, in part due to the rise in online shopping and more varied delivery options. Cities around the world are experiencing an influx of goods pickup and delivery activities. The movement of goods within urban areas can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities, specifically those that are out of vehicle activities, encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. This dissertation aims to provide insights and data-driven approaches to support freight plans in various cities around the globe with a focus on urban freight deliveries. To accomplish this goal, this dissertation first proposes to discover the current delivery process at the final 50 feet by creating value stream maps that summarize the flow of delivery activities and times, and time variations between activities. The map will be based on the data collected from five freight-attracting buildings in downtown Seattle. Secondly, this research explores contributing factors associated with dwell time for commercial vehicles by building regression models. Dwell time, in this study, is defined as the time that delivery workers spend performing out-of-vehicle activities while their vehicle is parked. Finally, this dissertation predicts the total time spent at the final 50 feet of delivery, including dwell times and parking-related times through discrete event simulations for various “what if” delivery scenarios. Multi-objective simulation-based optimization algorithms were further used to discover the optimal numbers of parking and building resources (e.g. number of on and off-street parking capacity, number of security guards or receptionists). This aims to better understand how increased deliveries in urban cities can impact the cost distributions between city planners, building managers, and delivery workers. This will also identify the areas for improvement in terms of infrastructure and resources to better prepare for the future delivery demands based on various scenarios.
Kim, Haena (2021). Modeling of Urban Freight Deliveries: Operational Performance at the Final 50 Feet. University of Washington Ph.D. Dissertation.
Commercial Vehicle Parking in Downtown Seattle: Insights on the Battle for the Curb
Rapid urban growth puts pressure on local governments to rethink how they manage street curb parking. Competition for space among road users and lack of adequate infrastructure force delivery drivers either to search for vacant spaces or to park in unsuitable areas, which negatively impacts road capacity and causes inconvenience to other users of the road.
The purpose of this paper is to advance research by providing data-based insight into what is actually happening at the curb. To achieve this objective, the research team developed and implemented a data collection method to quantify the usage of curb space in the densest urban area of Seattle, Center City.
This study captures the parking behavior of commercial vehicles everywhere along the block face as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones. Based on the empirical findings, important characteristics of Seattle’s urban freight parking operations are described, including a detailed classification of vehicle types, dwell time distribution, and choice of curb use for parking (e.g., authorized and unauthorized spaces). The relationship between land use and commercial vehicle parking operations at the curb is discussed. Seattle’s parking management initiatives will benefit from the insights into current behavior gained from this research.
Rapid urban growth, increasing demand, and higher customer expectations have amplified the challenges of urban freight movement. Finding an adequate space to park can be a major challenge in urban areas. For commercial vehicles used for freight transportation and provision of services, the lack of parking spaces and parking policies that recognize those vehicles’ unique needs can have negative impacts that affect all users of the road, particularly the drivers of these commercial vehicles (1–4).
The curb is an important part of the public right-of-way. It provides a space for vehicles to park on-street; for delivery vehicles (i.e., cargo bikes, cargo vans, and trucks), in particular, it also provides a dedicated space for the loading and unloading of goods close to destinations. Hence it is a key asset for urban freight transportation planning which local governments can administer to support delivery and collection of goods.
According to Marcucci et al. (5), the development of sustainable management policies for urban logistics should be based on site-specific data given the heterogeneity and complexity of urban freight systems. Current loading/unloading parking policies include time restrictions, duration, pricing, space management, and enforcement (6, 7). However, as Marcucci et al. pointed out after an extensive review of the literature on freight parking policy, the quantification of commercial vehicle operations on the curb to inform policy decision making is nonexistent (5). Therefore, local governments often lack data about the current usage of the curb and parking infrastructure, which is necessary to evaluate and establish these policies and therefore make well-informed decisions regarding freight planning, especially in dense, constrained urban areas.
Given the importance of the curb as an essential piece of the load/unload infrastructure, this paper investigates what is actually happening at the curb, developing an evidence-based understanding of the current use of this infrastructure. The research team developed and applied a systematic data collection method resulting in empirical findings about the usage of public parking for loading and unloading operations in the Seattle downtown area.
This research documents and analyzes the parking patterns of commercial vehicles (i.e., delivery, service, waste management, and construction vehicles) in the area around five prototype buildings located in the Center City area. The results of this research will help to develop and inform parking management initiatives.
The paper includes four sections in addition to this introduction. The second section discusses previous freight parking studies and the existing freight parking policies in cities, and explores which of these approaches are being used in Seattle. The third section proposes a data collection method to document freight-related parking operations at the curb though direct observations. The fourth section provides empirical findings from data collection in Seattle. The fifth and last section includes a discussion of the findings and concluding remarks.
Girón-Valderrama, Gabriela del Carmen, José Luis Machado-León, and Anne Goodchild. "Commercial Vehicle Parking in Downtown Seattle: Insights on the Battle for the Curb." Transportation Research Record (2019): 0361198119849062.
NYC Zero-Emission Freight and Green Loading Zone Market Research
(This project is being conducted under the Urban Freight Lab’s (UFL) Technical Assistance Program, where UFL contributes to the project by providing 1:1 match funds in terms of staff and/or research assistants to complete project tasks.)
This project is focused on conducting targeted freight industry market research to identify strategies that can support charting a pathway to zero-emission freight strategies for New York City by 2050 and identify the associated roadblocks/barriers to entry.
Partner Organization: New York City Department of Transportation
Project Goals:
- Understand the interests and concerns of freight industry and private sector stakeholders to enable collaboration and inform the development of NYC DOT’s Green Loading Zone pilot
- Actively engage NYC freight stakeholders to identify the greatest likelihood of accelerating the uptake and greater efficiency for zero-emission trucks.
- Improve NYC DOT’s understanding of the obstacles and roadblocks that impact progress towards achieving zero emissions urban freight in NYC.
Summary of Project Tasks:
Task 1: Research Scan
Review national and international best practices on zero-emission urban freight, and identify new and existing strategies that support achieving zero-emission freight in NYC, with a particular focus on loading zone and curb management.
Task 2: Market Research Survey Design
Develop a short survey for stakeholders (freight industry, consumer brands and parcel carriers, etc. serving NYC area) to better understand the potential scale, siting, and contextual implementation of the Green Load Zone (GLZ) pilot. The survey will collect data on:
- current trends and future estimations about the use of “green” vehicle fleet
- barriers and opportunities with prevailing market conditions
- key drivers and constraints for stakeholders
- needs, motivation and role of each stakeholder involved
Task 3: Freight Industry Market Research and Stakeholder Engagement
Distribute the survey, and summarize and synthesize survey findings. Findings will help NYCDOT:
- understand the interests and concerns of freight industry and other private stakeholders around the use of GLZs
- identify potential GLZ users and accelerate the uptake of it
- make informed decisions about implementation of the GLZ pilot
- chart a pathway to achieving zero-emission freight in NYC
Task 4: Final Report
Provide a final report to NYCDOT.
Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Innovative Goods Delivery Solutions for Cities of the Future
Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries
Micro-consolidation implementations and pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.
This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.
The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools.
Şeyma Güneş and Anne Goodchild (2022). Exploring the Sustainability Potential of Urban Delivery Microhubs and Cargo Bike Deliveries. 9th International Urban Freight Conference (INUF), Long Beach, CA May 2022.
Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption
The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:
- Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
- Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
- Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.
The project team has designed a 3-year plan to achieve the objectives of this project.
In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.
In Year 2, the team executed the implementation plan:
- oversaw installation of the in-road sensors, and collecting and processing data,
- managed installation, marketing and operations of three common locker systems in the pilot test area,
- tested the prototype smart phone parking app with initial data stream, and
- developed a truck parking behavior simulation model.
Urban Freight Lab (2021). Year Two Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes
Delivery options have become very diverse with online shoppers demanding faster delivery options (e.g, 2-day delivery, same day delivery options) and more personalized services. For this reason, transportation planners, retailers, and delivery companies are seeking ways to better understand how best to deliver goods and services in urban areas while minimizing disruption to traffic, parking, and building operations. This includes understanding vertical and horizontal goods movements within urban areas.
The goal of this project is to capture the delivery processes within urban buildings in order to minimize these disruptions. This is achieved using a systems approach to understanding the flow of activities and workers as they deliver goods within urban buildings. A mobile application was designed to collect the start and stop times for each task within the delivery process for 31 carriers as they deliver goods within a 62-story office building.
The process flow map helped identify bottlenecks and areas for improvements in the final segment of the delivery operations: the final 50 feet. It also highlighted consistent tasks conducted by all carriers as well as differences with given carrier type. This information is useful to help decision-makers plan appropriately for the design of future cities that encompass a variety of delivery processes.
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. (2018) "A Mobile Application for Collecting Task Time Data for Value Stream Mapping of the Final 50 Feet of Urban Goods Delivery Processes." In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 1808–1812. https://doi.org/10.1177/1541931218621410
A Data-Driven Simulation Tool for Dynamic Curb Planning and Management
Project Budget: $2.9M (UW amount: $500k)
Lead Institution:
- Pacific Northwest National Lab (PNNL)
Partner Institutions:
- Urban Freight Lab (UFL), University of Washington
- Lawrence Berkeley National Laboratory (LBNL)
- Lacuna Technologies, Inc. (Lacuna)
- National Renewable Energy Laboratory (NREL)
Summary:
Curbs are a critical interfacing layer between movement and arrival in urban areas—the layer at which people and goods transition from travel to arrival—representing a primary point of resistance when joining and leaving the transportation network. Traditionally, curb spaces are statically supplied, priced, and zoned for specific usage (e.g., paid parking, commercial/passenger loading, or bus stops). In response to the growing demand for curb space, some cities are starting to be more intentional about defining curb usage. Examples of curb demand include not only traditional parking and delivery needs, but today include things like curb access requirements generated by micro delivery services, active transportation modes, and transportation network companies. And now due to the pandemic, increased demand comes from food/grocery pick-up/drop-off activities, as well as outdoor business use of curb space (e.g., outdoor restaurant seating).
Heightened demand and changing expectations for finite curb resources necessitates the implementation of new and dynamic curb management capabilities so that local decision-makers have the tools needed to improve occupancy and throughput while reducing the types of traffic disruptions that result from parking search and space maneuvering activities.
However, municipalities and cities currently lack tools that allow them to simulate the effectiveness of potential dynamic curb management policies to understand how the available control variables (e.g. price or curb space supply) can be modified to influence curb usage outcomes. On the other hand, transportation authorities and fleet managers lack the needed signage or communication platforms to effectively communicate the availability of curb space for a specified use, price, and time at scales beyond centralized lots and garages.
This project aims to develop a city-scale dynamic curb use simulation tool and an open-source curb management platform. The envisioned simulation and management capabilities will include dynamically and concurrently controlling price, number of spaces, allowed parking duration, time of use or reservation, and curb space use type (e.g., dynamic curb space rezoning based on supply and demand).
Project Objectives:
Project objectives include the following:
- Objective 1: The team will develop a microscale curb simulation tool to model behavior of individual vehicles with different purposes at the curb along a blockface over time of day, accounting for price, supply, function, and maximum parking time.
- Objective 2: The team will integrate the microscale simulation tool with the LBNL’s mesoscale (city-scale) traffic simulation tool, BEAM, for simulating traffic impacts of alternative curb management strategies and their effects on citywide and regional traffic, in terms of (1) travel time, (2) throughput (people and goods) into and out of urban centers, (3) reduced energy use and emissions (from parking search and congestion), and (4) curb space utilization.
- Objective 3: The team will develop a dynamic curbspace allocation controller for various curb users, either municipal or commercial, for the purpose of a demonstration and pilot.
- Objective 4: The team will design, implement and test a curbside resource usage platform for fleet vehicles communications at commercial vehicle load zones (CVLZs), passenger load zones (PLZs), and transit stops.
- Objective 5: The team will perform demonstrations with stakeholder agencies and provide pathways to practice for promising curb allocation policies.