Skip to content

Zero-Emission Delivery Zone: City of Portland SMART Grant

The Portland Bureau of Transportation (PBOT) was awarded a nearly $2 million Strengthening Mobility and Revolutionizing Transportation (SMART) Grant by the US Department of Transportation (USDOT) in Fall 2023 to pilot the country’s first regulated Zero-Emission Delivery Zone in downtown Portland and test digital infrastructure tools. This project will test an innovative set of incentives and regulations to better understand what technology and strategies municipalities can use to support and reduce greenhouse gas emissions in the freight sector.

While other cities in the United States have piloted voluntary Zero-Emission Delivery Zones (ZEDZs) to encourage the transition of commercial fleets to zero-emission modes, Portland will be the first U.S. city to pilot a regulated ZEDZ. The regulated ZEDZ will be active during a demonstration period of approximately six months beginning in late summer/early fall of 2024. During this temporary demonstration period, the parking rules for all truck loading zones within the project area will be changed to prioritize access for zero-emission vehicles only (see Figure 1). Loading zones within the ZEDZ will be monitored by parking sensors, both before and after the approximately six-month long demonstration period, so that project staff can better understand the impact of this regulation. These loading zones will be referred to as Zero-Emission Loading Zones.

This pilot project will also test a variety of partnerships and incentives to accelerate the movement of “clean goods,” or goods with fewer negative impacts to health and the environment. This could include diverting existing deliveries into the ZEDZ to local fleets of electric-assist cargo trikes and electric vehicles, vans and trucks, or supporting local delivery companies in transitioning their own fleets to zero-emission modes.

This project is enabled by a nearly $2 million USDOT SMART Stage 1 pilot and prototyping grant. Depending on outcomes from this pilot project, PBOT will have the opportunity to apply for a Stage 2 implementation grant for up to $15 million to refine or scale promising strategies identified in the initial pilot project. The two stages of the SMART grant program are unique in that they allow the City of Portland to test several strategies on a small scale before exploring any larger-scale implementation. All of this work is in service to Portland’s values around climate and transportation justice: a safer, cleaner, and more equitable system for delivering goods and services.

Draft map of project area showing proposed zero-emission load zones updated in March 2024. Loading zone site selection will be refined with stakeholder input in late Spring 2024.

Scope of Work

The Urban Freight Lab (UFL) was approached by PBOT to assist in their Phase 1 SMART grant implementation. The UFL will provide subject matter expertise on the topics of urban freight, curb management, and freight decarbonization. They will support PBOT in the form of interviews and/or surveys to summarize current carrier operations, current and future fleet composition, and loading activities.

  • Task 1. Project management and subject matter expertise support
    • Deliverables: Attend meetings and provide subject matter expert consultation as needed.
  • Task 2. Document how some carriers and delivery operators would be impacted by a zero-emission delivery zone (ZEDZ) in Portland, including understanding current and planned fleet composition, interactions with the curb, and barriers and opportunities for the City to support.
    • Deliverables: Interview questionnaire and summaries of answers (we will aggregate and anonymize results). Draft and final technical memo, with one PBOT review of the draft

Zero-Emission Zones: Turning Ideas into Action

C40 Cities, a consortium of cities worldwide with the collective goal of reducing greenhouse gas emissions, introduced an initiative in 2017 to create “Zero Emission Areas.” These areas, or zones, would be closed off to fossil fuel-burning vehicles and serve as a testbed for scaling up zero-emission regulation. Seattle, along with U.S. counterparts Austin, Texas and Los Angeles, CA, is a signatory to the Zero Emission Area Programme and as such, is obligated to create such an area by 2030.

Zero Emission Zones (ZEZ) can introduce obstacles to the urban freight and logistics industry. Though large delivery companies like Amazon, UPS, and FedEx are introducing electric vehicles (EVs), parcel and package delivery are not the only service included in the complex sector of urban freight. EVs are not yet widely available on the market and the high capital costs of introducing EVs into a company’s fleet can act as a barrier. However, there are strategies being tested and explored to reduce emissions including but not limited to zero emission curb zones, parcel lockers, e-cargo bikes, pricing strategies at the curb and at the point of sale (e.g. taxes and fees), consolidation centers, and other strategies. Additionally, many of these zones are being envisioned in areas with a focus on improving equity outcomes and across neighborhoods of different characteristics. However, no guidance exists for cities about how to approach the selection of these areas or tactics co-developed with the private sector.

Research Objectives

  • Develop a framework for evaluating geographic locations, existing policy tools, and key learning objectives or measures of success based on two different neighborhood typologies
  • Incorporate private sector stakeholders into the design process

Tasks

  • Task 1: Define the characteristics and goals of a zero-emission delivery zone
  • Task 2: Perform literature and policy scan on existing tools to push deliveries towards zero emission (industry and consumer-side)
  • Task 3: Identify 2 different neighborhood typologies in Seattle for analysis and define the study area boundaries
    • One neighborhood should meet existing definitions of a Justice 40 or equity focus area community as defined by City of Seattle (e.g. Georgetown)
    • One neighborhood should represent high-density demand for e-commerce and congestion (define?) (e.g. Capital Hill, South Lake Union)
  • Task 4: Collect publicly-available baseline data on neighborhood characteristics collect data (land use, types of businesses, demographics of residents)
  • Task 5: Develop potential scenarios, tactics, and metrics that reflect the unique characteristics of the chosen neighborhoods/typologies
    • The team will leverage existing relationships to perform private sector outreach, based on interviews: understand their priorities, reactions to scenarios under development.
  • Task 6: Recommendations and framework
    • How do you choose the site / site selection criteria and methodology
    • Tactics based on neighborhood typology characteristics- using policies available right now or with limited policy effort
    • Equity-Community metrics- How does the makeup of the zone/neighborhood impact tactics + metrics?
    • Key metrics- What are you trying to test and how will you measure?
    • Tools to accelerate the implementation of zero-emission deliveries.

Deliverable

Create a framework for zero emission zone design and case study of two different neighborhoods in Seattle.

Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
Report

NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research

 
Download PDF  (3.99 MB)
Publication Date: 2022
Summary:

In an effort to reduce emissions from last-mile deliveries and incentivize green vehicle adoption, The New York City Department of Transportation (NYC DOT) is seeking to implement a Green Loading Zone (GLZ) pilot program. A Green Loading Zone is curb space designated for the sole use of “green” vehicles, which could include electric and alternative fuel vehicles as well as other zero-emission delivery modes like electric-assist cargo bikes. To inform decisions about the program’s siting and regulations, this study was conducted by the University of Washington’s Urban Freight Lab (UFL) in collaboration with NYC DOT under the UFL’s Technical Assistance Program.

The study consists of three sources of information, focusing primarily on input from potential GLZ users, i.e., delivery companies. An online survey of these stakeholders was conducted, garnering 13 responses from 8 types of companies. Interviews were conducted with a parcel carrier and an electric vehicle manufacturer. Additionally, similar programs from around the world were researched to help identify current practices. The major findings are summarized below, followed by recommendations for siting, usage restriction and pricing of GLZs. It is important to note that these recommendations are based on the survey and interview findings and thus on benefits to delivery companies. However, other important factors such as environmental justice, land use patterns, and budgetary constraints should be considered when implementing GLZs.

Literature Review Findings

Green Loading Zones are a relatively novel approach to incentivizing electric vehicle (EV) adoption. Two relevant pilot programs exist in the United States, one in Santa Monica, CA and the other one in Los Angeles, CA. Both are “zero-emission” delivery programs, meaning alternative fuel vehicles that reduce emissions (compared to fossil fuel vehicles) are not included in the pilot’s parking benefits (dedicated spaces and free parking). Other cities including Washington, DC and Vancouver, Canada are also creating truck-only zones and dedicating parking to EVs in their efforts to reduce emissions. Bremen, Germany also has a similar program called an Environmental Loading Point.

Many cities in Europe are implementing low- or zero-emission zones. These are different than GLZs in that entire cities or sections of cities are restricted to vehicles that meet certain emissions criteria. London, Paris, and 13 Dutch municipalities are all implementing low-emission zones. These zones have achieved some success in reducing greenhouse gas emissions: in London, CO2 from vehicles has been reduced by 13 percent. Companies operating in those cities have opted to purchase cleaner vehicles or to replace trucks with alternative modes like cargo bikes. In addition to demonstrating similar goals as NYC DOT, these programs provide insights to the siting and structure of GLZs. Loading zones have been selected based on equity concerns, delivery demand, and commercial density. Every city in the literature review has installed specific signage for the programs to clearly convey the regulations involved.

Survey and interview Findings

A range of company types replied to the survey: parcel carriers (large shippers), small shippers, e-commerce and retail companies, freight distributors, a truck dealer, a liquid fuel delivery company, and a logistics NYC  association (answering on behalf of members). The majority of these companies will be increasing their fleet sizes over the next ten years, and most plan to increase the share of EVs in their fleets while doing so. A smaller share (4 of 13) also plans to increase their share of alternative fuel vehicles. The most cited reasons for increasing fleet size and green vehicle share are: 1) internal sustainability goals, 2) social responsibility, and 3) new vehicles/models coming to the market.

Green vehicle adoption is not without its challenges. For EV adoption specifically, companies identified three major barriers: 1) competition in the EV market, 2) electric grid requirements upstream of company-owned facilities, and 3) lack of adequate government-supported purchasing subsidies. To overcome these barriers, respondents would like larger or more government purchasing incentives and reduced toll or parking rates for EVs. However, the majority of companies also expressed a willingness to pay for GLZs at similar rates to other commercial loading zones.

As for area coverage, all respondents deliver to Manhattan, Queens, and Brooklyn. 11 of 13 deliver to Staten Island and the Bronx as well. All EV and cargo bike operators deliver to Manhattan, whereas only one EV operator and one cargo bike operator deliver to all five boroughs of NYC. Respondents deliver at all times of day, but the busiest times are between 9:00AM and 4:00PM (stated by 8 of 13 respondents). Peak periods are busiest for four companies in the morning (6:00AM-9:00AM) and six companies in the evening (4:00PM-9:00PM).

The interviews supported findings from the survey. Both interviewed companies have a vested interest in reducing their environmental footprint and plan to use or produce exclusively zero-emission vehicles by 2050 (carrier) or 2035 (manufacturer). However, they noted challenges to electrifying entire fleets for cities. Charging infrastructure needs to be expanded, but incentives are also needed (parking benefits, subsidies, expedited permitting) to make the market viable for many delivery companies.

Recommendations

The preceding findings informed four key recommendations:

  • GLZs should be made available to multiple modes: green vehicles and cargo bikes. Adequate curb space might be needed to accommodate multiple step-side vans plus a small vehicle and cargo bikes, but this should be balanced against curb utilization rates and anticipated dwell times to maximize curb use.
  • Explore piloting GLZs in Lower Manhattan and commercial areas of Midtown Manhattan; they could be the most beneficial locations for the pilot according to survey respondents.
  • The preferred layout for GLZs is several spaces distributed across multiple blocks.
  • DOT can charge for the GLZ use. It is recommended that rates not exceed current parking prices in the selected neighborhood, but some companies are willing to pay a modest increase over that rate to avoid parking tickets.

 

Recommended Citation:
Urban Freight Lab (2022). NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research.